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THE ALGEBRAIC RICCATI EQUATION
WITHOUT COMPLETE CONTROLLABILITY*

H. K. WIMMER

Abstract. The equation XDX +XA +A*X C 0 is studied under the assumptions that D is positive
semidefinite and to pure imaginary eigenvalues of the Hamiltonian matrix ( _.) correspond only
elementary divisors of even degree. A necessary and sufficient condition on the existence and uniqueness
of hermitian solutions is given. The approach is based on symplectic transformations of Hamiltonian matrices.

1. Introduction. The algebraic Riccati equation

(1.1) XDX+XA +A*X-C =0,

where X, A, C and D are complex n n matrices and C and D and the unknown
matrix X are hermitian, has a wide range of applications and has been studied
extensively. Surveys on (1.1) can be found in the papers by Willems [12], Kuera
[6], Coppel [2] and Molinari [10]. The algebraic investigation on existence and
uniqueness of solutions in [2] is based on the use of symplectic transformations. In
this note we refine Coppel’s method and extend one of his results ([2, Thm. 6]). Our
assumption will be D _-> 0, i.e. D is positive semidefinite. We do not require the pair
(A, D) to be controllable.

2. Symplectic matrices and solutions. The matrix

(2.1) M
-A*

is closely related to (1.1). Obviously X is a solution of (1.1) if and only if

holds. With respect to the 2n 2n matrix J,

M is hermitian, i.e.,

(2.3) JM (JM)*

and M is called a Hamiltonian matrix. A matrix R C2n2n is said to be symplectic if

(2.4) RJR * J

holds. Under a symplectic similarity property (2.3) is preserved, JR-1MR
(JR-1MR)*. If R is partitioned into n n blocks

R-
O

then R -1 -JR*J implies

L* -K*)(2.5) R-1
-O* p*
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and

(2.6) -Q*P +P*Q 0, -PK* + KP* 0,

(2.7) L*P-K*Q=L

DEFINITION 2.1. For a complex polynomial p(z)= Y az we define/5 by

(z) p(-z) E a(-z).
Let x(G) denote the characteristic polynomial of the matrix G.

,We shall need the following result on symplectic transformations which will be
discussed in 6.

THEOREM 2.1. Let M C2"2" be a Hamiltonian matrix and let the following
condition hold:

(a) the elementary divisors which belong to pure imaginary eigenvalues ofM have
even degrees.,

Then the characteristic polynomial ofMcan be factored into

(2.8) x(M) (-1)"qq,

where q and have only pure imaginary roots in common. There exists a symplectic
matrix R such that

(2.9) R-MR
0 T*

and x(T) q hold.
If M has no eigenvalues with zero real part then one has (q, )= 1 in (2.8) and

F =0 in (2.9), which is [2, Thm. 5]. From the matrix R in (2.9) a solution of (1.1)
can be obtained (see [2] for the case F 0).

THEOREM 2.2. The following statements are equivalent:
(i) The equation (1.1) has a solution.
(ii) There exists a symplectic matrix

R

with P nonsingular which transforms M into

R-MR
0 T*

A solution Xo (1.1) yields a matrix

for (2.9). The matrix R in (2.9) gives rise m a solu#on X OP- for which

(2.10) x(A+DX)=x(T)

hoMs.
Proof. If X is a solution, then ( ) is symplectic and

0 -1 I =[A DX D
(2.11) (I I)M(X 0I) +

0 -(A + DX)*,"



THE ALGEBRAIC RICCATI EQUATION 3

Conversely, if P is nonsingular, then (2.6) implies

(p-1),Q, Qp-1

and X := QP-I is hermitian. Furthermore, (2.7) yields

(IX O)P--K*) (R-1
I =\ 0 P* -X

with P-*= (P-)*. We have

I O
M

I I

(pTp- A

\ 0 -P-*T*P*}

and therefore in particular A +DX PTP- and (2.2). 71
Note that Theorems 2.1 and 2.2 do not require D-> 0.

I P-*)

0 -T*

3. Notation, definitions, lemmas. This section contains prerequisites for the for-
mulation and for the proof of the main result.

DEFINITION 3.1. Let A s Cnn and B Cnm be given. The span of the columns
of AiB, 0, 1,’’’, n- 1, is called the (A, B)-controllable subspace of C" and is
denoted by C(A, B). The pair (A, B) is called controllable if C(A, B) C" or
equivalently if rank (B, AB, A"-IB)= n.

The following criterion is due to Hautus.
LEMMA 3.1 [4]. (i) The pair (A, B) is controllable if and only if

(3.1) rank (A- AI, B)= n

for all eigenvalues h of A, or equivalently,
(ii) (A, B) is not controllable if and only if there exists a y Cn, such that y

left eigenvector ofA and y rB O.
The condition (3.1) gives rise to the following concept [5].
DEFINITION 3.2. An eigenvalue a of A is called B-controllable if

(3.2) rank (A- aI, B)= n

T
is a

\A21 A22 B2
and (A22, B2) is controllable. If m n and B B* >= 0, then

0 0 ) B22>0SBS*=
0 B22’

and (A22, B22) is controllable.
Controllability is preserved under the following operations.

holds.
Since C(A, B) is an A-invariant subspace, a suitable choice of a basis of C" yields

the following decomposition theorem.
LEMMA 3.2 [9, p. 99]. There exists a nonsingular matrix S such that
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LEMMA 3.3 [13]. If (A, B) is controllable, then for any F Cm, for any nonsin-
gular S C and T C"m, the pairs (A + BF, B), (SAS-1, SB) and (A, BT) are
controllable.

DEFINITION 3.3. For A C"" let Ei(A) denote the subspace of C" that is spanned
by the generalized eigenvectors belonging to pure imaginary eigenvalues of A,

Eg(A)= LI ker (A ilxI).
LA 3.4. Each pure imaginary eigenvalue ofA is B-controllable if and only if

(3.4) E(A)C(A,B).

Proof. Let a be a pure imaginary eigenvalue of A and let A be transformed into

(3.5) TAT_a (Ao O) Aa G Cpxp

such that is the only eignvalue of A and det (A-aI) 0. Obviously (3.2) and
(3.4) remain valid if A and B ar replaced by TAT- and TB. Therefore w can
assume A to be in block diagonal form (3.5). The generalized eigenspace of A
corresponding to is

V. := {vlv C, v (v, v,, 0,..., 0)}.
BIt is sufficient to show that (3.2) means Vv c C(A,B). Let B () be partitioned

according to (3.5). Then (3.2) is equivalent to

(3.6) rank (A aI, B p

or, because of Lemma 3.1, equivalent to

rank (B, AB, Av-- B)=p.

Hence (3.2) implies Vp span (B, AB, , A-aB) C(A, B). If (3.6) does not hold,
then there exists a y Cp, such that y T(A aI) 0 and y TB 0. Thus yTAB =0
for all k and dim C(A, B)<p. Hence there is a w e C which is not in C(A, B)
and (’) V is not in C(A, B). [3

LEMMA 3.5. The matrix All in (3.3) has no pure imaginary eigenvalues, if and
only if all pure imaginary eigenvalues ofA are B-controllable.

Proof. We can assume that A and B are in the form (3.3). Let AI be of size q
and A22 of size r, q + r n. Since (A22, B2) is controllable, we have for all a C

rank (A aI, B) rank (A 11 CII) -[- Y

and (3.2) holds for all aeiN if and only if rank(All-aI)=q; i.e., All has no
eigenvalues in iN. 71

For a uniqueness proof the following result will be used.
LEMMA 3.6 [3, p. 208]. IrA Cnn andF Cnn have no eigenvalues in common,

then AX-XF 0 implies X O.
The following statements are easy to verify.
LEMMA 3.7. Let S C be nonsingular and define

2 :--(S*)-Ixs-1 A := SAS-, : := SDS*, d := (S*)-CS-1
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Then X is a solution of (1.1) if and only if f( is a solution of
Ycf)2 + :;:A + *:;c o.

The matrix

0 S*

is symplectic and f4 Z-1MZ. Furthermore Ei() SEi(A), C(,) SC(A, D)
and A +DX S(A +DX)S-.

LEMMA 3.8 [2]. Let X1 and X2 be two solutions of (1.1) and put U :=X2-X
and G := A +DXi, 1, 2, then

(3.7) UG1 +GU O.

The nullspace N of U is invariant under Gi, 1, 2, and GI[N G21N.
4. The condition of Lancaster and Rodman. One of the standard assumptions

on (1.1), namely that no eigenvalue of the Hamiltonian matrix M should have a zero
real part, has been relaxed by Lancaster and Rodman [7] by introducing the condition
(a) on the elementary divisors of M. If (A, D) is controllable then (a) is also necessary
for the existence of a solution [7, p. 228]. It will be easy to show that this is still true
if only the pure imaginary eigenvalues of A are D-controllable. As in [7] we will use
the following observation.

LEMMA 4.1 [7]. Let G and D be complex n n matrices and let D be hermitian,
D >-_0 and (G, D) be controllable. Then all elementary divisors corresponding o pure
imaginary eigenvalues of (o ’_.) have even degrees.

We state in the following lemma a more general result. Its proof will be self-
contained and should provide an easier access to Lemma 4.1.

DEFINITION 4.1. Let H(z)=(hik(Z)) be an n n matrix of complex rational
functions. Then H is defined as

H(z)=(hki(-z)).

LEMMA 4.2. Let G(z) and D(z) be n n matrices of complex rational functions
which have no pole in a, a iR, and for which the following assumptions hold:

(i) det G(z) O C(z);
(ii) D=/;
(iii) D(a)>-O;
(iv) rank (G(a), D(a)) n.

Then the degrees of the elementary divisors of

M(z)=(G(z) D(z)]
o

which belong to the characteristic root a are even.

Proof. We localize at a. Let U and V be two invertible matrices in Cnn (z) such
that U, U-1, V, V-a have no pole in a. We write

if

(4.1) U(z)G(z) V(z) S(z)
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holds. As G(z) has no poles in a, we can choose U and V in (4.1) such that

S(z) =diag (1, , 1, (Z--a)kl, (Z--a)k’), 0<kl--<’" "__-<kr.

Then

o o U(z) o -S(z)

It is not difficult to verify that for S and UDO the conditions (i)-(iv) are satisfied.
Since the elementary divisors corresponding to a are the same for M(z) and the
right-hand side of (4.2), we can assume without loss of generality that G(z) is given
by

Then

with

(x 0 )G(z)=
0 Ge(z)

Ge(z)=diag ((z--a)kl,

I 0 DI(z)
a2(z) Del(Z)

M(z)
0 -I
0 0

De(Z)
oMe(z))

-G.(z)/

W(z) :-- (e(z)D-1 (z)G2(z).

It follows from De(a)-1> 0 that the principal minors of W are nonzero. Since Ge is
diagonal, the greatest common divisor of all m m minors of W is (z- a)e", where
e,, o=x 2ko and W2G2. Therefore

M(z) diag (1,..., 1, (Z--a)2kl, "’,

Since R-equivalence preserves the elementary divisors belonging to the eigenvalue
this completes the proof.

we can focus on

Me(z)
\ 0

From (iv) and Oe(a)= 0 it follows that

(4.3) rank (D2(a), De(R)) r.

Suppose De(a) is singular and De(a)b 0 and b # 0. Then

(0 b*)D(a)() b*De(o)b O

and (iii) imply (0 b*)D(a) 0 and

b*(Dex(a), De(R)) 0,

which contradicts (4.3). Therefore De(R)> 0 (positive definite). Because of

M2(z)"d’ d2(z)D-1 (z)G2(z) 0
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The assumption of a constant and semidefinite D in Lemma 4.1 means that the
conditions (ii) and (iii) are satisfied. For G(z)=G-zI controllability of (G,D)
implies (iv).

5. The main result.
THEOREM 5.1. Let A, C and D be complex n x n matrices, C and D hermitian,

D >-O, and let h be the polynomial determined by

x(A) h x(AlcA,D)).
Let q be a monic polynomial of degree n with at most pure imaginary zeros in common
with . Then the following two sets of conditions are equivalent"

(i) All pure imaginary eigenvalues ofA are D-controllable; i.e.,

(5.1) Ei(A)cC(A,D)

(or h has no pure imaginary eigenvalues) and there exists a hermitian solution X of
(1.1) XDX +XA +A’X- C 0

with

(5.2) x(A +DX) q.

(ii) All elementary divisors corresponding to pure imaginary eigenvalues o]’

M
-A*

have even degree,

(2.8) x(M)

and

(5.3) (h, q) 1.

Moreover, the solution X in (i) is necessarily uniquely determined.
Proof. We divide the proof into three parts: (ii)::> (i), (i)::> (ii) and uniqueness.

For the first two parts we will assume, according to Lemmas 3.7 and 3.2

(5.4) A=(A1 0) D=(0 0) D2_>0,
A21 A2 0 D2

where the pair (A2, D2) is controllable. Then

x(AIc,o)=x(A) and h =x(A1).

(ii) :ff (i). Because of Theorem 2.1 there exists a symplectic R, R ( rK), such
that (2.9) and x(T)=q hold. If no solution X of (1.1) satisfies x(A +DX)=x(T)=q,
then P is singular. We will show first that a singular P is not compatible with (5.3).
Suppose there is a y Cn, y # 0, such that Py 0. Then

R() =(0)Qy and (0 y*)R-1=(-y-Q* 0)

follows from (2.5). We have as in [2]

0=(0 Y) *QY*)R-IMR
0 =-Y *DQy.
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D => 0 implies

(5.5)

From

we obtain

(5.6)

DQy O.

T F

DQy PTy

and because of (5.5) we have PTy 0. Hence the nullspace of P is invariant under
T and thus contains an eigenvector of T. We can therefore assume

(5.7) Ty =by

and (5.6) yields -A*Qy hQy. Put w := Oy. Then

w*D =0, w*A -w*
and w 0, since R is nonsingular. If w* is partitioned according to (5.4) into w*=
(w 1", w* then wA2 -]w and w*D2 0. Since (A e, De) is controllable, Lemma
3.1 implies w2=0. Thus wl :0 and wA1 =-]W*l. Because of (5.7) the number -]
is also an eigenvalue of -T*. Thus - is a common zero of c and h, which is in
contradiction to (5.3).

Let X be a solution with x(A +DX)=q and let

(5.8) X ( Xl Xl
Xe X /

be partitioned according to (5.4). Then

(5.9) G := A +DX
A21 + DeX21 A2 +D2Xe

and q hX(Az+DzX2). Suppose there exists a pure imaginary eigenvalue a of A
which is not D-controllable. It follows from Lemma 3.5 that a is a pure imaginary
root of h x(A 1). Then a is a zero of q and also of , contrary to (h, 4)- 1.

(i) :ff (ii). We assume now that there is a solution X of (1.1) such that (5.2) holds.
Let X and G be written as in (5.8) and (5.9). Then

( A O) G2 A2 +D2X2G=
G21 G2

and

A1 0 0 0

0)= Gel Ge 0 De
I 1 0 -A*-G*

0 0

Only the pure imaginary eigenvalues of M are of interest here. Thus only the matrix

G2 D2
0
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matters. As (A2, D2) and hence by Lemma 3.3 also ((2, D2) are controllable, the first
statement of (ii) follows from Lemma 4.1. Obviously (2.11) implies (2.8). Using Lemma
3.5 again we see from (5.1) that h has no pure imaginary zeros. Because of h lq and
since the common roots of q and c (if any) are pure imaginary, we have (h, )= 1.

We now turn to uniqueness. Let Xi, 1, 2, be two solutions such that

(5.10) x(a +DXi) q, 1, 2,

holds and q satisfies (2.8). As in Lemma 3.8 we put U := Xa-X1 and Gi := A + DXi,
1, 2. Suppose X2 and X1 are distinct; i.e., U # 0. Without loss of generality (Lemma

3.7) we can assume that

(V 0) detV#0.(5.11) U=
0 0’

It follows from Lemma 3.8 that G has block triangular form

Gi=
Fi

We show first that no eigenvalue of Hi is pure imaginary. From (3.7) we obtain

(5.12) VH + H*2 V O.

Let D be partitioned corresponding to (5.11) as

Then G2 G1 +DU implies

(5.13)

(Dll D12)D =\D2 D22]"

H2 H14-DI V.

Suppose there is a pure imaginary eigenvalue i/x of H1 and b is a corresponding
eigenvector, Hb ilxb, b # O. From (5.13) and (5.12) it follows that

b* VDI Vb b *( VH2- VHI)b -b*H’ Vb b* VHb 0

and therefore that

(5.14) DVb =0.

Put g := Vb. Then g # 0, Dlg 0 and g* is a left eigenvector of Ha,

g’H2 iig*.

Let the n-vector f be given by/:= (). Then f*DF =0 and D_->0 imply f*D =0.
Furthermore,

(H2 0)=(g’H2 0)= ilf*.f#G2 (g*0)
F2 B

On the other hand, f*D 0 yields

f*G2 f*(a + DX2) f*a.
Therefore

rank (A iI, D) < n

and the eigenvalue i/ of A is not D-controllable, which is a contradiction to (5.1).
Hence H1 and similarly H2 have no eigenvalues with zero real part.
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To complete the proof it has to be shown that U # 0 is impossible. The assumption
(5.10) yields X(Ol)=q and X(-G2*)=(-1)%. Clearly, x(H1)IX(GI) and
x(-H*2 )Ix(-G*2). Recall that q and have only pure imaginary roots in common
and that the polynomials x(H) and x(-H have no such roots. Therefore H and
-H have no common eigenvalues. It follows from Lemma 3.6 that the matrix
equation (5.12) has only the solution V 0, in contradiction to (5.11). Hence U- 0
or Xt X2. VI

6. Appendix: Symplectic transformations of Hamiltonian matrices. The proof of
Theorem 2.1 that will be given in this section relies on normal forms of Hamiltonian
matrices. Since those normal forms (see, e.g., [1] and [8]) are perhaps less well known
and usually restricted to real matrices, we shall derive the facts we need directly from
the theory of regular pencils of hermitian matrices. We recall the following result
(see, e.g., [11] for references).

LEMMA 6.1. Let G and H be hermitian n n matrices with G nonsingular. Then
there exists a nonsingular S Cnn such that S*(Gz +H)S is the direct sum of blocks
of the following types I and II:

0

I. eD(a)=e

z+a

an r r matrix with a R and e + 1;

z+a

0 Ds(b))II. Ds() 0

z+a
1

0

a 2s x 2s matrix with b #: . Ds is defined by I.
A block of type I corresponds to an elementary divisor (z + a)r, a , of Gz + H.

To each conjugate pair (z + b)s, (z + b) of nonreal elementary divisors of Gz +H
there is associated a block of type II.

We shall use the following notation. The m m matrices E,, N,, K,(A) are
given by

1 0 1
00

0 ".
E,,,

1
(%n+l-i,i), N,, ." 10

(&.,+),

1
0 0

0
K,,(A)=

diag(1, O,...,O)

I,. is the m m identity matrix and

Whenever possible the subscript m will be dropped. If r is even, r 2m, then Dr(a)
can be written as

( 0 D,,,(a)Dr(a)=
Din(a) Kin(a)]
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and we can unify types I and II by defining

(o(6.1) C2," ()
D," ()

We have C2," (h)= zE2," + Y2,"(A) with

( o
g2m(A)=

Em(Xlm +Nm)

Proof of Theorem 2.1. From (2.3) it follows that M =J-I(-M*)J. Therefore
eigenvalues of M with nonzero real part h and - and elementary divisors (z--h)k
and (z + )k appear in pairs. Because of (a) a factorization (2.8) is feasible.

We associate with M the hermitian pencil

(6.2) Jiz + JM.

Obviously, (z + A) k is an elementary divisor of (6.2) if and only if (z-hi)k is an
elementary divisor of zI-M. Hence (a) implies that the blocks of type I which appear
in the normal form of (6.2) are of even size r and can be represented by (6.1). Let S
be a matrix which transforms (6.2) into normal form

S*(Jiz +JM)S ." eC2m(A),
-r=l

where Y’." denotes the direct sum. The bounds r 1 and will be omitted in the sequel.
Then

(6.3)

and

S*JS =-i .," eE2m

S*JMS (S*JS)(S-XMS)= ," e, Yz,".(A.),

which yields

(6.4)

From E-1NE NT follows

S-1MS Y" E2m.Y2m.(Az).

and

ieOEm) *(-ieE2m)(Io

(Iota ieOEm)-l[iE2mY2m(A)](Io O ) ( Im + iN," -eE,"K," (A )E,"
ieEm 0 -(iI," + iN,.)*]

=: (T," (A) F,.(A)
0 T," (A)*,]

where F,. (A) is hermitian. The n x n matrix

has the properties

L*JL E"
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and

(6.5) L_IML ,. ( T,,. (h,) Fm. (h,)
o

Let P be the permutation matrix which transforms (6.5) into

Then

p_IL_IMLP (" Tm,
\ 0

0
P*L*JLP

In
Therefore R := LP is symplectic and

Z F..)-Y" T*m.r

(rR-1MR
0 T*

Moreover, if 17 is not real then by choosing it suitably from the pair A,, h, we can
ensure that x(T)= q.

Acknowledgment. I should like to thank a referee for valuable remarks.
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SOME RECURRENCE RELATIONS OF RECURSIVE MINIMIZATION*

C. J. K. BATTY, M. J. PELLING AND D. G. ROGERS

Abstract. The recursive minimization problem

f(n)=min{ f(ai)}+g(n),
i=1

where the minimum is taken over all r-tuples a (al, , a,) of integers ai such that 0 -<_ ai < n, =< <- r,

i=1 a n, is studied. Necessary and sufficient conditions on g(n), satisfied by many nonnegative convex
sequences, are found for the solution to be given by the recurrence relation

+g(n).
i=1

A similar recurrence relation is found for the solution when g satisfies certain concavity conditions.

1. Introduction. If a sequence f {f(n)" n >= 0} is defined recursively by

(1.1a) f(0) =/(1) 0,

(1.1b) f(n) min (f(r) +f(n r)) + n, n >-_ 2,
Or<n

then it is easy to see inductively firstly that

(1.2) f(2+q)=p2V+q(p+2), p>-l, O=<q<=2p

and secondly that the minimum in (1.1b) is attained for p(n)<-r<-n-p(n), where

p(2p+q)=max(2p-l,q), p >=1, 0=<q <=2.(1.3)

In particular,

(1.4b) f(p (n)) +f(n p (n)) + n,

where Ix] denotes the integer part of x.
The sequence f of (1.1), (1.2) and (1.4) occurs in a problem of Morris [6] on the

sorting of data. The explicit solution (1.2) of (1.1) was given by Carlitz [2] who also
considered some generalizations of (1.3). These were in turn special cases of the
recurrence relation

(1.5) f(n): f([n+i-1])+g(n)=(r-s)f([])+sf([]+l)+g(n),
i=1 r

(where r ->_ 2 is a fixed integer, and s, depending on n, is given by n [n/r]r + s), which
together with the two integer-valued variable version of (1.5),

m +f(n, m 1),
i=1 F

* Received by the editors February 8, 1980, and in revised form May 27, 1981.
Department of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland.
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we propose to study here. Equations of this type (again including (1.4a)) have arisen
in some work of Pelling and Rogers [7], [8] on the design of electrical circuits. We
shall show in 4 how to obtain explicit solutions of (1.6) for given sequences g(n)=
f(n, o).

As is suggested by (1.1), solutions of (1.5) and (1.6) are closely related to problems
of recursive minimization. Given the sequence {g(n): n-> 0}, consider the following
recursive definition generalizing (1.1)"

(1.7a) f(n)=g(n), n<k,

(1.7b) f(n) =man { i f(ai)+g(n)" O<=ai<n, i ai =n}, n >_-k,
i=1 i=1

where k ->2 is a fixed integer. If 4 ={b(n): n ->0} is any sequence such that b(n)=<
g(n)(n < k) and

(1.8) c(n) -<- i ck(ai)+g(n)
i=1

whenever Yi=l ai n, then c(n)<-f(n) for all n. Thus, if the terminology is adapted
of Hammersley and Grimmett [4], who initiated a study of (1.7) in the case k r 2,
f is the maximal solution of the generalized r-subadditive inequality (1.8) (see also
[1], [7]). The subadditive inequality has been important in the study of physical
problems involving cooperative phenomena (see [3], [4], [5] and the references given
there).

The question arises as to for what r-tuples (al,’’’, ar) is the minimum in (1.7b)
attained. Hammersley and Grimmett [4] answered this question in a number of special
cases for k r 2. For example, they showed that if k r 2 and g is convex increasing
with g(0)= g(1)=0, then the minimum is attained by taking a=[n/2] and a2
[(n + 1)/2], while if g is concave increasing with g(0) g(1) 0, it is attained by taking
al p(n), a2 n -p(n). In this paper we extend these results to more general values
of k and r. Thus in 3 we show that if g is convex and g([k/r])= g([k/r]+ 1)=0,
then the minimum in (1.7) is attained by taking ai----[(n + i-- 1)/r]. Indeed, we obtain
a precise description of those g for which the minimum is attained by this choice of
ai. In 5, we exhibit a choice of ai which attains the minimum whenever g is concave,
increasing and nonnegative.

2. The general problem. Throughout this paper, r-> 2 and k >_-2 will be fixed
integers. Let 5e be the set of all sequences {g(n): n => 0}, and for n -> k, let sgn be the
set of all r-tuples a (al,..., ar) of integers ai such that

O<:al <:" <=ar<n,

An operator T is defined on ow by

(2.1a) (Tg)(n)= g(n), O<-n <k,

(2.1b) (Tg)(n)=min{ i (Tg)(ai)’asg,,}+g(n), n>-_k,
i=1

so that if " is given by (1.7), then ’= Tg.
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Similarly if k->r, we may define ’ to be the set of all r-tuples a in , with

al _-> 1, and T’ to be the operator given by:

(T’g)(n) g(n), 0 <-_ n < k

(T’g)(n)=min { (T’g)(ai)" a ’}+g(n), n >-k.
i=1

For any sequence c ={et(n): n >=k} with et(n) ,, we may define an operator
P on 6e by:

(Pg)(n g(n ), O <= n < k,

(Pg)(n) (Pg)(ai(n)) + g(n), n >= k.
i=1

Note that P is linear and bijective, its inverse being given by:

(2.2a) (P21 f)(n) f(n), 0 _-< n < k,

(2.2b) (P-a f)(n) f(n) f(ai(n)), n >= k.
i=1

Although T is bijective, it is only superlinear in the sense that

T(A gl + A2g2) --> A Tgl + AzTg2

for g, g2 5e and A 1, A2 >_- 0.
For f and g in oW, put

n(g) {a sgn" (Tg)(n)= (Tg)(ai)+ g(n)},
i=1

dd.(f) {a M" f(ai) -<- f(a’i) for all a’ M}.
i=1 i-----1

Then

(2.3)

Further put

r.(g) .(Tg).

5 {g e Y: a(n)e 3-. (g), n >_-k}, {[e y: a(n)e t.([), n >_-k}.

By (2.3), T(Se).
The problem of determining for which a in M, the minimum in (1.7) is attained

is now reduced to finding those a such that g belongs to 0. In order to assist in
determining O, we note the following lemmas.
LEMMA 2.1. For any sequence ce {t(n): n >=k} with o(n)eM,

, P-I (,) {g e : P,g Tg}.

Proof. Consider g in , and suppose that Pg and that (Pg)(n)=(Tg)(n)
for 0 <- n < p, where p >= k. Then for a Mp

(Tg)(a)= (Pg)(ai)>-_ (Pg)(ce(p))= (Tg)(ce(p)).
i=1 i=1 i=1 i=1
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Hence

(Tg)(p)= (Tg)(ai(p))+g(p)= (Po,g)(a,(p))+g(p)=(P,g)(p).
i=1 i=1

It follows by induction that Pg Tg.
Conversely suppose that Pg Tg. Then for Mn, n >- k,

(Pg)(ai)+g(n)= (Tg)(a)+g(n)>-(Tg)(n)
i=1 i=1

(P,g)(n) (P,g)(ai(n)) + g(n).
i=1

Thus x(n) ,(Pg), so Pg Y.
The proof that {g 5e: pg Tg} T-I(/) oq is similar.
In view of Lemma 2.1 and the simple form of PS given by (2.2), it will suffice

in practice to identify . The next two lemmas assist in this process.
LEMMA 2.2. (i). Let f and f’ be sequences in . For a n(f), a’ Jtn (f’),

(2.4) (f(ai)-f(ai))<= (f(a)-f’(al)).
i=1 i=1

(ii). Let f., f >= 1 be sequences in 5f such that for any n, fi(n) 0 for all except finitely
many n, and suppose that, for some p>-k, the sets p(f.), ]>-1, have nonempty
intersection. Let Oj, f >-1 be strictly positive real numbers, and put f(n)= Y’.i>=l Oif.(n),
n >=O. Then

Proof. (i). Since a ,(f),

Since a’6 J//, (f’),

,,(f)= (f).
]->1

f(a)<= f(al).
i=1 i=1

f’(ai) >- f’(a).
i=1 i=1

Now (2.4) follows by subtraction.
(ii). Take fixed a (q i_>_o ://p (.). For general a’ M,/" => 1,

(2.5) f.(a) >- .(ai).
i=1 i=1

Multiplying (2.5) by 0i and summing over f gives:

(2.6) f(a’i)>= f(ai).
i=1 i=1

Thus a e (f). Furthermore,

a’ e :t/ (f):Equality holds in (2.6)

=> Equality holds in (2.5) for all/"

for all ].



RECURRENCE RELATIONS OF RECURSIVE MINIMIZATION 17

Lemma 2.2 shows that and hence 5e P21 (Y) are convex cones in ow.
Define special sequences F1, F2, F3, G1, G2 and G3 by

(2.7a) Fl(n) 1, F2(n)=n, n>-O,

(2.7b) Gl(n) 1, G2(n)=n, O<=n <k,

(2.7c) Gl(n) 1 r, Gz(n) 0, n _-> k.

r>2, n=>0,
(2.7d) F3(n) G3(n) 1, r 2, n O,

0, r=2, n>0.

LEMMA 2.3. Let 11, i2 and 13 be real numbers, f=A1FI+AzFz+A3F3, and
g=AIGI+AzGz+A3G3. Then yP/n(f)=sgn. For any sequence c={o(n): n>-k} of r-
tuples o(n in sgn, Pg Tg f.

Proof. For a in , F3(ai)=O, so .,i=lf(ai) Air +A2n. Since this is independent
of a, it follows immediately that ,(f)= s. Now f e 9 and by (2.2), Pg f, so by
Lemma 2.1, Tg Pg. [3

3. The convex case. Firstly we consider the special choice of r-tuples I(n) in
given by

fli(n) In+e-l]., n>=k, l<-i<-r.

Then, if we write ](n, m) (Pg)(n), m, n _-> 0, [(n, m) is given by (1.6) for m _-> 1, n _-> k.
Let [k/r], so that Ir <- k < Ir + r. We define special sequences 6#/" _-_0; ., ] _-> 1

in 5e as follows"

1, n =j,
(3.1) 6j(n)

0, otherwise.

(3.2a) f 6-1, 1 =< ] -< I.

n-k +rj-j, O<-_n <-k-rj+j
(3.2b) f.(n O, k r] + j <= n <- j j > I.

n-j, j<-_n

Note that, for j > l, k r] + j <- < ]. Hence

(3.3) [i(n)->-n-], n >-_0, ]>l,

and strict inequality holds in (3.3) unless n >--j. Furthermore,

f.(/) f/(/+ 1) 0, i>_-1,

(3.4) f.(n)=0, ]>[r-], n <-l,

f.(n) 0, l<n<=].

If r 2, then => 1 and fl F3 as given by (2.7d).
Any sequence f in 5 has a unique decomposition as

(3.5) f A1 (f)F1 + Az(f)Fz + Y’. Oi(f) f.,
i>=1
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where

(3.6a) (f) (t + i)f(t)- t(t + ),

(3.6b) ,(/) =/( + )-f(),

(3.7a) Oj(f) f(] + 1)-2f(])+f(]- 1), ]> l,

(3.7b) Oj(f)=f(y-1)-Al(f)-A2(f)(]-l)- E Oi(f)fi(]-l), l <=]<--l.
i>l

(Note that by (3.4) the infinite sum in (3.7b) is essentially finite.) By (3.7a)

(3.8a) f is convex for n >- = Oj(f) > 0, ] > 1.

If f is convex for n _->0, then for l<=j<=l,f(j-1)>--_Al(f)+A2(f)(j-1) and fi(] l) <- O,
> l, so (3.7b) shows that

(3.8b) f is convex for n >= 0::> Oi(f) >= O, j >= 1.

LEMMA 3.1. For j >- 1, f. . Furthermore, for 1 <- ] <- l,

Forj> l,

, (f/) {a e n: ai j 1}, n>-k.

k(f’) {a dk ar <= j or a --> j},

/,(f.) {as n: ar<=j}, k <n <=r],

.(f) {ae .: al>-_j}, rj<=n.

Proof. First suppose ]<=I and n _->k. Since i(n)>=l, Ei=I fi(fli(n)) =0. Also for
a e M,, fi(ai) >= 0, so

(3.9) .(ai) >- O.
i=1

Thus I(n)e n(f’). Furthermore a e /n (f.) if and only if equality holds in (3.9), i.e.,
f.(ai) 0 or ai]-i (l<=i-<r).

Now take ] > and n >- r]. Then fli(n >- ], so f(fli(n )) fli(n -], and Y,i= f.(i(n ))
n- r]. For a in ,, (3.3) shows that

(3.10)
i=l i=l

Thus I(n e,(f), and a e /, (f) if and only if equality holds in (3.10), i.e., f (ai) ai --],
or ai >_- ], 1 <_- -< r (see (3.3)).

For k <= n <- r], we have <=/3i(n) =< ], so i= f.(i(n)) 0. For a e , with a ->
k r] + ], f (ai) >= O, so i= f(ai) -> 0. Furthermore, equality holds if and only if ai <= ].
But if ar --< ], then ai <_- ar <= ] and a n -,i--2 ai >= k r] + ]. For any other a e n, let s
be the largest integer such that as <- k r] + ], so that 1 -< s -< r. Then by (3.3)

fi(ai) ai (k rj -t-j), l<=i<=s,

fi(ai)>--ai-], s<i<=r.
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Hence

(3.11) i f’(ai)>-n-s(k-r]+])-(r-s)]>-k-sk+]r(s-1)=(s-1)(r]-k)>-O,
i=1

since s->_ 1 and k <r]. It now follows that 13(n)e ,(f/), and that a e ,(f:) if and only
if Y’-i=l f.(ai)= 0. If al >- k-r] +], we have already seen that this occurs precisely when
ar<-]. If al <-k-r] +], it occurs precisely when equality holds thoughout (3.11). Thus

aeuC/(f.)c:>n=k, s=l, f(ai)=ai-f, i>s

: n k, s=l, a2>-!
But if n k and a2 => ], then it is automatic that

a=k- i a<-k-r]+],
i=2

so s 1. This completes the proof, l-1
We can now obtain our description of
THEOREM 3.2. A sequence f in S# belongs to if and only iff is of the form

f=AIFI+A2F2+ Z Oil1,

where 0j _-> 0 (] _-> 1//r > 2, ] -> 2/f r 2). In this case, for n > k, ,(f) is the set sg, (0)
or r-tuples a in s, such that Oi 0 whenever any of the following occurs:

(a) ] ai + 1 <- for some i;
(b) max (1,
(c) L(n)<=]

Also J/lk(f) is the set sgk(O) of r-tuples a in sCk such that Oi 0 whenever either of the
following occurs:

(a) ] a + 1 <- for some i;
(b)’ max (l, a2) < ]

Proof. It is immediate from Lemmas 2.2, 2.3 and 3.1 that f e Yo if f is of the
given form.

Conversely suppose f e and consider ] > I. Put

al=]-l,

a=], l<i<r,

ar=]+l.

Then a e ser provided that ] + 1 < r]. Hence

f(] 1) + (r 2) f(]) +f(] + 1) >= rf(]).

By (3.7a), Oi Oi(f) >- O. The exceptional case occurs only if r 2 and ] 1.
Now consider ] with 1 <_-] <_-I and choose the integer p _-> such that k-p(r- 1)_->

]> k-(p+ 1)(r- 1). Let s =]-k +(p+ 1)(r- 1), so that 0<s <r. Put

al=]-l,

a p, 2 -< <_- s,

ai=p+l, s<i<=r.
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Then a Mk, provided that p + 1 < k. Furthermore by Lemma 3.1, a Mk (fq), q L so
by Lemmas 2.2 and 2.3,

O, i f’(ai)>= i f’(fli(k))= O,
i=1 i=1

where f’= f- (h 1F1 + A2F2 + Eo,i Gf) 0i.. The exceptional case p + 1 k occurs only
if r =2 and ] 1.

By Lemmas 2.2 and 2.3,

(f): (.),

where the intersection is taken over those ] 1 (if r > 2) or ] 2 (if r 2) for which
>0. It is easily seen from Lemma 3.1 that .(f) .().

It is immediate from Theorem 3.2 and (3.8) that any sequence in is convex
for n l, and conversely if f in is convex for n 0, then f e. It is possible to
give a short direct proof of this latter fact as follows"

Let a be any r-tuple in . (f), and suppose that a-a > 1. Let a’ be the r-tuple
in . such that

{a l<i<r}
a a a+a+l

2

Then

(a)=
i=1

q- Z f(ai) <- f(ai)
2 2 i=2

by convexity, so a’n(f). After repeated replacements of a by a’, we eventually
reach I](n). Thus I](n) en (f).

Now let gj Plf., so that by (2.2), (3.1) and (3.2),

(3.12a)

(3.12b)

gj j-1-’-,f1", 1] l,

n-k +r]-],
O,

gi(n)

O<-n <=k-rj+]
k-q+j<=n<=]

]<=n <_rj

r] <=n

j>l.

Any g in 5 has a unique decomposition as

(3.13) g ix(g)Ga +/x2(g)G2 + E Yi(g)gi.
1_->_1

Here

(3.14) P,l(g) AI(Pog), 2(g)= Az(Pog), Yi(g)= Oi(Ptg).

It is possible, but not particularly instructive, to give explicit expressions for %.(g) in
terms of the values of g. Instead we note that the decompositions (3.13) for fi are

f gi, 1 <- <-_ I,

fi [-- gd’i(j--1)]gi + g?’i, < i,
/=1 p->-i p0
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SO

(3.15) yj(/i)-> 0, i,f>=l.

It follows from (3.5) and the linearity of yj that

(3.16) 3"(g)= A I(g)3"(F1) + AE(g)3"(F2) + E Oi(g)3"(fi).

THEOREM 3.3. A sequence g in 6 belongs to if and only if g is of the form

g [.1,1 G1 - lz2Gg. + 3"Jgh

where yi>-_O (j>_-I/fr>2, j_->2/fr 2). In this case, n(g) n(y) (n _->k).
Proof. This follows immediately from Theorem 3.2, Lemma 2.1 and (2.3). [3
COROLLARY 3.4. Let g be a sequence in 5t such that g(/)= g(1 + 1)=0. Then

T"*g (m >__ O).
Proof. It suffices by induction to prove that (Pg)(l)= (Pg)(l + 1)=0, and that

Pg5t. Provided /+1 <k, we have immediately (Pg)(l)=g(l)=O and (Prig)
(l + 1) g(l + 1) 0. The exceptional case + 1 k occurs only if r k 2, and then
(Pg)(2) 2g(1) + g(2) 0. Thus in all cases (Pg)(l) (Pg)(l + 1) 0.

By (3.6), A (Pg) A:(Pg) 0. By Theorem 3.3, 3’(g) --> 0, so by (3.14), O(Pg) >=
0. By (3.15) and (3.16), 3"J(Ptg) >= O. By Theorem 3.3, Pg .

COROLLARY 3.5. Let g be a convex sequence in such that g(l)= g(l + 1)=0.
Then T"g fete, m >-O. If g is strictly convex for n >-p for some p >- l, then (Tmg)
{[(n)}, m >= O, n >-_ rp + r 1.

Proof. By (3.6), Al(g)=A2(g)=0, and by (3.8b), O(g)>=O. By (3.15) and (3.16),
3’(g) ->- 0. Thus g 5 by Theorem 3.3, and T"g by Corollary 3.4.

If g is strictly convex for n >- p, then by (3.7a), Oi(g) > O, f > p, so 3’(g) > 0,/" > p.
It is now routine to verify from the definition of, (3’) thatn (3") {l(n)}, n >-_ rp + r 1,
so by Theorem 3.3, :Y- (g) {l(n)}. Furthermore Tg Y’.j__> 3"(g)f. is convex for n _-> 0
and strictly convex for n >-p, so it follows by induction that 5F(Tr"g) {l(n)}, m >_-0,
n>-_rp+r-1.

In the exceptional case k r 2, the condition that g(1)= g(2)= 0 in Corollaries
3.4 and 3.5 can be relaxed. For

F1 -G1 + 2G: + 2g,

Fz -Gl + 2G2 + g + g2,

so 3"i(Fa) 3"i (F2) 0, ] => 3. Hence if g is any sequence in ff’t with 3"2(Pt3g) g(1) + g(3) =>
0, then Tg Ptg 5 by (3.16) and Theorem 3.3. If in addition, g(1)=>0 and 3g(1) +
g(2) >- 0, then T’g 5e (m _-> 0). Similarly if g is a convex sequence in 5 with 3"2(g)
g(3)- g(2) => 0, then g 5et.

COROLLARY 3.6. Suppose k >-r so that IS(n) g’,, n >= k, and let g be a sequence
in if’. Then T’g Pog if and only if g is of the form

g 1GI + tx2G2 + 3"igi

where 3" -> 0, /" >_- 2.
Proof. This may be proved by making minor amendments to the argument leading

to Theorem 3.3. 71
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In Theorem 3.3 we have described exactly the class 50 of sequences g for which
the minimum in (2.1) is attained for ai =/3i(n) [(n + i-1)/r] for all n, so that f= Tg
satisfies (1.5). This choice of a is a natural one, since it has the least possible spread
between its components. But it is also important in practice since 60 includes convex
sequences g with g(n)= 0 for small enough n (Corollary 3.5). It is rather remarkable
that this class is invariant under the minimization process T (Corollary 3.4).

For g in 60, we can find T’g without performing any .minimization, since
Tmg P"g. In the following section, we consider some methods of calculating directly
P"g, avoiding the iterative procedure involved in the definition of P0.

4. The operator P. Since many convex sequences in 5 belong to 6 (Corollary
3.5), it is important to obtain explicit information about the operator P. A convenient
method of doing this is to use generating functions.

THEOREM 4.1. Suppose g in satisfies g(n) 0, O<-_n <-[(k-2)/r]+ 1, and let

(1 -x)2 (1 -x)2

*(x) E g(n)x", (x)= E (Pt3g)(n)x".
X nO X nO

Then

(4.1) q(x) Y (xr").
pO

Proof. We write

(x)= E g(n)x n, b(x)= E (Ptg)(n)x".
n_-->O n_-->O

Then we have, at least formally, noting that (1.5) holds for all n >_-0 when f Pog,

(4.2) x + (x) cb(x ) hi(x) + (x),
i=1 n>’0 /" i=1

where

so that

Hence from (4.2)

/-, X
X(1-xr)

hi(x) 1 <-_ <- r,
/=1 1 -x

i hi(x) x(1-x)i -i 1 (ll2Xx)
2

X r-1
i=1 1 --X i=1 X

(x)= (x +(x)
X --X

or

(4.3) (x I)’(x --[- (I)(x r),

from which (4.1) follows.
COROLLARY 4.2 Suppose g in 5 satisfies g(n) =0, O<-n <-_[(k-2)/r]+ 1, and let

(l-x)
m(X)= E (P"dg)(n)x", m >--0, (x)=0(x).

X nO
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Then

pO 1

Proof. Applying Theorem 4.1 to p-lg, we have

O.(x) O,.-I(XrP), m >-- 1
p>O

so that, on iteration,

m=>l.

Hence

where

we have

h.(p)=h.,(p-1)+h.,_l(p), l<-m,p.

p

h(p) b(m, p i)ho(i), 1 <= m, p,
i=1

b(m,i)=(m+i-1)\m-1 =(m+i-1)i 0<i’= l<m’=

In particular if ho(p) 1, p >- 1, (so that k <= r2- r + 1), then

h"(P)=b(p’ m)=(p+m-1)m 0<m’= I<P’=

More generally if ho(p) b (p, ]), p >= 1, for some ] ->_ 0, then h. (p) b (p, m + ]), m >= 0,
p -> 1, so that (P’g)(r’) may always be determined directly in this way whenever ho(p)
is a polynomial in p.

(4.5) O,,,(x) (x’’), m >= 1
p-->O

where the second summation is taken over all m-tuples a-(al,’"’, am) of integers
a such that 0-< a <_-p, 1 _-< i-_< m, and =1 a p. Since the number of such m-tuples

ira+p--is ,_1), we obtain (4.4) from (4.5). 1
It follows from (4.4) or by induction that for m _->0, and ]>[(k-2)/r]+ 1,

(4.6a) (P’i)(]r + q)= (P"i)(]r -q) (rp -q)(P + m 1)m-1
O<-q<-_rp, p>=O,

(4.6b) (P"i)(n) 0 otherwise.

Furthermore for ] < [k/r],

(4.6c) P"6 6.
An arbitrary g in 6 with g(1)= g(l + i)=0 has a decomposition g g(f)6i, where
the summation does not include f or ] + l, so (4.6) leads to an expression for
P"g more easily than the decomposition (3.13).

If g(n)=0, O<-n <-_[(k-2)/r]+ I, the values of (Pg)(r’) may be obtained more
directly. For writing

(P’g)(r)= rPh,(p), O<-m, p,
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We remark that (4.3) is of the form

(4.7) (x) xl2"(x) + Q(dp)(x),

where

Q()(x)= qi(x)(xi).
i=1

This suggests the formal solution

(x)=(I-Q)-l()(x) Qt’()(x).
p>-O

The more general form (4.7) arises if, for example, we replace Pt by P, where
ot(n)=([(pin +qi)/ri]) for some Pi dividing ri, 1 <=i <=r, or

et(n) ([], [],..., [], n- (r-1)[]).
By the results of this and the previous section, we can now write down

immediately when g is convex and g(l)= g(1 + 1)= 0. It is given by taking the appro-
priate linear combinations of the equations (4.6) with Po replaced by T. Thus our
analysis of the convex case is complete.

5. The concave case. We consider now another special choice of r-tuples tr(n)
in sen. Let

ko 0, kp (k 1)rp-l, p > 0;

fo kp+ kp, p >- 0.

Any integer n -> k has a unique decomposition as

n =skp+(r-s)k,++b,

where 1 -<_ s < r, p ->_ 0 and 0 -< b < I’, and we put

(5.2)

kp, 1 <=i <s,

o’i(n)=tkp+, i=s,

k+ s<i<-r.

In the case k r 2, we have cr(n) p (n), cr2(n) n O (n), where O (n) is given by
(1.3). Hence/= P,g satisfies (1.4b).

It would be attractive to follow the pattern of 3 and determine all the extremal
elements of Y and hence those of 0, but this task seems intricate, and we do not
undertake it. Instead we merely find some particular sequences in .

Consider fixed integers ], p and q with 0-<_ p <_-q and 1 <_-/" _-</’. Any integer n _-> 0
has a unique decomposition as

(5.3) n kq + s(n)f, + b(n),
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where f -j, <-_b(n)< f. Define

(5.4) f.tq(n)=(fs(n)+ b (n)+)+= [] (n-kq-b(n))+ b(n)+]
+

where x/= max (x, 0). Note that

(5.5) G(n) =0,n --<G,

(5.6) f.q(n)= J--(n-kq-b(n))+b(n)+Cs(n)>-O
Ip

n >-G +J-J..
LZMMA 5.1. For 0 <-- p <-- q and 1 <- j <= I", fpq Y’. Furthermore for k <-_ n <- rkq,

d//, (f.p) {a s,: ar -< ko}.

For n >-max (k, rk) and 1 <-f < I",

J/l,,(f,q)={asd,,’s(a)>--O,b(ai)>=O,l<-i<--r, i
i=1

U{.esg’s(a)>-O,b(a)<-O,l<-i<--r, i b(a)>-]-]}.
i=1

For n >-max (k, rkq),

25

ddn (f’ppq) {a
_
edn a >= kq}.

Proof. For k <- n <= rkq and a tin, we have o’i(n) <- kq, so by (5.5),

i fipq(ai) > 0 i fipq(O’i(l’l )).
i=1 i=1

Thus r(n) d/(n (fo), and a 4(,(f) if and only if fpq(ai) 0, 1 <_-i <_-r, i.e., ar<=ko by
(5.5).

For n _->max (k, rkq), we have o’i(n)>= kq, so by (5.6),

(5.7) q(O’i(n))= ]--(cr(n)-kq-b(o’(n))+b(o’(n))/.

Furthermore, since ] divides k,-kq, p’ >=q, it follows from (5.2) and (5.3) that for
some s with 1 _-< s _-< r,

b(r(n)) 0, is,

b(o’(n))=b(n).

Hence (5.7) gives

(5.8) i f]pq(O’i(gI))- i J (o’i(n)-kq) -j-- b(n)+b(n)+=J (n-rkq-b(n))+b(n)+.
i= i= ]p Jp ]p

For ae ,, writing b(a)= bi and b(n)= b, we have

(5.9) i f.pq(ai) >- i j
(ai kq bi) + b- =-p n rkq i b + i b i.

i=1 i=1 ]p i=1 i=1
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Now

(5.10) bi tp + b,
i=1

where

which is an integer. Comparing (5.9) with (5.8), in order to show that r(n)n(fpq),
it is sufficient to establish that

(5.11) i b >-b + +tf.
i=1

There are three cases, depending on the sign of t.
If <0, then b / + tf <0, so strict inequality holds in (5.11).
If 0, then (5.10) becomes Yi=x b- b, from which it follows immediately that
+>b+g=l b i.e., (5.11) holds. Furthermore there is equality in (5.11) if and only if

all the bi’s have the same sign.
If > 0, then (5.10) gives

b b, =(t-1)(#-i)+#+b-i+tib++ti,
i=1 i=1

since tl, fpf and fo+b-fb+. Thus (5.11) is valid, and equality holds there if
and only if b 0, 1 r, fp + b -f b + and either 1 or f fo.

This shows that (n),(). Furthermore a,(o) if and only if equality
holds in (5.9) and in (5.11), i.e., s(ax)O by (5.6), and one of the following holds;

(a) =1 bg b and all the b’s have the same sign;
(b) f=l, b0 and bO, lir;
(c) t=l,b=i-fpandb0,1ir.

Thus ,() is as asserted.
Now let gi Pao so that, by (2.2), (5.2), (5.4) and (5.5),

fi.q(n), ONn <max (k, rkq),

(5.12) gioo(n) (r- 1)kg,
(

max(k, rk,)n.

THEOREM 5.2. Let g be a sequence in of the form

(5.13) g xGl+2G2 + E E E Yipgip,,
po qp j=l

where yiq 0. Then g . If in addition, 1 0 and O, then Tg , m 0.
Pro@ It follows immediately from Lemmas 2.1, 2.2, 2.3 and 5.1 that g e and

(5.14) rg Pg Fl + 2f2 + 2 2 ippq.
po qp /=1

The explicit expressions (2.7), (5.4) and (5.12) show that

(5.15a) F1 G1+ rg11,

(5.15b) F =oo,
(5.5c) = 2 g.,,.

q’q
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Thus if 120 and .20, then from (5.14) and (5.15), Tg has a decomposition of
the form (5.13) in which the coefficients are non-negative. Thus it follows inductively
that T’g ,. m >-O. [3

In the special case when p -q > 0, we have

0, 0<_-n <_-k,,

g.(n) n k, k <= n <_- k + ],

], k.+]<-n.
In particular, gipp is increasing and concave on each of the intervals kq <-n <-_ kq+l,
q _-> 0. Also

n, O<-n<-],

gioo(n)= ], j<-n <k,

0, k<-n.

Any sequence g in 9 has a unique decomposition

(5.16) g zG + Y E
po --1

where

(5.17)

(5.18a)

(5.18b)

(5.18c)

/z g(0),

Vii- 2g(k)-g(k + 1) + (r- 1)g(0),

7i,,, g(kp+)-g(kp+- 1), p -->_0,

Yi, 2g(k, +])-g(k, +]- 1)-g(k +] + 1) otherwise.

COROLLARY 5.3. Let g be a sequence in , and suppose that g(O)>=0 and g is
increasing and concave on each of the intervals kp <-_ n <= kp+l, p >= O. Then Tr"g ,
m >-0. If g is strictly increasing and strictly concave on each of the intervals, then
,,(Tg)={r(n)}, n >-k, m >=0.

Proof. In the decomposition (5.16), we have/x =>0, yiv >=0 by (5.17) and (5.18).
By Theorem 5.2, T"g ,, m >= O.

If g is strictly increasing and strictly concave on each of the intervals, then g has
a decomposition of the form (5.13) in which/Zl=>0, /.t20, "yipqO and yo >0. By
Lemmas 2.1, 2.2 and 5.1,

i,p

Furthermore by (5.14) and (5.15), Tg also has a decomposition of the form (5.13) in
which /Zl->_0, /z.=>0, 3%q>-0 and yioo>0. It follows that ,(Tg)={tr(n)}, and by
induction that ’,(T"g)={tr(n)}. 1

Now consider a more general situation in which {kp: p >= 0} is a strictly increasing
sequence of nonnegative integers such that k < k and rko <= k, and let/’, ko/- ko
(p >_-0). Then tr(n) in S may again be defined by (5.1) and (5.2), and sequences f.pq,
O<--_p<--q, 1<-]<-], by (5.3) and (5.4). Assume that ], divides both ] and (r-1)kq,
0 <_-p <_-q. Then the statement and proof of Lemma 5.1 go through verbatim. Further-
more, if gi,q PIf.po, then giq is again given by (5.12). If is the largest integer such
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that rkl <= k, then

T( P( (i, O <= f < k

(cf. (3.12a)). Thus any positive linear combination of the sequences +/-G1, +G2, tij,

0-< <k and gpq, O<-p<=q, 1 <=]<-]p belongs to .
Suppose further that there is a function 7r such that rkq k(q). Then for q > l,

io

Thus T"gipq 6f,, m >-O, q >.l.
The choice ko 0, kp (k- 1)rp-l, p >0, was covered above. If we take ko p,

p -> 0, all the assumptions are satisfied, since/’p 1 and rkq kr. In this case,

’i(n) [n + -1]
as defined in 3. The functions f.po, ] 1, 0 <= p <-q, are now given by

L(n) / 0, n q,

n-q, n _->q.

Thus for q > l, (3.7) gives

O. (L.q) 1,

Oi(f,.,,,,)=-f,,(i-1)>=O, l<=i<-_l,

Oi(f,,) 0 otherwise.

Thus the fact that f.pq lies in 5f for q > is in this case a consequence of Theorem
3.2. The additional strength of that theorem lies in the fact that any sequence f in
9 with f(n) 0, 0 -<_ n _-< + 1, is a positive linear combination of f.pq, q > I.

Finally suppose that k _-> r and consider the choice

ko 1, k (k 1)rp-l, p => 1.

Although this does not satisfy the condition that ]o should divide ] and (r- 1)k,, it is
still possible to show that T’g P,g for any sequence g with g (1) -> 0 which is increasing
and concave on each of the intervals kp-< n =< k/l.

One might not necessarily expect the r-tuples (r(n) to be of special interest, but
Corollary 5.3 shows why they are. If g is nonnegative, concave and increasing, the
minimum in (2.1) is attained for a (r(n), and the same applies when g is replaced
by T"g. Thus again we can calculate T"g without any minimization process, since
T"g=PTg.
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COUNTING MATRICES BY DRAZIN INDEX*

J. V. BRAWLEY

Abstract. Let Fq denote the algebra of n x n matrices over Fq, the finite field of q elements and
for each A Fxn, let Ind(A) denote the Drazin index of A; i.e., Ind (A) is the least nonnegative integer
k such that the system of matrix equations (i) Ak+Ix--A k, (ii) XAX X and (iii) AX XA has a
(necessarily unique) solution. This paper determines for each k _-> 0 the number of matrices A s Fq with
Ind (A)= k. These results are then extended to cover a more general class of finite rings including the ring
Z/Zm of integers modulo m.

1. Introduction. Let Fnn denote the algebra of n x n matrices over the field F
and let A e Fn. It is well known [5] that there exists a unique smallest integer
Ind (A)_>-0 and a unique matrix X, also depending on A, such that X satisfies the
matrix equations

(1) Ak+Ix Ak, XAX X, AX XA

for all k _-> Ind (A). (Here, it is understood that A- I.) The matrix X, alternatively
denoted by A, is called the Drazin inverse of A and the integer Ind (A) is called
the Drazin index of A. (Note that A is invertible if and only if Ind (A)- 0.)

The Drazin inverse for matrices over the real or complex number field has many
important applications (see, e.g., [3]). Recently Hartwig [9] and Levine and Hartwig
[13] have applied the concept of the Drazin inverse for matrices over finite fields and
residue class rings of integers to the Hill cryptographic system. Because of this
application to cryptography, Hartwig [10] has asked for the number of matrices which
have group inverses, i.e., the number of matrices AFn" which are members of
some multiplicative group (within the multiplicative semigroup Fn"). The set of
matrices with group inverses can also be described as the set of matrices with
Ind (A)-<_ 1 or as the set of matrices in the range of the mapping which takes each
n x n matrix A to its Drazin inverse A (see [3]).

In the present paper we determine for each integer k _-> 0, the number of n n
matrices A over a finite field with Drazin index equal to k. We then generalize these
results to a larger class of finite rings which include the residue class rings of integers.

2. The Drazin index and nilpotent matrices. For the remainder of this paper Fq
will denote the finite field of q elements. It is clear from (1) that a matrix A s Fq
has Drazin index Ind (A)= 0 if and only if A is invertible; i.e., A is a member of the
general linear group GL(n, q). Thus, the number of A with Ind (A)= 0 is the number
y(n, q) of elements in GL(n, q) which is well known [4] to be

(2) v(n, q) (q" 1)(q" -q)... (q" _qn-1).
We can therefore restrict our attention to singular matrices in which case Ind (A)=> 1.

Consider such a singular matrix A. From the theory of similarity of matrices over
fields (see, e.g. [15]), there exists some unique t, 1 =< t-< n, such that A is similar to a
matrix of the form diag (B, N) where B GL(n t, q) and N is a x nilpotent matrix.
The Drazin index of A is known to equal the index of nilpotency of N (see [3]); i.e.,

* Received by the editors July 21, 1980, and in revised form May 26, 1981. This research was supported
in part by the National Science Foundation under grant ISP-8011451.

t Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29631. A portion
of this work was completed while the author was a Visiting Professor in the Department of Mathematics,
University of Tennessee, Knoxville.
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Ind (A) is the least positive integer such that Nk-- O. Thus 0 =< Ind (A)-< n for every
A Fq and the matrices A with Ind (A)= k >= 1 are precisely those A similar to a
matrix of the form diag (B, N) for some invertible matrix B and nilpotent matrix N
whose nilpotency index is k. This fact will be used in the next section.

For purposes of enumeration we shall need a formula for the number r/(t, q; k)
of nilpotent matrices over Fq with nilpotency index k, 1 =< k =< t. Fine and Herstein
[7] and Gerstenhaber [8] have determined the total number of nilpotent matrices
over Fq to be qt2-t and both Bollman and Ramirez [1] and Lusztig [14] have enumerated
these by rank. In order to enumerate the nilpotent matrices by index of nilpotency
one can use the methods of [7] or more simply apply the results of Hodges [12] who
counts the number of matrices AF satisfying a given polynomial equation
f(x) O, f(x) F[x]. For completeness and to introduce the notation we now give a
brief derivation of this number.

Let

(3) 7r [1’, 2f2, ,kk ]

denote a partition of the integer into parts 1, 2,. ., k repeated fl, 2, , fk times,
respectively, where fi _>-0, i= 1, 2,..., k- 1 and fk > 0. Then i=1 i. f, and the
largest part in the partition is k. Let H(t, k) denote the set of all such partitions of
and associate with each partition r =[1f2, 2f2, kk] the nilpotent matrix J(Tr)
diag (J(f), J2(f2), , Jk(fk)), where for each i, 1 <= <= k, J(f) is the block diagonal
matrix diag (J, Ji, ., J) with Ji, the x Jordan matrix with l’s on the superdiagonal
and O’s elsewhere, being repeated f times. Each x nilpotent matrix of nilpotency
index k is similar to one and only one J(Tr) for some unique r e II(t, k). The number
S(r) of nilpotent matrices similar to a given J(Tr) is y(t, q)/C(Tr), where C(Tr) is the
number of invertible x matrices commuting with J(Tr) (see [12]). Hence

(4) r/(t, q" k)= Y 7(t, q)
c()

where the sum is over all r II(t, k). Now Dickson I-4, p. 235] has determined the
number C(7r) to be

(5) C(77")--qe(-rr)q/(fl, q)Y(/2, q)’’" Y(ft, q),

where y(n, q) is given by (2) and where the exponent e(Tr) is

(6) e(r) Y Y, ]’h min (i, ])- Y f,
i=l i=1 i=1

with min (i, ]) denoting the minimum of and ]. Thus, putting these results together
we have

,(t,
(7)

q 3,(f, q)r(f2, q)"’ r(f, q)"

Formula (7) is essentially the result of Hodges [12, p. 293] applied to our situation.
We note that (7) is especially simple when k 1 for then rt (t, q; 1)= 1 as 0 is the

only nilpotent matrix of nilpotency index 1.

3. Counting matrices over finite fields by Drazin index. Let k be an integer
1 =< k <= n. We seek the number of A F with Drazin index Ind (A)= k. To this
end, for each integer m, let ,, {Bx, B2" "} denote a set of distinct representatives
for the similarity (conjugacy) classes of GL(m, q). Then if C(B) denotes the number
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of m m invertible matrices commuting with B it follows that

(8) 3,(m, q)= Y 3,(m, q)/C(B),

as ,(m, q)/C(B) is lust the number of elements in the similarity class of B. (Formula
(8) is the well-known class equation or roups applied to GL(m, q).)

Also, a matrix A F has Drazin index k if and only if there exist a unique
integer , k n, a unique partition e H(, k), and a unique matrix B e

_
such

that A is similar to

(9) D diag (B, J()).

Moreover, it is readily verified that a matrix P GL(n, q) commutes with the matrix
D diag (B, J()) of (9) if and only if P diag (P, Pa) where P GL(n t, q) and
commutes with B, and where P2 GL(t, q) and commutes with J(). Thus, the number
of matrices of Drazin index k which are similar to diag (B, J()) is (n, q)/C(B)C()
where C(B) and C() denote respectively the number of invertible matrices commut-
ing with B and J() (see [12, p. 292]). It follows that the number (n, q; k) of
matrices in F with Drazin index k (1 k n) is

8(n, q; k)= EE q)
,: C(B)C()’

where ranges over H(t, k) and B ranges over ,_. But using (8) and also (4) we
have for fixed

(n,q) =r T(n,q) rT(n-t’q)E c()c() c()( , ) C(B)B

T(n, q)
E c()

(, ev (t, )

(n,q)(t,q;k)

(10) (n, q; k)= y(n, q) i r/(t, q; k)
,=k y(t,q)

where r/(t, q; k) is given in (7) and where y(n, q) and y(t, q) are given in (2).
For k 1, since r/(t, q; k)= 1, equation (10) reduces to

(11) 8(n, q; 1) =, q).
v(t, q)’

hence, the number of matrices which have group inverses is

(12) 6(n, q; 0)+8(n, q; 1)=
y(n, q)

,=o v(t, q)’

where (0, q)= 1 by definition. For finite fields, formula (12) answers the question of
Hartwig mentioned in 1.

Hence
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4. Generalizations to Fitting rings. For any finite ring R with identity we shall
use 7(n, R) to denote the number of invertible matrices in R"" and /(n, R; k) to
denote the number of nilpotent matrices in R/2" whose nilpotency index is k. The
number y(n, R) has been determined by Farahat [6] and independently by Brawley
[2]. The numbers 7 (n, R; k) are apparently not known for a general ring R.

DEFINITION. A ring R with identity is called a Fitting ring if every matrix A
over R is similar (over R) to a matrix of the form diag (B, N) where B is invertible
and N is nilpotent.

Examples of Fitting rings are fields and the ring Z/Zp" of integers modulo a
prime power p" [11]. A direct sum of two or more Fitting rings is not a Fitting ring.

Using techniques similar to those in the previous section one can prove the
following theorem (whose proof will be omitted).

THEOREM. Let R be a finite Fitting ring with identity. Then the number 6(n, R; k)
of matrices A R/2/2 with Drazin index equal to k is T(n, R) if k 0 and

(13) g(n,R; k)= y(n,R)
q(t,R; k)

t=l T(t,R) ifk>-l"

We should comment that every matrix A over a finite ring is a strongly r-regular
element and hence A has a Drazin inverse and a Drazin index [5, p. 510].

Since /(t, R; 1) 1, we immediately have the following corollary.
COROLLARY. Let R be a finite Fitting ring with identity. The number of matrices

in the range of the mapping on R nxn which takes each matrix to its Drazin inverse is

(14) (n, n’ 0)+ (n, R" )=
V(n, R)

t=O T(t, R)’

where 7(0, R)= 1 by definition.
We comment that the reason the variable of summation in (13) ranges from 1

to n rather than k to n as in (10) is because a x nilpotent matrix over R may have
an index of nilpotency greater than t.

Finally consider a finite ring R which is the direct sum of Fitting rings; say
R =RI(R2@"" "(Rr. (An example of such a ring is the ring Z/Zm of integers
moduloanarbitraryintegerm.)IfAeR ",thenA=Al@...@ArwhereAieRi
Now the Drazin index of A is max {kl,..., kr} where ki is the Drazin index of Ai.
Thus A has Drazin index k if and only if Ind (Ai)<_-k for all with equality holding
in at least one component. Hence

k k

(15) o-(n,R; k) E 2 8(n, R1; il)"" 8(n, Rr; i)
il =0 ir=O

IS the number of A R nxn with Drazin index less than or equal k and

(16) 8 (n, R k) r(n, R k) r(n, R k 1)

is the number with Drazin index equal to k.
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GENERALIZING THE SUM OF DIGITS FUNCTION*

HELMUT PRODINGERS"

q-1
Abstract. The number theoretic function Oq,(n)=,k>__x,i=o [n/q +]aJ has appeared in the

literature for some special values of a. Some properties of this function are investigated. Since G.o(n) is
closely related to the sum of digits of the q-ary representation of n, a generalized "sum of digits" function
can be defined via G.. For q 2 and a 2-’ the summing function of this "sum of digits" function is
analyzed using a technique of Delange.

1. Introduction and elementary results. Let q N, q # 1 and define the functions
Gq, No- No by

(1) Gq,,,(n) := Y. [-n+ja[.
k>=l l<--_j<q qL _I

(/x denotes the greatest integer less or equal to x.)
To make this definition meaningful, a must be in the range a [0, (q 1)-1). But

for all considerations (except for Theorem 5) it is better to restrict a to the range
[0, q-l], especially because the generalized "sum of digits" function (see 2) takes
then only nonnegative values, which is very desirable.

In [6] an alternative expression for G2,1/4 is given by a complicated method; the
same method applies to G2,1/2 showing that this function is the identity.

The last result can be found in [4, p. 43] in the general form

(2) aq l/q(n) _, _, [--- J+ --rto
kl

In the sequel it will be shown that, starting from (2), some formulas for Gq, can
be derived in an easy way. To be able to formulate this result adequately, it is useful
to use the following denotation.

If : is a string of integers in the range [0, q- 1], let B,(:, n) denote the number
of subblocks : in the q-ary representation of n (subblocks are allowed to overlap).

THEOREM 1.

G,q-,(n) n- E ]Bq(], n)+ E ]Bq((q-1)s-l], n).
l<--_j<q l<--]<q

(For instance, G2,1/4(n)- n -B2(1, n)+B2(ll, n).)
Proof. It is sufficient to show that the number of indices k, such that

+ =1+ _n+
equals

Y ]Bq(], n)- ., tBq((q- 1)s-it, n).
l<=j<q lt<q

* Received by the editors May 29, 1980, and in revised form June 1, 1981.

" Institut fiir Algebra und Diskrete Mathematik, Technische Universitt Wien, Guszhausstrasze 27-29,
A-1040 Vienna, Austria.
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This can only happen if

q-+ 1+ - and s->2.

(For s 1 the theorem is trivially fulfilled.) Now assume that the fractional part of

n/q k starts with the digit ], 1-<_] < q- 1 (with respect to the q-ary representation of

n). Then in (1) each with j + >= q is possible (there are ] of such l’s), and furthermore

Now assume j =q- 1. Then there are again q- 1 indices in (1) such that j +l>_-q, but

is also possible, and this happens if and only if the fractional part of n/q starts with
q 1, q 1, , q 1, t; in (1) each with + >- q is possible (there are of such l’s).

Since the sum over k in (1) means that every digit is exactly one time the leading
digit of the fractional part of n/q, the proof is finished.

Remark that the formula holds also for c 0 where the second sum vanishes,
which can be seen as a "limiting case".

In the sequel it will be shown that Gq, for 0 <_- c < q-a has a rather erratic behavior,
which contrasts to the case

LEMMA 2. Assume a q-1. Then there exists an n such that

Gq,,(n) Gq,(n + 1).

Since the proof of this lemma is rather long and not too interesting, we just
indicate that an appropriate choice for n is (with respect to the q-ary representation)
of the form (1000...0)q.

THEOREM 3. For 0 <--a < q-1 the function Gq, is not surjective.
Proof. By Theorem 1,

t)q Gq,1/q(q )>- Gq,,(q >- Gq,o(q q 1.

Thus there are numbers tl < t2 such that

Gq, (q) Gq, (q") q t2 q tl

Because of the monotony of Gq,, surjectivity in the interval It1, t2] means also
injectivity, but this property is not fulfilled.

Remark. If c is allowed to be in the range a e [0, (q- 1)-1), a q- 1 (compare
the comments after the definition of Gq,), Lemma 2 and Theorem 3 are still true.

It is clear that from a -</3 it follows that Gq, (n) <- Gq, (n). The following stronger
result is easily obtained.

THEOREM 4. If a < then there is an n such that Gq, (n)< Go,(n).
Proof. Choose numbers n, k such that

n
1-/3 _<_-< l-a;

q

then

+fl =1 and +c =0.
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As D. E. Knuth has pointed out [5], it would be interesting to investigate Gq, (n)
for fixed n, where a is the variable. A first result in this direction is the following
theorem.

THEOREM 5.

Proof. Since

it follows that

Io G2,,(n) da n.

Io X + , d, x,

+a da
k>l

f0x[n] n

k>=l

(It is not very hard to see that the integration and the summation can be interchanged.)

2. The summing function of the function "generalized sum of digits". In Delange
[i] the summing function of the function "sum of digits to the base q" is considered:
The sum of digits is

(3)

S(n) E -q
r=0

n-(q-1) 2
r=l

n E iBm(i, n)= n -O.o(n).
l_<--i<q

In view of 1 it is natural to define the generalized function "sum of digits" by

Sq,,(n) := n-G,,,,(n).

In [1] it is proved that

1 .--1 q-1
Sq (n) logq m +F(log m)

m n=o 2

where F(x) is continuous, periodic with period 1 and thus bounded. (log m means
the logarithm to the base q.) Further information in this area can be found in the
beautiful thesis of Flajolet [2].

In the rest of this paper the summing function of Sz,2-(n) is treated, but I hope to
do further work in this direction in the future. The ordinary sum of digits appears as
the limit for s

From Theorem 1, we know that

Oz,2-(n) n -BE(l, n)+BE(1 s, n).
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Plugging this into the definition of Sq,,, we find that

(4)
Sz,z-s(n) B2(1, n)-B2(1, n)

S(n) (, n).

So $2,2-s(?/) is just the number of ones in the binary expansion of n minus the number
of blocks of s consecutive ones in that expansion.

The rest of this paper is an analysis of the summing function of the function
Bz(1 s, n); then by (4), an analogue to Delange’s result of S2,z-.,(n) can be formulated
as a corollary.

THEOREM 6. Let B2(lS, n) denote the number of subblocks of s consecutive ones
appearing in the binary representation of n, where overlapping is allowed. Then the
summation of Bz(lS, n) is given by the formula

1 m-1 log2 m --(S 1) E
Y B2(1, n) +H(log2 m) +,

2D’/ n=0

where H is continuous, periodic with period 1, and satisfies H(0)= 0, and where E is
bounded by 0 <= E < 1.

Proof. A crucial point in Delange’s derivation is the property

For a 0 it is not trivial to find an appropriate analogue.
An analogue to property (5) can be written as follows"

(6) [’r+] l+]
holds for n <= < n + 1 and r -> s and also for n (1 /2-r) <- < n + 1 (1 /2s-r) and r < s.

Let log2 m. We have

Now define

C-- 2r_
m

r=l ’ "q-

g,(x) t+ -It] dt.
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gs (x) is periodic with period 1, continuous and gs (0) 0. With this notation we can write

E BE(l,n)= E
=0 r=0

+

r=O

E 2x+l-ll-kgs(m2k-tll-)+([lJ+l)--C.
k=O

Now remember that m 21 and define {/}= l- [/] and

h(x)= E 2-kg(x2k).
k_>0

Then

m-1 m
B2(1, n)= m21-{/} hs(2{l}-X)+([l] + 1) -;- C.

n=0

Now defining

1
Us(l) 2-{I}hs(2{I}-1)---2; ({/}-- 1),

Z-

it remains only to analyze the quantity C to complete the proof.

r=l r=l [2rJ

since r lies in the range 1 =< r <= s- 1. Thus

sl r_s(1,Fl sl 2r_s{m } s -1
C= 2 =m---r=l \2r] r=l

Eo

Since {x} lies always in the interval [0, 1), we can deduce that the remaining error
term E must also lie in that interval.

Using Delange’s result on the summing function of S2(n) from 1 we get immedi-
ately:

COROLLARY 7. If Sq, (n denotes the generalized "sum ofdigits" function defined
above, then the summing function of the quantity SE,2-(r/) is given by

1 y S,2-s(n)= log2 m +
2s

+F (logz m)-H(log2 m)---
DI n--0 /7’/

where both F and H are continuous, periodic with period 1, and take the value 0 on
the integers, and where E is bounded by 0 <-_ E < 1.

3. The Fourier series for Hs(x). Delange [1] has already determined the Fourier
series for F(x). Similar methods apply to H(x).
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THEOREM 8. The Fourier expansion Hs(x)=Y’,k hke2k=ix Of the function Its(x)
converges absolutely, and its coefficients are given by

ho log2 1-" 1
2 log 2 2s+1,

(2kTri /2kTrt’x

" \log2, 1 21---0
hk for k O.

2ki(1 +12k
Proof. Let 0 _-< x < 1. Since

the determination of the Fourier coefficients decomposes as:

fO 1Iolh 21-Xh(2-1) e-2 dx +- (1 -x) e-:ix dx a + b.

It is easily seen that

1 1 1
bk 2-" 2krri

for k # 0, bo 2--7’

21-x (2r+x-1) e -2k’a’ix dx,ak 2-rg,
r=O

and as in [1], the integration and the summation can be interchanged:

ak 2-r-&(2+-) e-’ dx.

The change of variable x 1 -r + log u gives

Io 2--g,(2r+-a) e-2=i dx
log 2 u 2 exp (-2ki. log2 u) du.

Thus

As in [1], the integral

should be studied; then

1 I1 gs(u)
ak log 2 /2 U2+2k’rri/ig2 dR,

g(u)
,(z) z+l du

/2 U

1 (1+2krriak =iOg2 iog 21"
Since
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by partial integration for Re z > 0,

s(z)=
2s z z /2 u

For Re z > 2, the integral can be split into three parts. The third one is

2 z /2u 2 z z-1

The second one is

du 1 11
Lu - ’(z 1).

z /2 u z z-1

The first one is

z / u z _-- u z(z-1)
( z 1,1

where ((z- 1, a) is the z-function of Hurwitz (see [3]). This gives

,(z) +
2 z-1 z(z- 1)

This holds for Re z > 0 by analytical continuation. This gives

1 1 1 2k) - (2ki (2ki

for k 0. Now ao must be computed. From [7],

(z-1, a)=-a +(z-1)(logr(a)-log(2))+O((z-1)) for z 1.

Thus

( 0 1 1 ((21--0 1 )" z 1, 1 -+-7+ (z 1) log F 1 - log (2rr) + O((z 1)2),

C(z l)= ((z l, )= --(z )og (2) + O((z )),
2- 1 + (log 2)(z 1) + O((z 1)2),

1 1-(z-1)+O((z-1)2).
z

This yields after some manipulations

O(z) -7 (1 + log 2) + log F 1 + O((z 1)2) for z 1.

Hence

log 2 2s
t-log2 F 1-

Finally, since (it, a)= o(It[/2 log Itl) [7], the Fourier series of Hs will converge
absolutely.
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MULTIPLYING VECTORS IN BINARY QUADRATIC RESIDUE CODES*

ROBERT CALDERBANKt AND DAVID B. WALES

Abstract. Let q =--1 (mod 8) be an odd prime power and let C(q) and C(q)* be the two extended binary
quadratic residue codes of length (q + 1). We show how to regard C(q) and C(q)* as one-sided ideals in a
binary group algebra and we show that the appropriate product is a 2-dimensional ideal. This allows us to

prove that if d is the minimum weight in C(q) then (d-1)2-(d 1)+ 1-st>=q, where s, are nonnegative
integers, with s--0 (mod 4), and odd. The integers and depend on the way the nonzero entries of a
codeword of minimum weight are distributed among the coordinate positions. We prove that (d-1)2-

(d 1) + q only if q 7 and d 4. We also investigate the case 0.

1. Binary quadratic residue codes. In this section we present properties of binary
quadratic residue codes that are needed for the analysis of 2. We begin by introducing
some notation.

We shall denote the vector space GF(2) by Vn (2). We shall sometimes denote the
zero vector by 0 and the all-one vector by 1. A binary [n, k] code is a k-dimensional
subspace of V,(2). The weight wt(a) of a vector a V,,(2) is the number of nonzero
entries. An In, k, d] code is a code for which d is the minimum weight among all nonzero
codewords. An automorphism of a binary code C is an n n permutation matrix P such
that CP C. The automorphisms of C form a group which we shall denote by Aut(C).

Let q ----1 (mod 8) be an odd prime power. If ] GF(q) then we shall write ] 0,
] 73, or/" e according as ] is zero, ] is a nonzero square, or ] is a nonsquare
respectively. The extended (generalized) binary quadratic residue code C(q) is the
subspace of Vq+l(2) spanned by the rows of the matrix M(q) given below. The rows and
columns of M(q) are indexed by the elements of the projective line GF(q)U {oo}.

oo

c[1 1 1

M(q)=i I! S

where

1 ifj-i 7q,
(1) (S)ij=

0 otherwise

H. N. Ward [8] and P. Camion [2] define quadratic residue codes in a much more
abstract way. J. H. van Lint and F. J. MacWilliams give a simple construction in [3].

* Received by the editors September 19, 1980, and in revised form April 20, 1981. This work was
supported in part by the National Science Foundation under contract 50950.

Bell Laboratories, Murray Hill, New Jersey 07974; formerly at Department of Mathematics, Califor-
nia Institute of Technology, Pasadena, California 91125.

Alfred P. Sloan Laboratory of Mathematics and Physics, California Institute of Technology, Pasadena,
California 91125.
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Example. The code C(7) is the row space of the matrix

c 1
0 1
1 1
2 1

M(7)= 3 1

6 1

0 1 2 3 4 5 6
1 1 1 1 1 1 1-
0 1 1 0 1 0 0

0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 O_

This is the [8, 4, 4] Hamming code. Notice that the incidence matrix of the projective
plane PG(2, 2) is a principal submatrix of M(7).

If q is prime then C(q) is a classical quadratic residue code. The matrix S is a
circulant and C(q) is an extended cyclic code.

We replace 0 by (-1) throughout M(q) to obtain a (1, -1) matrix P(q). If we regard
P(q) as an integral matrix then P(q) is the Hadamard matrix constructed by R. E. A. C.
Paley in [6]. Since q -1 (mod 8) we may write q + 1 =4t +4 where is odd. We have

SST ((2t + 1)- t)I + tJ
(2)

=J (mod 2),

where J is a square matrix with every entry 1.
It follows that C(q) is self-orthogonal. Note that every row of the matrix M(q) has

weight divisible by 4. Since C(q) is self-orthogonal it follows by induction that any sum
of rows of M(q) has weight divisible by 4. Thus all weights in C(q) are divisible by 4.
(This argument was used by A. M. Gleason, 1962, unpublished).

The group PFL(2, q) is represented by all permutations of GF(q)1.3 {oo} that have
the form (zaz + b/cz" + d), with a, b, c, d, GF(q), ad bc a nonzero square, and cr
an automorphism of GF(q). This group is generated by the permutations given as (i),
(ii), (iii) and (iv) below.

(i) Ti (Z "> Z q- i) for e GF(q),
(ii) Pi (z - iz) for 7-],
(iii) p (z - z) (where p is prime and q p"), the permutation corresponding to

the Frobenius automorphism of GF(q),
(iv) r (z -- -l/z).We adopt the standard conventions about operations involving. The next result is due

to Gleason and Prange.
THOZM 1.1. If m is the row ofM(q) indexed by then
(a) miT mi. forj e GF(q),

(b) miP=mi forj=l--],

(c) mip miP,

(d) miT"

m if o,

mo+m /fi O,

m-1/i q- mo if 7],

m-1/i + mo +m if 71.



MULTIPLYING VECTORS IN BINARY QUADRATIC CODES 45

The code C(q) is invariant under PFL(2, q). (The permutation group acts on the
rows of M(q) by multiplication on the right. The permutations are of GF(q) oo.)

Proof. The calculations are relatively routine. The first three are straightforward.
The fourth is more difficult as the different cases for give different results. In each case
compare the (mir)j coordinate with that on the right-hand side. We omit the details. I-I

Let A be the permutation (z-+-z) and let C(q)* C(q)A. The code C(q)* is
spanned by the vectors m* m(_i)A for GF(q) {oo}. We have

m*oo moo 1,

and, if o, then

(3)
if/=,

(m *)j if/’- ,
otherwise.

Since h normalizes PFL(2, q), the code C(q)* is also invariant under PFL(2, q). If the
coordinates are chosen in the order {oo, 0,.... i,..., -i,...}, the code C(q)* is C(q)
with entries other than oo and 0 read in reverse.

It is not difficult to show that the codes C(q) and C(q)* have the properties
described in Fig. 1. (Here and elsewhere, (.) denotes vector space span.)

C(q) + C(q)* {v Vq+l(2): v. 1 0}

C )* dim C(q), C(q)*
q + 1
2

C(q) f’) C(q)* (1)

FIG.

Let Q and Q* be the subspaces of Vq(2) obtained from C(q) and C(q)* respec-
tively by taking each codeword and deleting the entry indexed by oo. We have Q* QA
and Q*f’)Q (1). The two codes Q and Q* are invariant under the group T
(T: GF(q)). The map

,:(...,c,...)-, E cT,
iGF(q)

is a vector space isomorphism between Vq(2) and the binary group algebra A with basis
the permutations in T. Since (Y ciT) T. Y cT+i, we may regard Q and Q* as ideals in
the commutative algebra A. Since the permutations T are linearly independent in A,
the map (Y cTi) - (Y. c) from A to GF(2) is well defined. This substitution map is a ring
homomorphism.

THEOREM 1.2. I d is the minimum weight in C(q), then

(4) (d-1)2-(d-1)+l>-q.

Proof. Since PFL(2, q) acts transitively on GF(q)tO {oo}, there exists

v=(aoo,. ,ai, .)eC(q),
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with a 1 and wt(v)= d. Since C(q) is self-orthogonal and since 1 C(q) we have
a iF(q) ai. Now

(5) v (. aiTi) Q and vA (E aiT-i) Q*.

The product Vl(U1A) QQ*, and since QQ*_ QCIQ*, we have

(6) Vl(VX) (Y. aT)(Y aT_)= k(Y Ti),

where k GF(2). The substitution map gives

k (, ai)2 2 1

The number of different nonzero terms on the left-hand side of (6) is at most
(d- 1)2- (d- 1)+ 1. This completes the proof (cf. [5]).

A different proof of Theorem 1.2 is given by J. H. van Lint and F. J. MacWilliams in
[3]. H. C. A. van Tilborg [7] generalized Theorem 1.2 as follows.

TIEOREM 1.3. Suppose q is prime. Let d be the minimum weight in C(q). Then
(a) If (d-1)2-(d-1)+l>q, then (d-1)2-(d-1)+l>-q+12.
(b) If (d-1)2-(d-1)+l =q, then d=8t+4 and q=64t2+40t+7 for some t.

Furthermore, there exists a projective plane of order (d- 2).
Part (a) of Theorem 1.3 also holds when q is a prime power. The proof rests on

analysis of (6) and is essentially the same as that given in [7]. In 2 we shall prove that
equality holds in (4) only if q 7 and d 4. Theorem 1.4 is an intermediate result. It is a
special case of a theorem of van Tilborg (see [1]).

THEOREM 1.4. Suppose that q is a prime power and that the minimum weight d
satisfies

(d-1)2-(d-1)+l=q.

Then the vectors ofminimum weight in Q are the lines ofa projective plane oforder (d 2).
Proof. We identify a vector v e Vq(2) with the set of field elements that index the

nonzero entries of v. Equation (6) reveals that the vector Vle Q given by (5) is a
difference set in the elementary Abelian group GF(q). The corresponding symmetric
block design is the projective plane PG(2, d- 2). The lines of this projective plane are
the vectors l)l T], j GF(q).

Let w eQ be a vector of minimum weight (d-l). Since the code C(q) is
self-orthogonal, the vector w meets every line in an odd number of points. There is a
line vl Tk that meets w in at least 3 points. If there is a point P of vl Tk not on w then
every other line through P also meets w. But this forces wt(w) -> (d 2) + 3, contradic-
ting the choice of w. We conclude that w v Tk, as required.

2. A stronger form of the square root bound. We may write v Vq+(2) in the
form

v (a,. , ai," bo,’ , bi,’ ")

0 (-i)
nonzero nonsquares
squares

Define

dl(v) [{i: ai 0 and oo}[,

d2(v)--1{i: bi 7 0 and 0}[.
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Since C(q) is self-orthogonal and since (1; 0) and (0; 1) are vectors in C(q), we have

(7) a= Y’. ai and bo bi.
i=[:] =13

Let R and R* be the subspaces of V_(2) obtained from C(q) and C(q)*,
respectively, by taking each codeword and deleting the entries indexed by and 0.
From Fig. 1 we see that the subspaces R and R* have the properties described in Fig. 2.

Vq_I(2)= R + R*

R R*= ((0;1), (1; 0))

FIG. 2

dim R, R * q + 1
2

In 1 we defined vectors mk and m for k GF(q)tA{}. Let Xk and x be the
vectors obtained from mk and m k* by deleting the entries indexed by oo and 0. Then we
have R=(Xk" k e GF(q)U{oo}) and R* (Xk*" k GF(q)U{oo}).

Since r
2 1, and since ’Po" P- the group D {P, Pz" 7-1} is dihedral of order

(q 1). Let B be the binary group algebra with basis the elements of D. Let ::R B be
the linear map given by

and let *" R* B be the linear map given by

Since the elements of D are linearly independent, : and :* are injective. We have
’Pi Pi-l and -(Y. Pi) (Y Pi)r, and so : and * agree on R f’) R*. Every element of D
acts as an automorphism of both R and R*. The group D also acts on the algebra B by
left and right multiplication. The next lemma connects the different group actions.

LEMMA 2.1. (a) If v* .R* and d sD, then 2j*(v*d)=d’j(v*), where P =Pi and
(ei’r)’= "rPi.

(b) If v R and d D, then (vd) (v)d.
(c) The subspace (R) is a right ideal oB and the subspace *(R*) is a left ideal

ofB.
Proof. (a) If v* (. ., ci, ;" di, ") R *, then

Z ciPii + Z diPii"r

=*(v*P)
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and

r*(v*) (E ciei + E diei’)

E diPi-, + E ciPi-,

=*(v*r).

Part (b) is similar to (a) and we omit the details. Part (c) follows from parts (a)
and(b). []

Henceforth, we shall identify R with :(R) and R* with :*(R*). This allows us to
multiply vectors in R* by vectors in R.

If x (" ",fi,’ ;’ ", g,’ "), then

if i-1=73
[i

otherwise,

1 if-i-l=l
g=

0 otherwise.

(or if -i (- 1) 7-]),

(orif i- (-1) ),

From part (c) we have x’-l) (" ’, gi," ;" fi," "). Identifying R with :(R) andR*
with :*(R*) gives

X , fiPi + Y girPi and x ’-1) giPi + Y. fiPir.

The results in this section rest on the following calculation.
LEMMA 2.2. If Xl, X-I) are as above, then

(X -I) )(X1) "r(" Pi).

Proof. Since B is a binary algebra, we have

(X-I))(Xl) (E giPi +E fiPi’r (., fiPi q- E gi’rPi

r{(E giP,-’)(E giPi)+(EfiP,--O(EfP,)}

r(Y’. CkP).

Now we prove that every coefficient c 1 (mod 2).

c 1{(i, j)" gi : O, gi : 0 and j ik}[
+ I{(i, ])’ fi O, f 0 and ] ik }l.

Thus c- (xl)(XlP) r, the inner product of the vectors xl and XlP in Vq_l(2). Since
x xP we have c (xx)(x)r. If S is the matrix defined in (1), then (S)1.o 0 and (2)
gives

ifk 1,
Ck= 2t+l ifk=l,

where q + 1 4t + 4. Since is odd, Ck --= 1 (mod 2) as required.
LEMMA 2.3. R*R ((E Pi), "r(E Pi)).

Proof. If J ((Y Pi), r( Pi)), then J is an ideal in B. From Lemma 2.2 we have

(x-l) )xl "r(E Pi).

We multiply on the right by P and apply Lemma 2.1 to give

(8) (XS-1))Xk "r(E ei)
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for all k -IS]. Multiplying (8) on the right by - yields

(X-I) )(X-1/k + Xo) (, Pi)

Since Xo ( Pi) J, we have

(9) (X-) )(X-/k) J

for all k ?q. Equations (8) and (9) force

(10) (x_))RJ.
Multiplying (10) on the left by r, and by P for all k 7], we obtain R*R

_
J and the

proof is complete.
Since the permutations P are linearly independent in B, the map ( cP) ( c) is

well defined. This substitution map is a ring homomorphism from the subalgebra of B
spanned by the permutations P to GF(2).

We define

* {v (a; b) e C(q): a bo 1 and wt(v) d},

O={v (a; b)e C(q): a= 1, bo=0 and wt(v)= d}.

Then we define

s max {Id(v)- d=(v)l},
vel2*

max {Id(v)- d=(v)l}.
vl

THEOREM 2.4. The minimum weight d satisfies
(11) (d-1)E-(d-1)+l-st>-q.

Proof. There exists

v (1, ai, ;0,.. bi, ")eft,

with d(v)=(((d-1)+/-t)/2) and dE(V)-(((d-1):t)/2). Since -eAut(C(q)) there
exists

w (1,’ , ci," 1,. di," ")

with d(w)=(((d-2)-s)/2) and d2(w)=(((d-2)+s)/2). Now

V , aiei +, biTei R, W , diei + , cieiT" R *.

Thus wxvl R’R, and from Lemma 2.3 we have

(12)

wvx= (2 dPi)(Z aP) +( cP)( b,P)

d- 7-{( ciPi-,)( aiPi) + (., diPi-1 )(. biPi)}

k(., P,) + k2r(., P,),

where k, k2 GF(2). The substitution map gives

kl ( di)(, ai) + (, ci)(. bi),

k2 (. ci)( ai) + ( di)(., bi)

and from (7) we have k 1 and k2 1. Counting nonzero coefficients in (12) using
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kl 1 or k2- 1 depending on the sign of +t gives

{(d-2)-s{(d-1)+t. (d-2)+
2 2

This reduces to (11) and the theorem is proved.
Remarks. If v l) then (7) implies that d(v) is odd and d2(v) is even. Thus is odd

and so is not 0. If v fl* then d(v) and d2(12) are both odd and d(v)+ d2(v) d-2.
Since d=0 (mod 4) we have d(v)=d2(v) (mod 4) and so s is a multiple of 4.

When q 7 we have d 4 and (d 1)2 (d 1) + 1 q. The set l* consists of the
three vectors given below:

c 1 2 4 0 (-1) (-2) (-4)

( 0 0; 0 0 )
( 0 0; 1 0 0)
( 0 0 ; 1 0 0)

Notice that s 0.
The code C(23) is the [24, 12, 8] Golay code. If v (a; b) and w (c; d) where

oo 2 3 4 6 8 9 12 13 16 18 0 (-1)(-2)(-3)(-4)(-6)(-8)(-9)(-12)(-13)(-16)(-18)

a=(1 0 0 0 0 0 0 0 0 0 O) (0 0 0 0 0 O)
c=(1 0 0 0 0 0 0 0 0 0 O)(1 0 0 0 0 0 0 1)

then it is straightforward to check that v f and w f*, using (41) on [4, p. 498]. We
have

/31 P4 + ’r(P1 + P2 + P3 + P9 + P12 + P13) R,

Wx (P4 + P6 + P8 + P16 + P18) + P4"r R*.

It is easily checked that WVl ( P)+r( P), and in particular we have

(Y’, Pi) P4(P4 + P6 + Ps + P16 + P18) + P4(P1 + P2 + P3 + P9 + P12 + P13).

Notice that s 4, 5 and (d 1)2 (d 1) + 1 st q.
We now define

r min {Idx(v)-dE(V)]}.

THEOREM 2.5. The minimum weight d satisfies
(13) (d- 1)2- (d 1)+ 1-((d-a)-rE)>-q.

Proof. Let

v (1, ai, ;0,.. bi, ") f,

with dx(v)= (((d- 1) a: r)/2) and dE(v)= (((d- 1)w r)/2). Then

121 , aiPi + bi’rPi R,

and

vA E biPi +E aiPir R*.
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Since B is a binary algebra and since (vh)v R’R, we have

(/)1,)/)1 "F{( biPi-)(Y’, biPi) + (E aiPi-)(E aiPi)}
(14)

kr(, Pi),

where k GF(2). The substitution map gives k 1. Counting different nonzero terms
in (14) gives

dl(V)2 + dE(V)2-(dl(v)+ dE(V))+ 1 > (q 1
\ 2 /’

and so

((d-1)-r)2 ((d_l)+r)2(15) + -(d-1)+2 >q+l
2 2 2

This reduces to (13) and the proof is complete.
THEOREM 2.6. If the minimum weight d satisfies (d-l)E-(d-l)+ 1 =q, then

d =4 and q 7.
Proof. By Theorem 2.4, we have (d 1)2- (d 1) + 1 st >- q, where s, -> 0 and is

odd. This forces s 0. By Theorem 1.4 the vectors of minimum weight in the code Q are
the lines of a projective plane PG(2, d 2). If L1, , La-1 are the lines through 0, then
Li fqLj- {0} if f. Since s 0, every line Li contains (d- 2)/2 nonzero squares and
(d-2)/2 nonsquares. Note that (d-1)(d-2)/2-(q-1)/2 and that each nonzero
square is on a unique line Li. It follows that P- (Pi" =Tq) acts transitively on
L 1, , La-1, and that the stabilizer of a line is the subgroup generated by Pv, where 3’ is
a primitive (d-2)/2 root of unity in GF(q). Hence there exist nonzero squares
yi, zi GF(q), 1, , d- 1, with yl 1 such that

Li= {O, yi3,,i, (_zi),yi. j__ l" d-2}2
for 1,..., (d-1). Since the vector L1T(-1) contains 0 we have LIT(-1)= Lm for
some line L,,. If d -> 8 then (d 2)/2 ->_ 3 and there exist (yi_ 1), (yi 1) s L1T(-1) such

k+i kthat (yi 1)=’yk(’i 1), for some k 0. If a yi 1= 3’ -3’ then L1T-I) and
L1T_vk are distinct lines in PG(2, d-2) and 0, a sL1T_lf’)L1T_vk. This is
impossible, and we conclude that d -4. If d 4 then (4) implies q 7 and the proof is
complete.

As a corollary we have the following theorem on cyclic projective planes.
THEOREM 2.7. Let be a cyclic projective plane of order (d- 2) with d- 2 =-2

(mod 8) and with q (d 2)2 + (d 2) + 1 a prime.
If 2 is a primitive (q- 1)/2 root of unity in GF(q), then PG(2, 2).
Proof. We note that q (d 1)2 (d 1) + 1 and that q 1 (mod 8). We may

suppose that the points of are labelled with the elements of GF(q) and that is
invariant under the cyclic permutation (z --> z + 1). If L -{el,. ., ed-1} is a line in
then L is a difference set in GF(q). The rows of the incidence matrix of span a cyclic
code W. The linear map

q--1(ao, aq-1) -> ao / aix +" / aq_lx

allows us to regard W as an ideal in the polynomial ring K GF(2)[x]/((x- 1)).
Clearly we have W= ((y./a__- xe,))and

Xe X l+x+" +Xq-1
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in K. Let a be a primitive qth root of unity in an extension field of GF(2) and let

go(x) I-I (x a and gl(x) [-[ (x a
i=lS3

Since 2 is a primitive (q- 1)/2 root of unity in GF(q), the polynomials go(x) and g(x)
are irreducible in GF(2)[x]. Since GF(2)[x] is a unique factorization domain and since

go(x)g(x) 1 + x +" + xq-,

we have W=(go(x)) or W=(gl(x)). But it is well known that Q=(go(x)) and
Q*= (gx(x)). Indeed, this is the way the classical quadratic residue codes are usually
defined. The result now follows easily from Theorem 2.6.

This connection between cyclic projective planes and quadratic residue codes was
pointed out by van Tilborg in [7].

3. The case s = 0. In view of Theorems 2.4 and 2.5, the possible values of the
parameters s, t, and r are of interest. We have seen that s is divisible by 4 and that t, r are
both odd. When s 0, Theorem 2.4 gives the same bound on the minimum weight as
Theorem 1.2. In this section, we consider a consequence of the condition s 0.

For every vector v s fl* we define a d x d matrix D(v) with all entries + 1. We use
the indices of the nonzero entries of v to index the rows and columns of D(v).

1
D(v)=i H

1

where

j 1 ifj-i=[3,
(H)ii

-1 otherwise.

Notice that D(v) is a principal submatrix of the Paley-Hadamard matrix P(q) that is
defined in 1.

THEOREM 3.1. If S O, then ]:or every v s fl* we have

D(v)D(v)T D(v)TD(v) =dI.

Proof. Let di be the row of D(v) indexed by i. Since s 0, every vector x
contains (d- 2)/2 nonzero squares and (d- 2)/2 nonsquares. If is v and iS then
vT-i s D,*. The row di must have d/2 entries 1 and d/2 entries (-1), and so did =0.

Let x s fl*, let/3 s x be a nonzero square and set

k I{a s x: a and a -/

k2 [{a s x: a and a -/3 7-]}I,
k3 ]{a S X: a and a -/ [:]}l,

k4 [{IT s x: IT [1 and a -/3 V]}I.
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Since x f*, we have

(16) kl + k2 (d 2)
Since xT_t II*, we have

and k3+k4=(d-2)2

(17) k+k3=( d-2)’ 2 and k.+k4=(,d-2)2 -1.

Since xr fl* and since -1// xr, we have x’rT/ *. Hence

(18)
d-2)_l I{aex aO,and 1/a+l//=Tq}
2

=1{ a e x a # O’ and a-a =71}

(19)
2

I{a e x" a # O, and -1/a + 1//3 # 7-1}

=]/aex’aO’anda-/[S]}a
From (18) we have

(20)

and from (19) we have

Together (16), (17), (20) and (21) imply

(22) kl k2 =/4=() and k3=()+ 1.

Let di, dj(i, ] ) be two distinct rows of D(v). Without loss we may suppose i-] --7-].
We have

(vT_)T,_ vT_.
If a e vT_i then a k for some k e v and if a’ e vT_j then a’= k’-] for some k’ e v.
If we set x vT_i and/ ]-i, then (22) implies

dd 1.1 +HH+HJI.i + k + k4 k2 k3

This proves D(v)D (v)T dI and since HT -By we also have D(v)TD(v) dI.
Example. There are 620 codewords of minimum weight 8 in the code C(31). Since

the group PSL2(31) acts 3-homogeneously on GF(31) (.J {}, the codewords of weight 8
are the blocks of a 3-design. The seven codewords of weight 8 that contain , 0 and 1
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are listed below (The semicolon separates nonzero squares from nonsquares.)"

vl {, 1, 9, 25; 0, 6, 26, 27},

v2 {, 1, 5, 14; 0, 6, 11, 30},

v3 {, 1, 16, 19; 0, 3, 6, 23},

v4 {, 1, 2, 7; 0, 6, 12, 15},

v5 {c, 1, 9, 18; 0, 11, 15, 23},

v6 {co, 1, 7, 20; 0, 3, 11, 27},

v7 {, 1, 5, 25; 0, 15, 3, 13}.

Now

f*={ViPk; k GF(31), k =[-], and i= 1,..., 7},

and we conclude that s 0.
The matrix

-1
1 1
9 1

25 1
D(vl)= 0 1

6 1
26 1
27 _1

is an 8 8 Hadamard matrix. If

1 9 25 0 6 26 27
1 1 1 1 1 1 1

-1 1 -1 -1 1 1 -1
-1 -1 1 -1 1 -1 1

1 -1 -1 -1 -1 1 1
1 1 1 -1 -1 -1 -1

-1 -1 1 1 -1 1 -1
-1 1 -1 1 -1 -1 1

1 -1 -1 1 1 -1 -1_

wx {, 2, 5, 7; 3, 15, 17, 27},

w2 {, 4, 5, 7, 9, 19; 17, 29},

w3 {, 1, 2, 7, 8, 16; 3, 13},

w4 {, 2, 4, 8, 9, 14; 3, 17},

then a similar argument shows that

--{WiPk: k GF(31), k =, and i= 1, 2, 3, 4}.

We conclude that 3 and r 1.
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THE CLASS OF MEAN RESIDUAL LIVES AND
SOME CONSEQUENCES*

MANISH C. BHATTACHARJEE"

Abstract. The class of mean residual life functions and sequences is characterized. Apart from the
utility of such characterizations for modelling life distributions through empirically determined mean residual
lives, it is shown that such functions arise naturally in many areas such as branching processes. Several
additional consequences regarding various nonparametric classes of life distributions are derived, including
some characterizations of the exponential and uniform distributions.

1. Introduction and summary. The mean residual life (MRL) of a nonnegative
random variable (r.v.) is a well-known concept in reliability theory [2]. In both theory
and applications, however, modelling of life distributions has usually been based on
the characteristics of the failure rate and the tail of the life distribution. Potentially,
the concepts of reliability theory are applicable in studying any phenomenon defined
through nonnegative r.v.s, and in this context the mean residual life as a notion of
aging has received some attention in the literature in modelling such phenomena as
"burn-in" problems of reliability theory [12], [13], duration of strikes and wars,
applications to social mobility, labor turnover and staffing policies in organizations
[13], [2] (to name a few).

In modelling life distributions of a nonnegative r.v. through empirically deter-
mined MRL functions, the first questions is’ which functions qualify to be mean
residual lives? Although the class of such functions is rich enough, they cannot be
entirely freely chosen. In 2, a complete specification of functions which are MRL
functions of some r.v. defined on a subset of [0, o) is given which generalizes an
earlier incomplete result [11] in this direction. Apart from the obvious utility of
defining the permissible set of choices of MRL functions in modelling life distributions,
we show that such functions often arise quite naturally in many other areas such as
dynamic programming and branching processes. Finally in 3, a probabilistic interpre-
tation of MRL functions used in the proof of Theorem 2.1 is exploited to yield some
new results regarding various classes of life distributions.

For the nonparametric classes of life distributions, we adopt the notations and
conventions of Barlow and Proschan [2]. In particular, the concepts IFR, DFR, IMRL,
DMRL, NBU, NBUE, NWU, NWUE are defined and discussed there.

2. Characterization of MRL functions and examples. For a cumulative distribu-
tion function (cdf) F s L1 on [0, o) of a r.v.,/F generically denotes the mean,/ 1 F
the tail (reliability), rF(X) the failure rate (when it exists), gF(X) the mean residual life
(MRL), and we let

x*(F) sup {t > O" F(t) < 1} -< oo

be the upper endpoint of the support of F.

2.1. We ask the following question: given a real-valued g" (0, Xo)->(O, ), for
some XoS (0, o], when does there exist a nondegenerate r.v. X->_O a.s. such that g
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of Canada under grant NRC A-8218.
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has a representation

(2.1) g(t) E(X- tlX> t)?

If such an X exists, is it unique?
Given the cdf of a r.v. X L1 its MRL is

’*(1 (x) dx
(2.2) E(X- tim > t)--- gF(t) if(t)
we let TF denote the induced distribution

f(2.2a) TF(t) dx,
o

O<t<x*(F);

O<t<x*(F).

THEOREM 2.1 (cf. [11, Thm. 2]). Let g" (0, Xo) (0, oe), for some 0 <Xo_-< oo. Then
g is a MRL ]’unction if and only if g is right-continuous, 0 < g(0+) <
and

dx
(2.3) J(t) g-+log g(t) is nondecreasing () on (0, Xo).

The cdfFfor which g g is a.s. unique with x*(F)= Xo.
Proof. The key idea is the following observation which is implicit in a paper of

Meilijson [7]. If F is a nondegenerate cdf with MRL g, then (2.2) and (2.2a) imply
that the reciprocal of g is the failure rate [2] of TF, so that

(2.4) --(t)=exp(-/ d-g-x)), O<t<x*(F)

by a well-known formula in reliability theory; afortiori

tx ( dx
(2.5) F(t) g--- exp _- O<t<x*(F),

setting up (with (2.2)) a 1" 1 correspondence between a cdf and its MRL. The theorem
is now obvious. For the necessity of 0< g(0+)< oo, note g(0+)= Vcv/F(O+) (0,
since txv does.

An incomplete answer to the question in (2.1), restricted to strictly positive r.v.s
with infinite support and absolutely continuous distributions was given earlier by Swarz
[11]. It is weaker than our theorem; he makes the unnecessary assumption that g is
strictly positive and differentiable (g’(t)->--1) on all of (0, oe). The probabilistic
interpretation gF 1 / rF used in our arguments will later yield other useful implications.
As a consequence of (2.2) and the representation (2.5), we also have the immediate
but useful conclusion:

COROLLARY 2.1. Let F be a sequence of cdfs satisfying" F,(x)<-B(x), x >0,
n >- 1, for some integrable B (x). Then F, converges weakly to some cdf F if and only
if gv,(x)- gv(x) at every continuity point x < x*(F) ofF (and hence of gv).

The proof uses the dominated convergence theorem; the if part follows by
contradiction using Helly’s selection theorem and the 1" 1 correspondence between
cdfs and their MRLs as noted in Theorem 2.1. For distributions on (-oo, co), a parallel
recent result of Kotz and Shanbhag [14] requires an additional condition on the
asymptotic negligibility of left tails.

Proof. Assume that F, converges weakly to some cdf F. Taking any x with
0<x < x*(F), we can find an integer no(X) such that n >-no(x) implies F,(x) >0. The
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corresponding MRLs

gF. (X) f) (y) dy.(x
n >-_ no(x)

exist and are finite for every such x, since as argued the denominator is positive, while
the given condition that F, be bounded above by an integrable function B implies
that each F, is in Lx so that the numerator above is also finite. In virtue of the same
condition, the Lebesgue dominated convergence theorem applies to the numerator
above. If 0<x (<x*(F)) is also a continuity point of F, the denominator converges
too and we get gv.(x)-->/5(y) dy/(x)= gF(X).

Conversely, suppose if possible that F, does not converge weakly to F but
at every continuity point of F. By Helly’s first theorem, there exists a subsequence
F,, converging to some nondecreasing right-continuous F* different from F. Again
appealing to the dominated convergence theorem and the hypothesis that gv. converge,
we get for all x such that 0 < x < x*(F) x*(F*),

P*(y) dy
(2.5a) g(x) limg.. (x)=

i F*(x)

where stands for minimum. Note F* is a proper cdf on [0, ) with a possible jump
at 0, that is, 1-F, B integrable implies

1- lim F*(x)= lim lim sup (1-F,,(x)) lim B(x)=0
X X i

since 0 B(y)dy <. Accordingly, F* is uniquely specified by its MRL g, (viz.
Theorem 2.1). But g, =gv by (2.5a) above, provided x*(F)= x*(F*). We can then
conclude that F F* a contradiction.

To complete the proof, it remains to confirm that x*(F) x*(F*). First note [14]
that using (2.5a) gives

x*(F)=inf {t" lim gF(X)=O} Ninf {t" lim gF.(X)=O}
the inequality above arising from the fact that g g. on (0, x*(F)x*(F*))
(0, x*(F)). Hence suppose x*(F) < x*(F*), if possible. Then, using (2.5a) again, we get

fx*(F) dY oX*(F) dY oX*(F*)< ,
0 gv(Y) gv.(y) gF*(Y)

a contradiction. The only remaining possibility is x*(F*)

2.2. Theorem 2.1 identifies the set of MRL functions from which a model builder
may choose. We now give some interesting examples of MRL functions. I do not
know of any direct application of the following examples, but they are of independent
interest and serve to illustrate the richness of the class of MRL functions by showing
how they arise naturally in other contexts.

Examples. (i) Any right-continuous nonincreasing function g on (0, ), satisfying
(2.3), is a MRL. This is obvious if we choose e > 0 and note that

g(x)

(ii) For any failure rate function r on (0, ) and $ with O<r(O+)<, [r(x)]-is a MRL. For any nondiscrete failure distribution on (0, ) with a density, this follows
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from the well-known representation [2]

F(t) exp r(x) dx O < < x*(F).

(iii) Let M(t) be the renewal function generated by a "new better than used in
expectation" (NBUE) cdf F. Then for any e >0 with F(e)>0, M(t+e) is a MRL.
To prove the assertion, it suffices to note that F is NBUE=>M(t)<=t/IxF [2, p. 171].
Hence

Io I0dx
[F --00.

M(x+)- x+e

F(k)(t+e) is a MRL (F(k) denotes the kth convolution of F), byThus, since k=l
letting e 0 we see that for a NBUE distribution with 0 as left endpoint of support,
there exists a sequence of r.v.s Xn such that

M(t) lim E(Xn- tlx > t).

M(t) itself is not a MRL since M(0)= 0.
(iv) Optimal disposal of an asset (variant of a problem treated by Karlin [6]). An

asset for which a sequence of i.i.d, price (Y) quotations are sequentially received can
be sold any day at the best price offered so far, while it costs c > 0 to maintain it each
day the asset is kept by rejecting offers. If P, is the optimal gain for n-day horizon,
the limiting optimal gain P*= lim P, is finite, being the only root of the equation
A(x) 0, where

A(x) x -E max (Y, x -c) E min (c, x Y),

and further it can be shown following Karlin [6] that

P*=min a" A(x)-Oo O<-A(x) is’l’.

Thus A(x) is a MRL of a distribution supported by (0, P*).
(v) Let (s)=Nsz, O<s<l with P(Z=I) 1, be the probability generating

function (pgf) of the progeny Z of a critical/subcritical (EZ <-1) continuous time
Markov branching process {Z(t): t>O} satisfying the nonexplosion hypothesis"
P{Z (t) < oo} 1, for all > O. Then there exists an a.s. unique r.v. X on the unit interval
such that

[(s)=E(XIX>s).

To verify this, note that the condition that P(Z 1) # 1, EZ <- 1 =>f(s) > s on (0, 1)
and the nonexplosion hypothesis holds [1], is equivalent to the statement

Since

ds IO ds
--00 --00oVe > O,
f(s) s f(s)- s

dx
J(s)

f(x)-x
+log(f(s)-s)J’(s)=

f’(s)
f(s)-s

>0, 0<s<l,
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(2.3) holds. Since f is continuous on (0, 1) and

EZ <= 1 =:> lim If(s) s] f(0) P(Z O) > O,
sO+

f(s)-s is a MRL on (0, 1), from which the claim follows.
(vi) Let {Z(t): t>O} be a Markov branching process with the usual infinitesimal

generating function u(s) Y-k=0 aksk satisfying u’(1) < 0 (i.e., almost sure extinction).
Then it is well known [1] that, conditioned to nonextinction, Z(t) has a proper limit
distribution

lim P(Z(t) nlZ(t) >0)= b.

whose pgf B(s) is determined by

B(s) l -exp { u’(1) Io’ dx)}, 0<s<l.

Let g(s)=-u(s)/u’(1), 0<s <1. Since B(s) 1 as s 1-, 1/g is a failure rate
but g is not a MRL unless u(s) is linear. The argument is as follows. Since u’(s) by
the convexity of u(s), if u(s) is not linear then we must have u’(s)<= u’(1) with strict
inequality for some So in (0, 1), since u’(s) is not constant. This violates (2.3), which
requires u’(s)>=u’(1) for all s in (0, 1). In the remaining case (fractional linear
generating function of offspring), g is a MRL.

(vii) Consider any critical Galton-Watson process with infinite mean time
(T) to extinction and offspring pgff(s)=E(sz) satisfying var(Z)<-EZ. Then
(a) [f(s)-s]/(1-s) is a MRL; (b) the tail of the offspring distribution is the first
passage time distribution of a renewal sequence. Since for a critical Galton-Watson
process,

ds <c (Seneta [9]),
1 S

(2.6) ET < ocCV
f(s)-s

given ET < c, a) follows provided

(s)
f(x)-x

dx + log (f(s) s log (1 s

is nondecreasing. Compute

f’(s)-s 1
’(s) +

f(s)-s 1-s

We show J’(s)>=O on the unit interval. Note that the offspring pgf f(s) is critical
(f’(1) 1) and var Z <-EZ implies f"(1)=EZ(Z-1)=EZ2-1 =var Z <-EZ. This
implies that f’(s) is a subcritical pgf. Hence f’(s)> s on (0, 1). Thus J(s) is non-
decreasing.

The proof of the remaining claim uses the MRL property of (f(s)-s)/(1-s)
under the stated conditions. To assert (b), note the reciprocal of this MRL can be
expressed as

def 1 s 1
(2.7) U(s)

f(s)-s 1-H(s)
0<s < 1
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def
where H(s)=[1-f(s)]/1-s is the generating function of the tail hn P(Z>=n) of
the progeny Z, n 1, 2,. .. Now the representation (2.7) shows that {hn" n _-> 1} is
the first passage time distribution of a renewal sequence {un’n >= 0} with generating
function U(s) such that U(s)]-1 is a MRL on (0, 1). Since, given ET oo, (2.6) requires

Un (oo= U(s) ds= Y’, <- , u= 1- 2 h
n=o n + 1 ,=o n=l

-1

the first passage time distribution is "honest" (i.e., no atom at
(viii) Any slowly varying function L with 0< L(0/)< oo and ’ is a MRL. This is

true since, if L is slowly varying [4], then (a) so is 1/L(x) and (b)
As an application, consider a supercritical Galton-Watson process {Z’n

0, 1, 2,. .} with a single ancestor (Zo 1 a.s.) and mean progeny EZI m > 1. Then
we know that under fairly general conditions (i.e., such that EZI log Z <
converges in distribution to a nondegenerate r.v. W with EW- 1; it is also true [1]
that to P(W> x) dx is slowly varying. Hence, for any e > 0,

(2.8) L(t,e)=e+| P(W>x) dx, t>0
Jo

is also slowly varying, satisfies the conditions in (viii) and is thus a MRL function.
Reparametrizing with e l/n, Corollary 2.1 implies

P(W> x) dx lim E(X tlx > t)

for some sequence Xn with decreasing mean residual lives (DMRL). To check the
DMRL nature of X note that, since W has a nonvanishing density on (0, oo), (2.8)
implies that the MRLL(t, n-)=E(X-tlX, > t) is convex nonincreasing in for
each n.

For MRLs defined on a finite interval, a suitable reparametrization will generally
yield a corresponding MRL in Joo (the set of MRLs with support (0, oo)). For example,
for any critical pgf f with ET oe as in example (vii),

eEt[f(1-e-t)-(1-e-t)] doo,

being the MRL of the r.v. G(Y), where Y on (0, 1) has the MRL of example (vii)
and Go is the exponential cdf with mean one.

3. Applications. The induced distribution TF, whose probabilistic interpreta-
tions in the context of renewal theory are well known, its successive iterates TF and
the relationship rrF 1/gF yield the following results.

THEOREM 3.1. i) Suppose F L2. Then F and TF have the same mean residual
life if and only ifF is exponential.

ii) Let F be NBU. Then IXrF IXF if and only ifF is exponential.
Proof. i) Necessity follows from the fact that TF F if and only if F is exponential.

Conversely suppose grF gF. NOW FL2
guaranefes the existence of T2F. Note

1/grF(X) is the failure rate of TF TG where G TF, while 1/gF(X) is the failure
rate of G. Hence

grF gF: TG G G, i.e., TF is exponential

:>F is exponential.



62 M. C. BHATTACHARJEE

ii) We only need to prove necessity. Since F is NBU, i.e., F(x + y)<=F(x)F(y)
for all x, y > 0, we have

io io0=/xe-/xrF F(x) dx- TF(x) dx

xF IF(x)- F(x + y) dy dx

[F(x)F(y)-F(x + y)] dy dx.

Thus the integrand, being nonnegative, must vanish almost everywhere, implying
exponentiality of F.

The same condition r characterizes the exponential within the NWU class
under the additional assumption F e L, which is free for NBU distributions ([2] and
Theorem 3.3ii) below).

THEOREM 3.2. Let Y, X, X be independent nonnegative r.v.s such that X, Xa,
are i.i.d, with a pd and EX <. Then

d d

(3.1) Ig-xll Y =min (Xe, x2)

d

if and anly ifX is unifarmly distributed (= denates equality in distributian).
d

Praaf. Let F be the cdf of X1. Then, under the stated conditions, Y
if and only if Y is absolutely continuous and distributed as TF [8, Thin. 3]. Hence
(3.1) is equivalent to

(3.2) "J*) P(x) dx c[P(t)], 0 < < x*(F),

where C =/z. If f is the density of F, this implies F(t) 2CF(t)f(t), or,

[(t) (2C)-a 0 < < x*(F)

Since f is a probability density, this requires x*(F)= 2C < oo. The converse follows
by direct computation by showing (3.2) holds when F is uniform.

THEOREM 3.3. Let F be a nondiscrete failure distribution. Then"
i) F is DMRL:> TF is IFR : T2F is strongly unimodal.
ii) Stieltjes’ moment problem is determined for NBU distributions F.
iii) IfF is DFR with f(0+) < oo, then

/ x/(0+)}(3.3) F(t)>-F(O+)exp /(0+) x>0.

Equality holds if and only ifF is exponential.
Proof. i) Note a) a probability density f is "strongly unimodal" (i.e., its convolution

with any unimodal distribution is unimodal) if and only if ]’ is log-concave on {x" f(x) >
0} and there are no gaps in the interval of support (Ibragimov [5]). Also (2.3) implies
b) F is DMRL if and only if TF is IFR and c) F is IFR if and only if TF is strongly
unimodal. Combining a), b) and c) yields the claim.

ii) The existence of all moments of a NBU distribution is an easy consequence
of the fact that F is NBU:=>log (txn/nt) is subadditive [2, p. 187]. The following
alternative argument is instructive. We first argue that if NBU F e L1, then F must



THE CLASS OF MEAN RESIDUAL LIVES 63

have all moments and subsequently verify that F L1. By the NBU property of F,

TF(x) lz P(x + y) dy < I F(x)F(y) dy F(x).

Thus TF <=st F, where <_st denotes stochastic majorization. Hence IXTF ---(X) dx <=
/xe<c, i.e., TFL1. But TFL if and only if FL2. Hence T2F exists. Repeating
the argument, we get

st st st st st

F > TF > T2F>... > TnF>...

We thus have a stochastically decreasing sequence TnF L1. But T"F L1 if and only
ifFL+1, n 1, 2,... SogivenFL1,FL’ forallp >= 1. TocheckFLl, choose
Xo (0, x*(F)) with F(xo) < 1. Then

=0 nxo,(n+l)xo)
F(x) dx <- _, xoF(nxo)

--< Xo Y. [F(xo)]" by the NBU property
n=0

X0

F(xo)

Given that F is NBU, its moment sequence {/xn} satisfies/x, _-< n!/ ’, n 1, 2, (see
[2]). Hence

1 1-1/2 2 -1/2 n)2n}-l/2n/ZZn -->E {(2n)!/Zl } v E {(2 =v E-=.
n=0

Thus the "Carleman condition" [4] holds, and accordingly {,} uniquely determines F.
iii) Since F is DFR, given/(0+) <,

(.4) (x)=
[(0+)’

x > 0

defines the tail of a distribution G continuous on [0, c) (viz. [2], F is DFR=>F has
a strictly positive $ density on (0, c)) with mean/x =/0(0+)/f(0+). Hence

e(x)
(3.5) TG(x) lz b, G(t) dt (O+),

x>0.

From (3.4), the mean residual life of G is g(x)= I/re(x) is increasing on (0, ). Thus
G is IMRL NWUE, so that a well-known inequality for NWUE distributions [2,
p. 187] yields

(3.6) txTG(x)= I r(t) dt >- I exp (--)dt =/z exp x>0.

Combining (3.5) and (3.6), the result follows.
If F is exponential, equality holds in (3.3). Conversely, if equality holds in (3.3),

then f(x)= F(x)[(O+)/F(O+) on (0, ) by differentiation, i.e., re(x) is constant. [3
Remark 1. The bound (3.3) is of course nontrivial only if re(0+)<. 2. Since

(2.4) and (2.5) show that F(x)=(lF/ge(x))TF(x), it follows that F is NBUE:>
TF st F The argument in the proof of Theorem 3.2ii) then implies that all moments
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of NBUE distributions are finite. 3. Note F is IMRL=), gF (X) >-- gF(O+) IZF ::>
F st TFF is NWUE, as used in (3.6).

The following property of MRL functions is dual to the closure property of failure
rate functions under addition (resulting from formation of series systems).

PROPOSITION. Let gl, g2 oo. Then there is a g f such that

(3.7)
1 1 1
g gl g2

Proof. Let gi(t) be the MRL of Fi with mean/xi (i 1, 2). Consider the cdf

G(t) 1 _tx2Fl(t)TF2(t) + Ix1TF(t)F2(t)
/x2Fl(0+) +/z 1F2(0+)

Then the MRL of G satisfies (3.7). If neither F/(i 1, 2) has an atom at 0, then

G(t) aF(t) TF2(t) + (1 a) TF1(t)F2(t),

represents the reliability of a mixture of two series systems with elements (F1, TF2)
and (TF1, F2) respectively, and where a =/,./(/, +/,2). [q

We close with the discrete analogue of Theorem 2.1. A positive sequence
{An, n 0, 1, 2,. .} is a MRL sequence if there is a r.v. Z on the nonnegative integers
such that

An =E(Z-nIZ>-n), n =0, 1, 2, ..
Consider an infinite sequence of independent coin tosses with probability (1 + An )-1

of falling heads for the nth coin; let An denote the corresponding event.
THEOREM 3.4. In order that {An} is a MRL sequence i) it is sufficient that P(An

i.o.) 1. ii)/]’ infn An > 0, then ,n A--I is necessary and sufficient.
Proof. Consider the r.v. Z such that

(3.8)

p Z >_ n -[ ,
i=o 1 "’A

n=l,2,...,

1
P(Z =0)=.

l+A0
Note that P(An i.o.)= l:Y.n (1 + An)-1-- CX3 by the Borel-Cantelli lemma; the latter
implies that (3.8) is a proper tail since

P(Z_>n)= 1-I [1-(1+a)- <exp (1+I)-
=0 =0

and we can check that Z has MRL A,. If inf A > 0, set a inf {A/(1 + A)}. Then
0 < a < 1 and ii) follows by noting that

-I Iexp hg < (I+ )- =P(Zn)
=o =0

<exp -Y. (l+hi <exp -a Y.A. 71
=0 =0

Note that A 1 c remains necessary even when inf An 0. Whenever An is a MRL
sequence, we have Ao EZ s (0, ). The condition inf An > 0 is often free, e.g., if An ’,
i.e., if Z is IMRL. Our theorem implies an apparently surprising conclusion which is
useful in constructing MRL sequences: For any "pure birth process" {X(t): > 0} with
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honest transient solutions (i.e., P(X(t)<)= 1 for all >0), the transition rates An,
if bounded away from zero, is always a MRL sequence.

As a final illustration, consider a critical Galton-Watson process {Zn’n
0, 1, 2, "}, with infinite mean time (T) to extinction, originating from a single ancestor
(Z0 1 almost surely). Then

def
(3.9/ cn E(Z.IZ. >= 11, n 1

is a MRL sequence. This is so, since

1 EZn P(Zn > O)E(Zn IZn > O)

implies P(T>n)=P(Zn>O)=c-, n>=l, so that cn is increasing, a forteriori
infn__>l c, lIP(T> 1)>0, and further that

Y. c =ET-l=oo
n=l

since ET diverges. Thus the necessary and sufficient condition in Theorem 3.4 holds.
Note that, if gn (f) E(Zn -/’l Zn => f), f => 0, is the MRL of Zn, then cn 1 + gn (1),

n => 1, although this does not tell us that cn in (3.9) is itself an increasing MRL sequence.
Finally since c->_ 1, it follows from the above arguments that the modified sequence

cn= (Zn[Zn >__ 1)if n >_--1,

is still an IMRL sequence.

Acknowledgment. I am grateful to Samuel Kotz for his comments on an earlier
draft of the manuscript.
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ON PACKING TWO-DIMENSIONAL BINS*

F. R. K. CHUNG’, M. R. GAR,EY" AND D. S. JOHNSON’

Abstract. Suppose we are given a set L of rectangular items and wish to pack them into identical
rectangular bins, so that no two items overlap and so that the number of bins used is minimized. This
generalization of the standard one-dimensional bin packing problem models problems arising in a variety
of applications, from truck loading to the design of VLSI chips. We propose a hybrid algorithm, based on
algorithms for simpler bin packing problems, and show that proof techniques developed for the simpler
cases can be combined to prove close bounds on the worst case behavior of the new hybrid. These are the
first such close bounds obtained for this problem.

1. Two-dimensional bin packing. Let L {rl, r2,’’’, rn} be a set of rectangles,
each rectangle r having height h(r) and width w(r). A packing P of L into a collection
{B1, B2,..., B,} of H W rectangular bins is an assignment of each rectangle to a
bin and a position within that bin such that (a) each rectangle is contained entirely
within its bin, with its sides parallel to the sides of the bin, and (b) no two rectangles
in a bin overlap. See Fig. 1 for an example of such a packing. In this paper we also

FIG. 1. Example of a packing P of a list L of rectangles into 3 bins with H 20, W 16. Rectangle
dimensions are 11 4, 7 6, 4 3, 12 x 7, 13 O, 9 5, 3 14, and 10 5.

assume that the orientations of the rectangles cannot be changed: the width of a
rectangle must be aligned with the width of the bin. (The case when 90 rotations are
allowed will be discussed in the conclusion.) In what follows, we shall assume that
the bin dimensions H and W have been fixed and hence all packings are into bins
of that size.

If P is a packing, let IPI denote the number of nonempty bins in P. Given a list
L, let OPT (L) be defined to be min {IPI :P is a packing of L}. We are interested in
finding packings P with IPI close to OPT (L). (Determining OPT (L), given L, is an
NP-hard problem [1, Ch. 10], [7], and so it is unlikely that we can find optimal packings
efficiently.)

* Received by the editors May 6, 1981.
t Bell Laboratories, Murray Hill, New Jersey 07974.
The work of this author was supported in part by the Computer Sciences Department, University
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This problem is related to two simpler and well-studied packing problems:
one-dimensional bin packing [9], [10] and two-dimensional strip packing [2], [3], [4].
The first is equivalent to the special case of our problem in which w(r)= W for all
r e L. In the second we are once more given an arbitrary set of rectangles, but this
time we are asked to pack them into a strip of width W so as to minimize the height
of the strip used. Although considerable progress has been made in analyzing the
worst case behavior of algorithms for these two simpler problems, until now there
has been little success in extending the results to the case of two-dimensional bin
packing. In this paper we make a start in this direction by proposing an appealing
hybrid algorithm and obtaining close bounds on its asymptotic worst case behavior.

2. Asymptotic worst case analysis. We measure the asymptotic worst case
behavior of an algorithm A by the quantity R, defined as follows: Let A(L) be the
value of the packing obtained by applying A to L. (A (L) would be either the number
of bins or the strip height, depending on the problem.) Let OPT (L) be the correspond-
ing optimal value. We then define RA(L)--A(L)/OPT(L), R,=-max{RA(L)" L
satisfies OPT (L)- n}, and finally RA lim sup_. R" The closer RA. A is to one, the
better is the asymptotic worst case behavior of A.

Our hybrid algorithm is built from algorithms already developed for the simpler
cases. The FIRST FIT algorithm (FF) for the one-dimensional problem places the
first item at the bottom of the first bin, and thereafter places each item in turn in the

17lowest indexed bin which has room for it. In [9], [10] it is shown that R FF 1--6. The
FIRST FIT DECREASING algorithm (FFD) is the same as FF, except that the items
to be packed are initially reordered so that h (rx) _>- h (r) >_-. _-> h (r,). For this algorithm
we have [9], [10] that RlO 1 1.222....

We shall be using FFD together with a strip packing algorithm based on FF,
which we call FIRST FIT BY DECREASING HEIGHT (FFDH). The FFDH
algorithm constructs a packing in which the strip is stratified into blocks, each block
running the full width of the strip and resting on the top of the previous block (the
first block rests on the bottom of the strip). Within the blocks, rectangles are packed
linearly, each with its bottom edge resting on the bottom of the block. The height of
a block is the height of the tallest rectangle it contains. Algorithm FFDH works by
first reordering the set L of rectangles so that h(rl)>= h(r2)=>...-> h(rn) and then
proceeding as follows" Place the first rectangle left-justified in the first block. Thereafter
the rectangles are assigned in turn, each rectangle being placed as far to the left as
possible in the lowest block which has room for it along its bottom edge. A new block
is started on top of the current top block whenever the rectangle will not fit in any
of the current blocks. See Fig. 2 for the FFDH packing of the rectangles of Fig. 1,
appropriately reindexed by height.

Note that if all the rectangles were the same height, FFDH would be equivalent
to FF, with the blocks playing the role of bins. In [4] it is shown that the fact that
rectangles may have differing heights is not as damaging as one might think, for
.Rc 1"7
FFDH R FF 10.

3. A hybrid algorithm. Our hybrid algorithm is now quite easily described. First
create a strip packing for L using FFDH and strip width W, thereby obtaining a
collection {bl, b2, ’, bk} of blocks of nonincreasing heights hi => h2 >=" >= hk, each
containing a subset of the rectangles. If we view these blocks as a new collection of
rectangles L’= {bl, b2,..., bk} with h(bi) hi and w(bi) W, 1 <= <= k, we have an
instance of the one-dimensional problem and can apply FFD to pack the blocks (and
hence the rectangles they contain) into H W bins. See Fig. 3, where FFD has been
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} BLOCK 4. (b4)

BLOCK 3 (b

BLOCK 2 (b2

BLOCK (b

FIG. 2. Example of an FFDH packing of a list L of rectangles with dimensions 13 10, 12 7, 11 4,
10x5, 9x5, 76, 43, and 314.

applied to the blocks of the strip packing in Fig. 2. We call this hybrid algorithm
HYBRID FIRST FIT (HFF). Our main result is

2.022 < R <2.125HFF

In Fig. 4 we present a schematic for instances L of two-dimensional bin packing
with arbitrarily large values of OPT (L) for which HFF (L)= (OPT (L)-1). These
instances will thus imply the lower bound RFF __-->2.0222"’’. The optimal packing
is shown in Fig. 4(a) and consists of three types of bins: 42n bins containing items of
types A, B, and E, packed as illustrated, followed by 48n bins containing items of
types A, C, D, and E, packed as illustrated, followed by a single bin containing a
single item of type A. The precise dimensions of the items are as follows (8 and e to
be specified later):

4i8 if]odd,
A-item in bin/’" height 1/2 + e, width

_
4i8 if even;

1/2- (4 + 1)8 if/" odd,
B-item in bin " height 1/4 + 2e, width 1/2 + (4 1)8 if / even;

1/2- (4 + 1)8 if j odd,
C- item in bin /" height 1/2 + e, width= 1/2+(4i_1)8 if]even;

All D-items have height 1/4 + e, width 1/2 + 8;

All E-items have height 1/4- 2e, width 1/2 + 8.

re }b4

r, rz r4b

B,I B2
FIG. 3. HFF packing based on the FFDH packing of Fig. 2.
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B

B

E

E

E

42n BINS

A C
D

C A

48n BINS BIN

(a) OPTIMAL PACKING" OPT(L)=90n + I.

B B

A A A A

56n BINS

B B

c c

48n BINS

D

32n BINS

E

E

66n BINS

(b) HFF PACKING" HFF (L.) 182. n.

FIG. 4. Schematic ofpackings of lists L with HFF (L) 4(OPT (L)- 1).

The reader may readily verify that if we choose e and 8 so that 0 < e <6 and
0 < 8 < 4-5", the items can be packed as claimed.

For the application of HFF, these items must be ordered by decreasing height.
We assume that ties among items of the same height are broken so that the items are
ordered as follows: First come the A-items, in reverse order, with the first A-item
from bin 2i + 1 replaced by the first from bin 2i + 3, 0 <- =< 45n 1. To illustrate this,
here is a list of the values for the first 20 A-items of w(r)- (we let m 90n)"

-4"8,-4"8, +4"+68, +4"-68,--4m-28,
_4,--28, +4-,-66, +4"-38, _4"-48, _4"-48,
+4"-38, +4"-58, _4"-68, _4-68, +4’--58,
+4m-78, -4"-8, -4"-’8, +4m-78, +4m-98.

Note that after each set of five items FFDH would start a new block: The sum of the
first five exceeds 65-+4"8 and hence none of the remaining items will fit in the gap,
and similar arguments hold for all remaining sets of five. Thus, since there are a total
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of 180n + 1 type A-items, FFDH will create 36n "A-blocks" of 5 A-items each (the
last A-item, having width + 48, will be postponed until after the C-items, and can
be ignored since it will just fall in the first C-block).

The C-items follow the A-items, and are ordered so that they will go two per
block. The values of w(r)- for the first eight are

+(4"-1)8,--(4m-1+1)8, +(4"--1)8,--(4"-1+1)8,
+(4"-2--1)8,--(4"-3+1)8, +(4m-2--1)8,--(4"-3+1)8.

The reader should be able to see that this type of ordering will yield 48n blocks of
2 C-items each out of the total of 96n C-items. Similar tricks are played with the
168n B-items which follow next, yielding 84n blocks of two B-items each. (Note that
sizes are arranged so that no B-item is narrow enough to fit in a block of C-items.)

Finally, the list concludes with the 96n D-items, each going in a block by itself,
followed by the 264n E-items, each going in a block by itself.

The reader may now verify that when HFF applies FFD to the blocks thus created,
the packing of Fig. 4(b) will result, using 182n bins or (OPT (L)-1) as claimed.
Note also that the bad behavior illustrated here is not dependent on our ability to
order items of the same height in the worst possible way, since by appropriately
shaving the height of the items we can insure that the given order is forced by the
decreasing height rule, without changing the natures of the optimal and HFF packings.

The upper bound on RHFF comes from the following theorem
THEOREM 1. For any list L of rectangles, HFF (L) < OPT (L) + 5.
Proof. Suppose that L is a counter-example. By normalizing widths and heights,

we may assume without loss of generality that W=H= 1 and O<=w(r), h(r)<- 1 for
all r e L. Let us further assume that L is a counter-example containing the minimum
possible number of rectangles.

We rely on three results about the one-dimensional bin packing and two-
dimensional strip packing problems. Let f: L [0, ] be a weighting function defined
as follows’

f(r)

() w(r) if 0<= w(r)<=,
(-) w(r)-o if <w(r)<=,
() w(r)+ if1/2<w(r)<=1/2,
(-). w(r)+ if 21-<w(r)=<l.

17LEMMA 1 [6]. IfR GL and w(R)=--YrR w(r)--<--1, then f(R)=---EreRf(r)<--l-6.
LEMMA 2 [6]. Suppose R

_
L and {R 1, Re, , R,,} is a partition ofR into disjoint

nonempty sets such that for all integers and j with 1 <= < j <-_ m, r Rj implies w(r) >
H1 w(Ri). Then f(R) >-_ m 1.

LEMMA 3 [4]. Suppose OPTs (L) is the minimum possible strip height H’ such
that L can be packed into a strip of width 1 and height H’. Then FFDH (L)<_-
17
10 OPTs (L)+ 1.

Given L {rl, r2, ’, r,}, we now show that HFF (L) < OPT (L) + 5, in contra-
diction of our assumption that L was a counter-example. Let PHFF be the HFF packing
of L and POPT be an optimal packing. Let x denote the height of the tallest block in
the last bin of PHFF. Since L is a minimum counter-example, we may assume that all
rectangles ri L have height at least x" The number and heights of blocks of height
x or greater would not be affected by deleting all rectangles shorter than x, so that
the number of bins required by HFF would not decrease, whereas the number of bins
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required by an optimal packing could not increase. Thus if L contained any rectangle
shorter than x, a counter-example with fewer items would exist, contradicting the
minimality of L.

Our proof divides into four cases, depending on the value of x. We shall treat
the cases in order of difficulty.

Case 1. x <= 1/2. In this case all but the last bin of PHFF must contain blocks whose
total height is at least . Thus, by Lemma 3,

17 17(HFF (L) 1 <- FFDH (L) _-< r6 OPTs (L) + 1 _-< r6 OPT (L) + i,

where the last inequality results from the fact that one way to pack a strip of width
1 with L is to pack L into OPT (L) bins of width and height 1 and then pile them
one on top of another. From this we conclude that

HFF (L)<1/4 17
r6 OPT (L)+ ] < OPT (L)+ 5,

as desired.
In the remaining cases we assume that x > and so can divide the items of L into

the following classes:

Xl={ri: h(ri)> l-x},

X= ri" l-x>-h(ri)>

X3 ri"->=h(ri)> 2

> h (ri) >X4 re
2

X5 ri"->h(ri)>=x
We shall say a block is of "type Xi" if its tallest item is from Xi.

Let B, B2,’’’, Be denote the bins of PIFF in order, where HFF (L). For
1 <= _-< 5, let i denote the set of bins whose tallest block i, and let Ni Iflil. Note that
all bins from/3 precede all bins from/3i+, 1 <= <_-4.

Case 2. x >. If x > 31- then (1- x)/2 < 1/2 and so N4 N5 0. Let us look at an
arbitrary bin B in PoPa: and imagine lines drawn through it at heights 1/2 and 32-. Let
S(B) be the set of items from X in B. Let $23(B, 1) be the set of items from X2 and
X3 in B whose interiors are traversed by the line at height 31-, and let $23(B, 2) be the
set of items from X2 and X3 in B whose interiors are traversed by the line at height
3
z- but not by the line at . Note that since all items in L are of height exceeding 1/2,
every item in B must be in precisely one of these three sets.

Now observe that, since every item in Xa has height exceeding 1- x, no vertical
line through B can traverse the interiors of both an item from SI(B) and one from
$23(B, 1)[,3 $23(B, 2). We thus have

(2.1) W(Sl(B)) + w(Sz3(B, 1)) _-< 1,

(2.2) w(Sx(B)) + w(Sz3(B, 2))_-< 1.

Using Lemma 1 and summing over all bins B of POPT we conclude that

(2.3) 2f(X1)+f(Xz)+f(X3)<2 17ro OPT (L) <_- OPT (L).
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We now turn to the HFF packing. The bins of/31 each contain one block, that
block having height exceeding 1- x, and these blocks induce a partition on X1 which
obeys the hypotheses of Lemma 2. Thus

(2.4) f(X1) N1-1.

None of the remaining bins contains a block of type X1 and so the fact that a block
of height x went into the last bin means that all except that last bin must contain at
least (and hence exactly) two blocks. Letting X&3 denote the subset of X2 CI X3 which
is contained in these bins, and ordering the blocks in the same order as they were
created by FFDH, we see that these 2(N). + N3)-1 blocks induce a partition of X&3
which obeys the hypotheses of Lemma 2. Therefore

f(x) +f(x,) >f(X _-> 2(N+N) 2.

Substituting (2.4) and (2.5) into (2.3) we obtain

2(N1 1) + 2(N2 + N3 1) =< OPT (L)

or

17HFF (L) N1 +N2 + N3 _-< r6 OPT (L) + 2 < z OPT (L) + 5,

as desired.
Case 3. 1/4 < x <-. In this case N5 0. Let us once again consider a bin B in the

optimal packing. This time we imagine 7 horizontal lines drawn through B" two
(identical) lines at height x, one at height (1- x)/2, one at 1/2, one at (1 + x)/2, and
two (identical) lines at 1- x. It is easy to verify that, given these lines, each rectangle
from X1 in B will have its interior traversed by all 7 lines. Similarly, rectangles from
X2, X3 and X4 will have their interiors traversed by at least 4, 3, and 2 lines, respectively.
Let &(B, ]) be the set of rectangles from X whose interiors are traversed by the/th
line, 1 _-< =< 4, 1 -<_/" <= 7. We then have, for each j, 1 =< j _-< 7,

4

Y. w(S,(B, j)) <= 1.
i=1

Lemma 1 then yields for each j, 1 <-j <-7,
4

17Z f(&(B, j)) <-.
i=l

Summing over all bins B of Poex we thus conclude
17(3.1) 7f(Xl) + 4f(X2) + 3f(X3) + 2f(X4) =< 7. OPT (L).

Turning to the HFF packing, let/32,3 be the set of bins from/32 that, in addition
to containing a block of type X2, also contain a block of type X3. Since a block of
type X2 has height at most 1-x and since the block of height x in the last bin did
not fit in any earlier bin, every bin in/32,4 f12- fl2,3 must contain a block of type X4.
Let N2,i 1/2,,1 for e {3, 4}.

Applying Lemma 2 to the partitions of X1 and X2 induced by the bins of 1 and
/32 respectively, we obtain

(3.2) f(X1) _-> N1 1,

(3.3) f(Xz) >-_ N2-1.
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There are at least N2,3 --2N3-1 blocks of type X3" one in each bin of 2,3 and two
in all but possibly the last bin of/33. If we let X be the subset of X3 contained in
these blocks and apply Lemma 2 to the partition of X induced by these blocks, we
obtain

(3.4) f(X3) >- f(X; >= N,3 + 2N3 2.

Finally, consider the blocks of type X4. There are at least N2,4 --[- 3N4- 2 of these: one
in each bin of/32.4 and three in each bin of 4 except the last. (A nonfinal bin from

4 cannot have height less than l-x, and since no block of type X4 has height
exceeding (l-x)/2, each such bin must contain at least three blocks.) Lemma 2 thus
yields

(3.5) /(x4) _-> N,, + 3N4 3.

Substituting (3.2) through (3.5) in (3.1) yields

177N1 + 6N2 + 6N3 + 6N4- 23 -< 7. N OPT (L)

or

HFF(L) NI+N2+N3+N4< 17r OPT (L) + < OPT (L) + 5,

as desired.
Case 4. < x <= 1/4. We divide this case into two subcases, depending on the value

Of N4.
Subcase 4.1. N4 =0. The total height of all blocks in PI-IFF is bounded by

(1- x)(N + N2 +N3)+ 4x(Ns-1) since all bins except the last must have total block
height at least 1-x, and all bins of/35 except the last must contain four blocks. By
Lemma 3 we thus have

(4.1) 17(1 x)(Nx + Nz + N3) + 4x(N5 1) -< OPT (L) + 1.

Furthermore, by the argument used in Case 2, we have
17(4.2) Nx + N2 + N3 <- OPT (L) + 2.

Using (4.1) and (4.2) we then can derive the following:

4xI 4x(N +Nz +N3 + Ns)
17<= 4x(Nx +N2 + N3) + OPT (L) + 1 (1 x)(N + Nz + N3) + 4x

17<= (5x 1)(o OPT (L) + 2) + i-6 OPT (L) + 1 + 4x

<(5X) 17
i-6 OPT (L)+ 14x- 1

and hencel HFF(L) <1/4 17 OPT (L) + < OPT (L) + 5, as desired.
Subcase 4.2. N4 >0. Consider a bin B in PO,T and this time imagine seven

horizontal lines drawn through it, at heights if8, 1 <-j <= 7. Then rectangles from classes
X, Xz, X3, X4, and X5 have their interiors traversed by at least 6, 4, 3, 2, and 1 lines
respectively, since 1-x >-43- and (l-x)/2 >-83-.

Letting Si(B, j) be the set of rectangles from Xi whose interiors are traversed by
the/th line, 1 <_- <_- 5, 1 <- ] -<_ 7, we then have for each j, 1 <_- j _-< 7,

E w(Si(B,/)) <= 1.
i=1
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17Lemma 1 thus yields E=I f(Si(B, ]))<-v6, and summing over all bins B of Pore: we
obtain

(4.3) 6f(X1) + 4f(X2) + 3f(X3) + 2f(X4) +f(X5) <_- 7o OPT (L).

We now turn to the HFF packing. Since N4 > 0, there is a block of type X4 which
did not fit in any bin from/32 or any bin from [4 except the last. Thus any bin from
class 2 or any bin (except the last) from class [4 that contains a block of type X5
must contain blocks whose total height is at least 1 (1 x)/2 + x (1 + 3x)/2. Let us
partition the bins in/32 and 4 as follows"

Any bin in B2 must contain at least one block in addition to its block of type X2.
Let B2,, 3-<] <-5, be the subset of bins from 2 whose second block is of type X.
(there may be a third block, but we ignore it in forming the partition). Similarly, any
bin in 4 must contain at least three blocks. Let/34,5 be the set of bins in/34, other
than the last, for which the third block is of type Xs, and let [4,4-" 4--4,5. Letting
Ni,i IBi,il, we then have

(4.4)
l+3x)1 X)(N1 + 82,3 + N2,4 + N3 + N4,4) +

2
(N2,5 + N4,5) + 4x (N5 1)

17_-< FFDH (L) <_- r OPT (L) + 1.

Our next inequalities are obtained by applying Lemma 1 to the blocks of type
Xi, 1 <-i -< 5, as in previous cases, using the facts that all but the last bin in B3 contain
2 blocks of type X3, all but the last bin in 4 contain either 3 blocks of type X4 (if
in fl4,4) or two (if in/34,5), and all but the last bin in f15 contain 4 blocks of type Xs:

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

f(X1) -> N1 1,

f(x) >- N2- ,
f(X3) ->_ N2,3 + 2N3 2,

f(X4) >= 82.4 + 384,4 + 284,5 3,

f(Xs) -> N2,5 + N4,5 + 4N5 4.

Now a final dose of symbol manipulation yields the desired result. Combining
(4.3) and (4.5) through (4.9) we obtain

(4.10)
6(N1) + 6(82,3 + N2,4) -[- 5N2,5 + 6N3 + 6N4,4 + 5N4,5 + 4N5

17<= 7 N OPT (L) + 26.

Multiplying (4.4) by 2 and (4.10) by (5x- 1) and then adding we obtain

(2(1 x) + 6(5x 1))(N1 + N2,3 + N2,4 + N3 + N4,4)

+ ((1 + 3x) + 5(5x 1))(N2,5 + N4,5) -+- (8x + 4(5x 1))(N5)
17-< N OPT (L)(7(5x 1) + 2) + 26(5x 1) + 8x + 2,

that is,

(28x 4)(N1 + N2,3 + N2,4 -1- N2,5 -1- N3 -1- 84,4 -[ N4,5 + N5)
17<_- N OPT (L)(35x 5) + 138x 24
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or

HFF (L)< 17 OPT (L) + 5

7 OPT (L)+ 5,

as desired
Thus in all cases HFF (L)< OPT (L)+ 5, in contradiction to our assumption

that a counter-example exists. The theorem has been proved. 71

4. Directions or urther research. By showing that close bounds can be obtained
on the asymptotic worst case behavior of two-dimensional bin packing algorithms,
we hope to encourage researchers to design other algorithms and investigate their
behavior. Algorithms based on the "bottom-left" strip packing rule introduced in [3]
are particularly attractive candidates for analysis. Although the bottom-left algorithms
are all asymptotically worse than FFDH in the strip packing environment, they may
well be more competitive for two-dimensional bin packing. There is also the possibility
of constructing better hybrid algorithms. FFDH is not the best heuristic known for
strip packing. An algorithm is presented in [2] with R <- (although the structure
of its packings is much more complicated than that for FFDH). Similarly, FFD has
recently been improved on in the one-dimensional case by a modified algorithm [8]
with RA 1.18333"’’.

A second line of attack would be to design and analyze algorithms which could
make use of the fact that, in some applications, 90 rotations of rectangles might be
allowable. Algorithm HFF would still be applicable in such situations, assuming all
rectangles were presented in such a way that they would fit in a bin without rotation.
However, the performance guarantee of Theorem 1 would not necessarily hold.
Algorithms which consider the possibility of rotations might well yield improvements.
Can one prove worst case bounds that reflect these improvements?

Finally, there is of course the problem of further narrowing the gap between
upper and lower bounds on RFF. We suspect that the upper bound can be lowered
further, although we fear that a considerable blow-up in proof length might be
necessary. As to the actual value of RFF, we hesitate to conjecture. It is amusing to
note that one possibility still left open by our bounds is (0)()= 2.07777. ., the
product of the values of R for the two algorithms whose combination yields the
algorithm HFF, although we suspect that the actual value may be somewhat less than
this.
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A PHASE-TYPE SEMI-MARKOV POINT PROCESS*

GUY LATOUCHES.

Abstract. A semi-Markov point process is defined for which the intervals of time between successive
events have phase-type distribution. The distribution of the number of events in an interval is examined, and it
is shown how the expected number of events in an interval may be efficiently computed. A stationary version
of the process is analyzed. In particular, a necessary and sufficient condition, and simple sufficient conditions
under which the new process is a renewal process, are determined.

Introduction. In the present paper, we define and discuss a special semi-Markov
point process. It is assumed that there are N different types of intervals. The types of
successive intervals are determined by a Markov chain with transition probability
matrix P. If a given interval is of type i, then the following interval is of type j with
probability Pij. There is a substantial literature on semi-Markov point process (Pyke
[10], [11], Cinlar [1], [2]). The new feature here is that the random intervals are
assumed to have phase-type distributions (defined in the next section).

This work on phase-type semi-Markov point processes was motivated by our
interest in queueing problems. Most of the present literature on queueing theory deals
with systems for which arrivals occur according to a renewal process. From the available
results, it is clear that the analysis of a queueing system with a general nonrenewal
arrival process is very difficult. On the other hand, phase-type distributions have great
versatility and the structure of our process is very simple. It should, therefore, be a
useful tool in modeling queueing systems with nonindependent arrivals, and provide
analytically or algorithmically tractable results, as in Latouche [6], and Neuts and
Chakravarthy [9], where special cases are considered.

We shall give a formal definition of the process in the next section. We examine in
2 the number of events in an interval and show how the expected number of events

may be efficiently computed. The point process under consideration here is a special
case of the "versatile Markovian point process" defined in Neuts [8]. Because of the
special structure, we are able to present more precise results. In 3, we analyze the
correlation structure of a stationary version of the process. We determine a necessary
and sufficient condition under which that process is a renewal process. Similar problems
are examined in Simon [12], for Markov-renewal process with general distributions.
We comment about the results in [12] at the end of 3. In 4, some examples such as
the interrupted Poisson process are considered in further detail.

Notational convention. All vectors are represented by boldface letters. The context
indicates whether they are row or column vectors. In order to facilitate the reading of
the formulas, the expression vw always represents the inner product of a row vector v by
a column vector w; the expression w.v always represents the product of a column
vector w by a row vector v, yielding a matrix whose (i, ])th element is wivj.

1. The phase-type semi-Markov point process.
1.1 Phase-type distributions. Phase-type distributions have been introduced by

Neuts [7]. Consider an (n + 1)-state continuous-parameter Markov process, with n
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Research under grant AFOSR-77-3236.
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transient states and one absorbing state. Its infinitesimal generator Q is of the form

where T is a square matrix of order n, with T/i < 0, Tj ->_ 0, for #/’, and such that T-1

exists. The n-vector TO has nonnegative entries, and is equal to -Te. The vector e has
all entries equal to one. The vector of initial probabilities is denoted by (x, an+l), and
satisfies oe + an+1 1, 0 <-_ an+ < 1.

The probability distribution F(. of the time till absorption in the state n + 1 is then
given by

F(x) 1 -o exp (Tx)e for x >_-0.

The probability distribution F(. is said to be of phase-type (in short, "F is PH"). The
pair (x, T) is called a representation of F(. ). In this paper, we assume that Cen+X 0, SO

that F(. does not have a jump at 0. Furthermore, we assume that the representation is
such that each state has a positive probability of being visited before absorption. Under
that assumption, the Markov chain with generator T +T.e, is irreducible.

The moments/z
(k of F(. about the origin all exist and are given by

(1) /z(k)=(-1)kk!xT-e for k

1.2 The point process. We consider N PH-distributions, with representations
(xi, T), where T is a square matrix of order hi, for i= 1,..., N, and an N-state
irreducible Markov chain with transition matrix P. If the Markov chain has made a
transition to the state i, the next transition is to the state ], with probability pij, and the
time between these transitions has a PH-distribution Fg (.), with representation (xg, Tg),
independent of ]. The epochs of transitions for the Markov chain correspond to the
epochs of events for the point process.

We denote respectively by N(t), C(t) and (t), the number of events in (0, t], the
state of the Markov chain P at time t, and the state of the Markov chain Tc(t, at time t. In
other words, suppose that the last event before occurred at time z. At time z, the
Markov chain P made a transition to the state C(z)=], say, and an initial state was
chosen for the Markov chain T, according to the probability vector oi. In the interval
(z, t], the Markov chain T/underwent zero, one, or more than one transitions, without
entering its absorbing state. At time t, C(t)= ], and the Markov chain T. is in the state

We make the following independence assumption. For every > 0, the intervals of
time between events are conditionally independent, given the path function of the
Markov chain P. It is then clear that the process {N(t), C(t), dp(t), >= 0} is a Markov
process with state space {(v, ], b); v->0, 1 <-]<=N, 1-<_b <-n}. In order to distinguish
easily between the Markov chain P and the Markov chains T, 1,..., N, we shall
refer to the states of any Markov chain T as "phases."

2. The number of events in an interval. We define the probabilities
Si.,:;j.,(u, t)= PIN(t)= u, C(t)=], (t)= blC(0) i, (0)= sc], and order the elements
{(], ); I_-<]_-<N, 1_-< <_-ni} as follows" (1, 1), (1, 2), ..., (1, nl), (2, 1), ..., (2, n2),, (N, 1), , (N, nN). Finally we define the block-partitioned square matrix S(u, t)
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of order n + n2 +" + r/N by

Sl,I(P, t)

S(u, t)= [S2,1!u, t)
S,2(v,t) S,lV(v, t)

$2,2!u, t) S2.v!u, t)

Sv.2(u, t) S2v.2v(u, t)

where the blocks Si.j(v, t) have ni rows and nj columns, and the (, $)th element of
Sid(v, t) is equal to Si.e;i,, (v, t).

The Chapman-Kolmogorov equations for the process {N(t), C(t), (t), >- 0} may
be written in matrix notation as

Sa(0, t)= ]
Si,i(O, t) Ti

for ],
for j,

N

S[,i(v, t)= Si,j(p, t)T.- , Si,k (P- 1, t)pkiTOk ti
k=l

for v ->_ 1.

Therefore, the matrices S(u, t) satisfy the system of linear differential equations’

S’(O, t)= S(O, t)T,

S’(v, t)= S(v, t)T-S(v- 1, t)TA for v _-> 1,

with initial conditions S(0, O) I, S(u, 0) 0 for u _-> 1, where the square matrices T and
A are of order n + r/2 +’’" + r/N. The matrix T is block-diagonal and given by

T 0 0 0
o0 T2 0

0 0 T3 0

0 0 0

and the block-partitioned matrix A is given by

Pile1 gl P12e1 392 PlNel tN

=/PE1e2 3g2 P22e2"2 p2Ne’OtN

\PNleN 01 PN2eN OL2 pmver ON

By ei we denote an ni-vector with each entry equal to one.
The matrix-generating function (z, t) Yo zS(u, t), defined for Izl <- 1, satisfies

the differential equation

0___ (z, t) ,(z, t) ]P(I zfi,), g(z, 0) I for => 0.
Ot

Hence, we have that (z, t)=exp [(I-zfi,)t]. In particular, g(0, t)=exp (]Pt), as is to
be expected. Also, (1, t) exp 5(I-*)t], which is again obvious, since the process
{C(t), q(t), >= 0} is a continuous parameter Markov chain with infinitesimal generator
T(I-A).

We now define the matrix M(t)= [(O/Oz)S(z, t)]t=l, and the vector re(t)= M(t)e.
We partition that vector as re(t) (rex(t), m2(t), ", raN(t)), where mi(t), 1,..., N,
has ni components. The component mi.e(t) is the expected number of events occurring



80 GUY LATOUCHE

before time t, given the initial conditions C(0)= i, and (0)= . Furthermore, we
denote by , the invariant probability vector associated with P, i.e., ,P % ,e 1.
Every entry of /is strictly positive. Finally, we denote by av the stationary probability
vector of T(I A), i.e., avT(I A) 0, e 1. The point process under consideration is
a special case of the "versatile Markovian point process" defined in Neuts [8]. The
equations (2) and (3) in the following lemma follow by adapting equation (12) of [8] to
our process. The proof of the remainder of the lemma is immediate.

LEMMA 1. The vector re(t) is given by

re(t) m*te (I II)[r*H F(I -/()]- 7e
(2)

-[H-exp ((I-)t)][r*H- (I-)]-]Pe fort >=O,

where the square matrix II of order n + n2 +’’’ + nv is equal to e . r* is any real
number such that r* _->max {-(T(I-A))g.;g.; 1 <- <-N, 1 <-_ c <= ng}, and m* is given by

(3) m* -xrTe.

Moreover, if we partition as o= (if’i’l, "/I’2,""", "/N), where "i is an ng-vector,
1,...,N, we have that

(4) ’ffi-- CViOLi(--Ti)-1 for 1,. , N.

The normalizing constant c satisfies
(5) m* C (/IX(1))-I,
where the N-vector () has components lzl) -otgTV, e.

Remarks. 1. The third term in (2) tends to zero as tends to infinity, since
H-exp [(I-)t] II- exp [g(1, t)] does; therefore the first two terms give the linear
asymptote of re(t).

2. In order to compute re(t), it is not necessary to evaluate the inverse of the large
matrix It*H- (I-A)]. It suffices to determine the vector u defined as

(6) u --["r’*l-I ’(I zdt)]-I ’e.
This may be done efficiently as we show in Lemma 2.

3. The main problem in computing re(t) from (2) therefore lies in evaluating the
third term, which we denote by v(t). The vector v(t) is the solution of the system of
differential equations, of order n + n2 +... + nr, given by

v’(t) T(I-A)v(t), v(O) (n- )u.

LEMMA 2. Let the vector u be partitioned as u (Ill, 112, aN) where II is an ni
vector for 1,. , N. Then

(7) I1 tTe+ pie+ m * TT, e for 1,..., N,

where v -m*(I-P + F)-IPIX(1), m*/r* + 1/2m*2ix(2)- hr.
(1)The vectors Ix

) and h have Ncomponents, given by tz 2otiTT 2 e, hi m*illi
fori=l,.. .N.

Proof. The vector u is the unique solution to the system

(8) lr*II ’(I )]u
Upon substitution of the stated expressions for u, it is verified that (7) indeed

provides the solution to (8). The calculations, although belabored, are entirely routine;
the details are omitted for the sake of brevity.
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The equation (2) now becomes

(9)

re(t) m*te+ m*(I-H)(-l-R)e+ m*[II- exp ((I-*)t)](-l-R)e, for >_- O,

where the matrix R is block-diagonal and given by

R1 0 0

0

Ri is a square matrix of order ni, and is equal to [(I-P + F)-IPIXI]iL
Remark. In order to determine (-1-R)e, it is not necessary to invert matrices.

One merely solves N + 1 systems of linear equations, i.e., the systems Tixi =e, for
1,. , N, and the system (I P + F)y Pix1.
3. A stationary version of the point process. Usually, the stationary point process,

which we denote by P*, is obtained by choosing the initial state (C(0), cP(0)) according
to the probability vector xt. We consider a slightly different process, denoted by P, for
which (C(0), (0)) is chosen by P[C(O)=L (0)= :]= yj(aj)6. In other words, we
choose the time origin so that at time 0-, an event has occurred, the type of the next
interval is chosen according to the stationary vector , of P. In view of our ultimate
objective of using this process to model arrivals to queueing systems, the process/5 has
the following interesting property.

Let us denote by X,, the interval of time between the (n- 1)st and the nth event
(between time 0 and the first event, if n 1). The following result is elementary.

LEMMA 3. The random variables {Xn, n >= 1} have a common marginal distribution
r(. ). The distribution r(. is PH, and has a representation (a, T), where the vector a has
nl + n2 +"" nr components and is given by a (y11, y2ot2, yNozv). Therefore

N

r(x) 1 ’]/iOli exp (Tix)e for x >-_ O,
i=l

and the k-th moment m <k) Of r(. about the origin is equal to

m k) lixk) for k >- 1.

The N-vectors ix<k) have entries ix
k) (-1)kk !otiTk e.

In the remainder of this section, we examine the correlation structure of the
intervals of time between events. This is related to recent work by Simon [12]. Because
of the difference in our approach, we postpone discussion of this relation to the end of
this section.

We now introduce the notion of linear dependence for PH-distributions.
DEFINITION 1. The set {(i, T/), 1 <=i<=N} is a set of linearly independent PH-

distributions if and only if i=1 diFi(x) 0 for all x ->- 0 implies that di is equal to zero for
1,. , N, where F/(x) 1 xi exp (T/x)e for x => 0.
DEFINITION 2. The PH-distribution (13, B) is a linear combination of the PH-

distributions (oi, Ti), 1,.. , N, if and only if there exist {dl, d2," ’, dN}, such that

di 0 for some i, and 1-13 exp (Bx)e Yil diFi(x) for all x ->_ 0, where the Fi(x) are
defined above.

It is clear that for any such set {dl,’’’, du} we have iu= di 1.
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Remarks. 1. The term "linearly independent" has been chosen for the following
reason. We easily observe that Y._- diF(x) is equal to zero for all positive x if and only if

i=1 dioiTk e is equal to zero for all k -> 1. Definition 1 is therefore equivalent to the
condition that the infinite vectors (qTe, aiT2e, .), i= 1,... ,N, are linearly
independent.

2. If (1, B) is a linear combination of {(ti, T), i= 1,..., N}, and di--> 0, for all
i= 1,..., N, then (1, B) and (1o, Bo) are two representations of the same PH-
distribution, where

I0 (dial, d2t2, ", dNtN),

and
T1 0 0

Bo ..0 T2 0

o
The proof is elementary. Similarly, if di<0 for i= 1,...,J and di>-0 for i=
J + 1, , N, then clearly

J N

1+ Y. Id, I- Y
i=1 i=J+l

If we set the latter quantity equal to d, then (131, B1) and (12, B2), where

11-- 1,T 0/,1,""’,--’- a B1-

0

2= +" "7 Bz=

are two representations of the same PH-distribution.

0
0

Now let the PH-distributions {(ti, T),i= 1,... ,N} which define the point
process be expressed as linear combinations of linearly independent PH-distributions
{(ij, Zj), j 1... L}, with L <-N, i.e.,

L

El(X) dqG(x) for all x _->0 1,. ., N,
]=1

where Gi(x) 1- j exp (Zx)e. We denote by D the matrix with (i,/’)th element equal
to di. We also define the vectors F(x)=(Fl(x),F2(x),...,FN(x)), G(x)=
(Gl(x), G2(x), ’, G.(x)), and i*(k)= ( ,(k),.. ",/X*k), for k -> 1, where/.fk is the
kth moment about the origin of G(. ).

We then clearly have that

(10) F(x)=DG(x) forx->_O,

and

(11) Ix()= DI*() for k >-1.

It is also clear that De e.
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We emphasize that the set of PH-distributions {([i, Zj),j 1,... ,L} is not
uniquely determined, and is not necessarily a subset of {(eti, T), i= 1,..., N}. The
following is an illustrative example.

If

then we may either choose

with

or alternatively

(1392, r2)_._ {(], 1/2), (-/10

(4, T4)’- , 1/2, 1/2), 0
0

_0, 3) }
0

0

0

(j, Zi)= (eti, T.), j 1, 2, 3,

1 0 0

0
1 0,D=
0 152

(, z)= {(), (-;)},
in which case D is given by

X o

The next result follows easily from Lemma 3.

0)}

]= 1,2,3,

LEMMA 4. The covariance between X, and X,+, ]’or n >= 0, m >= 1 is given by

(12)

(13)

Cov (Xn, Xn+rn) I-(1)A(/)(P F)(1)

ix,(,)D rA(/)(p. F)D i,(,),
where for any vector x, the matrix A(x) is defined by diag (x,,..., xN).
From Lemmas 3 and 4, we conclude that, for the process/5, the intervals of time

between events are identically distributed and are in general correlated. If the Markov
chain P is aperiodic, then lim,,_,oo P" F, and the covariance of Xn and X,/,,, tends to
zero as m tends to infinity.

To conclude this section, we shall now examine under what condition the process P
is a renewal process. The next theorem holds for any set {GI(" ), , G.(. )} of linearly
independent PH-distributions which satisfy (10).

THEOREM 1. The process is a renewal process if and only if the following property
holds.
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(14)

For all k _->2, and for all 0"1,’", 7"k) satisfying 1 ’F <-_L for i= 1,..., k,
k

/A,1 rI [(P- FIA,,]e 0,
i=2

or, equivalently,

(15) A,1 PA,, e= [I (D.,,),
i=2 i=1

where D. represents the jth column of the matrix D, and A diag (D. i).
Proof. Since the variables {Xn, n-> 0} are identically distributed,/5 is a renewal

process if and only if for all k 2, the random variables X1, X2, , Xk are indepen-
dent, which is true if and only if

P {XNx P[XNx] for allx,...,x0;

equivalently, if

N k k

Y’. {w.F,(xl) [I P,,,_,,,F,,,(xi)-l-I w,F,(xi)}=0,
vi=l /=2 /=1

l<=i<--k

for all x,. , Xk >= O, if and only if (by (10))

vi=l "ri=l i=2 i=1
for all Xl,. Xk Oo

Since the PH-distributions G(. are linearly independent, this holds if and only if

E ,,,,d,,,, (P,,,_,,, y,,,)d,,., 0,
ui
1Nick

for all r,..., r such that 1 N r N L. The condition (14) is now obvious, and it is a
simple matter to prove that (14) and (15) are equivalent.

This theorem provides us with a technical condition which is not very attractive.
The following corollary is more interesting and useful for modeling purposes.

CorollAry 1. For to be a renewal process, it is sucient that

(16) (P- F)D =0,

or that

(17) DT A(,y)(p F) 0.

IfL 1, then both conditions are always satisfied and is always a renewal process.
If L N, then both conditions are necessary, as P is a renewal process if and only if the
matrix P- F is equal to zero.

Proof. The condition (16) is obviously sufficient, as (P F)D. 0 for all implies
that (Pn F)Aie P"-(P- F)D. 0 for each n _-> 1 and each 1, ., L, which in
turn implies (14).
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Similarly, the condition (17) is sufficient, since

/A, (P" F) A,(p- r)p-’ o.T,A(/)(P- r)P-’.

If L is equal to one, then D e and both conditions (16) and (17) are satisfied.
If L is equal to N, thenD may be chosen equal to/, and both (16) and (17) reduce to

P- F 0. The necessary part of the condition results from (14): If k 1, then tA(P-
F)Aje must be equal to zero for all i,/" 1, , N. AsD =/, this reduces to y (Pij y)
0 for all i,/" 1, , N. Since y > 0 for all i, Corollary 1 is proved. [3

Remark. One easily proves that condition (16) holds if and only if there exist a
vector v such that PD e. v. Therefore, it is not necessary to determine in order to
check whether (16) holds or not. This condition is most easily interpreted when the
entries of D are equal to zero or one. In that case, (16) implies two consequences"

(a). The Markov chain P is lumpable to a Markov chain P’ on {1,..., L}.
(b) The rows of P’ are all identical.

In other words, the PH semi-Markov process is in fact a renewal process, the
distribution of each interval being a mixture of the linearly independent distribution
{O,(.), I,...,L}.

As we have observed, the entries of D may take any real value. If those values were
all positive, one might still interpret (16) as implying that the Markov chain is lumpable
in some randomized way (since the row sums of D are equal to one), to a Markov chain
P’ such that all the rows of P’ are identical. This interpretation appears difficult to
extend to the case where D contains negative entries.

The condition (17) is more difficult to interpret. After examining the case where the
entries of D are zero or one only, we have tentatively reached the following conclusion.
If the relation (17) holds, then the Markov chain P and the mixture of distributions
{G(. ), I,.. , L} generated by D are such that, starting with the initial probability
vector % the semi-Markov process is completely randomized and becomes a renewal
process.

We show in the following example that the conditions (16) and (17) are not
equivalent. The matrix P and the vector /are given by

v
4

If

(0gl’ T1) {(21-’ 21-)’ [ -hi0 0

(,x2, T2) {(1), (-a 2)},

73) {(k, 31-), [--/10
then we may choose G1(’) and G2(’ to be exponential distributions with parameters ,
and h2 respectively, and we have that

D--

and one easily verifies that (16) holds, but not (17). If we now change (3, T3) to
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{(1), (--/ 1)}, then the matrix D becomes

and (16) does not hold, while (17) is satisfied.
Remark. If neither (16) nor (17) holds, the combined condition,

(18) DrA()(P F)D =0

is not a sufficient condition for P to be a renewal process (as we show below in one
example), but is the necessary and sufficient condition for two successive intervals of
time to be independent. Consider the four distributions

L 0

(,, T)= {(), [-=]},

The matrix D is given by

If the matrix P is chosen to be

1 0

2]}

4. Examples.
4.1 Exponential distributions. The case where the PH-distributions (13gi, T/) are

exponential, respectively with parameters Ai, is particularly simple. We then immedi-

0 1 0 0

p= 0 0 1 0

1
0 0 ’00 0

then /= (1/4, 1/4, 1/4, 1/4) and one can check that the relation (14) holds for k 2, but not for
k >_- 3. In fact, we observe upon closer examination of the process, that Xn and X,,+m are
independent random variables if and only if m 2k + 1 for some integer k.

Remark. It is possible to strengthen this corollary under special additional condi-
tions. We shall present these results in the next section, together with the examples in
which these special conditions arise.

Simon [12] examines equivalences for Markov-renewal processes and, in parti-
cular, the conditions under which a Markov-renewal process is equivalent to a renewal
process. It appears that for our process/5, Theorems 2.2.1, 2.2.2 and 2.2.9 of [12]
respectively correspond to the sufficient condition (17), and to the cases L 1 and L N
in Corollary 1. Because of the special structure of our point process, and in particular
because we consider PH-distributions, we have obtained conditions on constant
matrices, while Simon obtains conditions on matrices of functions, which have to be
examined for all values for the argument of these functions. We shall not attempt to
make a more detailed comparison in this short space.
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ately obtain that

-A(k), fi P, m* (/k-1)-1,
-1

77" m* yil for 1,.. , N,

where the vectors k and k-1 respectively have components equal to Ai and A -. After
some simple manipulations, (9) reduces to

m(t) m*te+ m*(I- m*FA(k-I))(I-P + F)-k-1

(19)
+ m*[m*FA(X-) exp (-+/-(x)(I-P)t)](I-P + r)-x-.

Exponential distributions with different parameters are linearly independent.
Therefore, the distributions {([i, Zi), 1 -<_ j _-< L} may be chosen to be the set of different
exponential distributions in {(at/, Ti), 1, .., N}, and the matrix D has a very simple
structure: Each element of D is equal to either zero or one, each row of D contains
exactly one element equal to one, each column of D contains at least one element equal
to one. We may then strengthen Corollary 1 as follows. The technical proof is
belabored. We do not reproduce it here since it cannot be extended to L _-< N- 2, and,
therefore, is of little interest.

COROLLARY 1 If the entries ofD are each equal to zero or one, and ifL N- 1,
then a necessary and sufficient condition forP to be a renewalprocess is that at least one of
(16) or (17) holds.

If the matrix P has identical rows, then/5 is obviously a renewal process, with
hyperexponential intervals between events, and the matrix (I-P / F)-1 in (9) may be
replaced by the identity matrix.

4.2 Platooned events. Let us assume that the process consists of groups of events,
the number of events in a group has a discrete PH-distribution (f, F), the intervals of
time between events in a given group have PH-distribution (at, A), while the intervals of
times between groups have a PH-distribution (l, B). Such a process may be used to
model platooned arrivals to a system, as is done in Neuts and Chakravarthy [9]. Then,

F e-Fe)(20) P= -11 1-tFe

is a square matrix of order N if F is a matrix of order N-1; (ati, Ti)- (at, A) for
1,. , N- 1, and (atN, Tr) (, B).
Simple calculations yield that the stationary probability vector /of P is given by

(g/, yr), where

(g) vF, r, -e,
(22) v (f(I F)-e)-f(I F)-,
and that

m * [(/e)(-atA-e) + 3/(-13B-e)]-1,

-m*’iatA
-1 for 1, ., N- 1,

/1"i * for N.m "yNB-1

The expression (9) does not simplify much.
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If the PH-distributions (t, A) and (1, B) are different, then we clearly may choose
D equal to

1 0
1 0

(23) D
i;
0 1

and we may complete Corollary 1 as follows
COROLLARY 1". If the matrix D is given by (23), then the process P is a renewal

process if and only if
(24) rD A(/)(p" F)D 0 for all n >- 1.

Proof. We partition the matrix P and the vector /as

p=( Pl111 P12 )P21 P22
’/-- (/1, ]/2).

Simple calculations yield that

v=l,(z- pl)-, w= ( +,(,-p)-e)-
(a). Equation (24) is a necessary condition. For n 1, it is equivalent to (18), the

condition for two successive intervals to be independent. For n 2, we consider
(14) with k 3. Since IAI(P-F)AI(P-F)A,3e+IAI(P-F)A2(P-F)A,3e=
,A,I(P- F)2A3e must be equal to zero, this proves (24) for n 2. Similarly, we prove
that (24) is necessary for larger values of n.

(b) Equation (24) is a sufficient condition. We prove by recurrence that (24)
implies that

(25) ’/1c+le--(l21-l)Ce--0 foralln ->_0

and

C e. (P21-’1)Cn-l-v

(p r)n

where C1 P11 e. /1.
It is then a simple matter to verify that for v equal either to 1 or 2, 2(P F) .e

0, and (P-F)"k(P-F)=k,e=(P-F)"+,e for n, m 1. Therefore, the left-hand
side of (14) is equal to zero if r 2 for any 2,. , k- 1 and is otherwise equal to

(rDa()(P-F)-aD)I,.
This completes the proof. I-I

Remark. This corollary has the following simple interpretation. If D is given by
(23), then N- 1 of the distributions {(ti, Ti), 1, .., N} have a "common" type; the
last one has an "odd" type. Let N1 denote the number of intervals of the common type
between two consecutive intervals of the odd type, and let N2 similarly denote the
number of intervals of the odd type between two intervals of the common type. The
following proposition results from Corollary 1".

PROPOSITION. The process P is a renewalprocess ifand only ifN1 andN2 both have a
geometric distribution, the parameters being respectively equal to (1- P22) and P22.
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Proof. Clearly, N2 has a geometric distribution with parameter P22. The equations
(25) may be written as

(26) PEIPl e= (yle)n/l for n >_-0.

n--1As PIN1 n]= PEl(Pll -Ply)e= (e)n(1-/le) (1-VE)"V2 (1-P22) P22, this
completes the proof. [3

In the present case, from (20)-(22) and (26), it results that the process of platooned
events is a renewal process if and only if

tF’e=(1-(f(I-F)-e)-) for n 0,

in other words, if the number of events in a platoon, after the first one, has a geometric
distribution with parameter 1 [f(I F)-le]-.

4.3 The interrupted Poisson process. This process is used in models for telephone
engineering (Heffes [3]). We consider a process in a random environment, with two
alternating environment states. Both states have exponential duration, with parameters
0. and 0.2 respectively. While the process is in the first environment state (on-state) a
Poisson process of rate A is turned on; in the second state (off-state), no arrivals can
occur. In fact, it appears that the interrupted Poisson process is a very special case of the
type of processes analysed in the present paper. Neuts and Chakravarthy [9] have
shown that the interrupted Poisson process is a special case of the platooned events
process, and that the number of events in a platoon is geometric; therefore, the
stationary interrupted Poisson process is a renewal process. It is observed in [9] that
the process can be described by two states and two PH-distributions, the matrix P
and the PH-distributions being as follows

(27) P
/ + 0.1

+O’1

(28) El(’ )---- (1, T1) {(1), [-(h + 0"1)]},

(29) F2( (or2, T2) (1, 0, 0), 20"1( 0"1)-1 --0"2 0"2h (h q- 0"1)
0 -(h + o-)

The first state of the Markov chain P corresponds to the following event {the inter-
rupted Poisson process is in the on-state, and an arrival will occur before the end of the
on-state}. The second state corresponds to the following composite event {the inter-
rupted Poisson process is in the on-state and no arrivals will occur before the next
off-state or the process is in the off-state, or the process has returned to the on-state and
an arrival will occur before the next off-state}. From the structure (27) of P, it is obvious
that the interrupted Poisson process is a renewal process. Kuczura [5] has already
shown, by different methods, that the interrupted Poisson process is a renewal process
with a hyperexponential interval distribution. We have shown that the interval dis-
tribution G(. is the following mixture of the distributions F(. and F2(" ), (Equations
(28) and (29)): G(. h (h + 0"1)-F1( + 0"1(,)t d- 0"1)-F2( ). To verify that G(. is a
representation for a hyperexponential distribution, one merely determines its Laplace-
Stieltjes transform.
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ON GENERIC RIGIDITY IN THE PLANE*

L. LOV.SZ AND Y. YEMINI

Abstract. Let G be a graph. Let us place the points of G in "general" position in the plane and then
replace its edges by rigid bars (with flexible joints). We would like to know if the resulting structure is rigid and
if not, compute its "degree of freedom". This problem was solved by Laman [6] (see also [2]). In this note we
give some new formulations and a new proof of Laman’s theorem, based on matroid theory, and then apply
these to prove the following result: if G is 6-connected, then it will be rigid in the plane. We also construct
infinitely many 5-connected graphs which do not have this property.

1. Definitions. Let G be a graph whose vertices are points in the plane. Such a
graph will be called a plane structure. (We shall visualize its edges as rigid bars.) A plane
structure is generic if the coordinates of its points are algebraically independent over the
rational field. (This highly nonmechanical assumption means that there is no
"degeneracy" in the position of the points; it will be used in the form that certain
polynomials of the coordinates do not vanish, and therefore all conclusions below are
also valid for structures obtained by displacing the points of G a little but arbitrarily.)

An infinitesimal motion of G is an assignment of a plane vector v (x) to every vertex
x such that

(1) (v(x)-v(y)).(x-y)=o

for every edge (x, y) of G (if v (x) is viewed as a velocity of the point x then this condition
means that no edge is compressed or stretched, at least momentarily). A mechanical
motion is a parametrized family (Gt: a <-t <-_ b) of plane structures, all embeddings of
the same graph G, such that the position x(t) of each point of G is a differentiable
function of and

(2) Ix(t)- y(t)[ constant

for every edge (x, y) of G. By squaring and differentiating (2) we get that

(x(t)- y (t))( (t)- 3) (t)) 0,

i.e., for every t, the vectors v(x) (t) define an infinitesimal motion of Gt. In general, if
we consider a structure G and an infinitesimal motion of G, then this does not
necessarily arise from a mechanical motion; but if G is generic then every infinitesimal
motion of G is the velocity of some mechanical motion.

The infinitesimal motions of G form a linear space (with respect to pointwise
addition and multiplication by scalars). The rigid motions of G yield a 3-dimensional
subspace of this linear space. The codimension of this subspace of rigid motions in the
space of all infinitesimal motions is called the degree of freedom of G. The degree of
freedom of G will be denoted by f(G). The structure G is called rigid if f(G)= 0.
Observe that if G has n points then

0_-<f(G)_-< 2n -3.

* Received by the editors April 22, 1981.
t J6zsef Attila University, Szeged, Hungary.
Information Sciences Institute, University of Southern California, Marina del Rey, California 90291.
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Let V(G) {vl," ", v,,}, E(G)= {el,..., e,,}, and let us orient every edge arbi-
trarily. Set

1 if xi is the head of ej,

aij -10 if xi is the tail of ei,

otherwise.

Let x (yi, z) e R z, and set

a (ai,.. a,,i), y (Yl," Yn) :r, Z (Zx,’’’, Z,.,) :r.
Also let v(xg)=(ug, v) be an assignment of velocities to the vertices and u=
(ua,..., u,), v (Vl,’’’, v,). Then (1) can be written as

(3) (aiy)(aiu)+(az)(aiv)=O, j= 1,..., m.

The degree of freedom of G is then the dimension of the solutions of this system of
linear equations in ua, , u,, vl,. , vn, less 3. Since the number of variables is 2n, we
see that the degree of freedom of G is (2n- 3)-rank of (3). So the main problem is to
calculate the rank of (3), i.e., the number of linearly independent 2n-dimensional
vectors of the form

(4) ((ajy)a, (az)a), l <=j<=m.

This is of course easily done if y and z, i.e., the coordinates of points of G are
explicitly given. But now we are interested in the case when G is generic, i.e., the entries
of y and z are algebraically independent transcendentals. In this case the rank of (3) is
independent of the actual choice of these transcendentals (since by the definition of
algebraic dependence, a subdeterminant is 0 if and only if it is identically 0 if the
coordinates of the vertices are considered as variables). So the generic rank of (3)
depends on the graph G only (below we shall see that it depends on the polygon-
matroid of G only). An (abstract) graph G will be called stiff if the generic structures
isomorphic to G are rigid.

2. Results. The following theorem is a slight generalization of a theorem of
Laman [6] (see also [2]). We give here an independent proof.

THEOREM 1. The generic degree offreedom of a graph G with n vertices is

2n-3-min E (21V(Gi)I-3),
i=1

where the minimum extends over all systems {G,..., G} of subgraphs such that
G t_J LJ G G.

It is easy to notice that it would suffice to extend the minimum over those systems
{G, , G} which consist of edge-disjoint spanning subgraphs.

This theorem gives a "good characterization" of the generic degree of freedom of a
graph G. In fact, to prove that this number is at most f, it suffices to exhibit one particular
realization of G as a (nongeneric) planar structure for which it has degree of freedom at
most f; and it is not difficult to show that there exists such a realization in which the
coordinates of the points are natural numbers not exceeding n (for this part we do not
need the theorem). On the other hand, to prove that the generic degree of freedom is at
least f, it suffices to exhibit one particular decomposition G G1 (..J Gk of G into
subgraphs such that

k

Y’. (21V(Gg)I- 3) <_- 2n 3 -f.
i=1
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The theorem guarantees that such a decomposition always exists.
But this result can also be used to obtain a polynomial-bounded algorithm to

determine the generic degree of freedom of a graph. In fact, in [5] a polynomial
algorithm is described which, given a submodular set-function p defined on the subsets
of a set S, and nonnegative on the nonempty subsets, computes

/ k

min Y ((Si)’ S1, Sk is a partition of S into nonempty subsets
i=’1

One may apply this to the set-function defined on the subsets of S E(G) by
q(Y) 2[V(Y)I-3 (here V(Y) denotes the set of vertices met by the edges in Y).

The algorithm in [5] mentioned above is rather complicated and inefficient
(although polynomial). Further analysis of the result of Theorem 1 leads to a more
combinatorial procedure.

A set Y E(G) is called independent if

f(Y)=2n-3-1YI
(i.e., if every edge of Y takes away one degree of freedom). If G is a generic structure
then the independence of a subset of edges depends on the graph structure of G only; so
if we are given an abstract graph, we can define the generic independence of a set of its
edges as the independence of this set of edges in a generic realization of the graph.

It is well known [3] that the independent subsets of edges form the independent
sets of a matroid, and that

(5)
f(G) min {f(Y)" Y

_
E(G), Y independent}

2n 3 max {[ YI" Y E(G), Y independent}

holds for every structure G. Thus to determine f(G) it suffices to have an algorithm to
check whether or not a set Y of edges is independent (using the fact that in a matroid
every inclusionwise maximal independent set is maximum). Theorem 1 will imply

COROLLARY 1. G is generic independent if and only if
(6) 21v(Y)l-3>=ly[

holds for every Y E(G).
A possibility to check whether a given set Y of edges is generic independent is to

find the minimum of the submodular set-function

(Y)= 2lv(Y)l-3-[YI

over Y X. It is possible to find the minimum of a submodular set-function in
polynomial time (see [5]). But there will be a simplermmore combinatorialmpossibility
to solve this problem. Observing that condition (6) is very similar to the condition which
guarantees that G is decomposable into two forests (Nash-Williams [8]), we may
rephrase this result as follows"

COROLLARY 2. G is generic independent if and only if doubling any edge of G
results in a graph which is the union of two forests.

Applying an algorithm due to Edmonds [4], we can check whether a graph is the
union of two forests. Running this algorithm IE(G)[ times we can decide whether or not
G is generic independent.

The next corollary is the theorem of Laman mentioned in the introduction. It
should be noted that one could derive Theorem 1 from Laman’s theorem as well.
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COgOLLAg 3. A graph is minimal stiff (or equivalently, both stiff and generic
independent) if and only if

(i) ]E(G)I 21V(G)]- 3, and
(ii) [E(H)[-<_ 21V(H)[- 3 for every subgraph H of G.
Finally, a fifth version of the same thing characterizes rigidity’
COgOLLAg 4. A graph G is stiff if and only if

k

2 (2[ V(Gi)[- 3) -> 2] V(G)I- 3
i=1

holds for every system of subgraphs Gi such that Ga Gk G.
Even though the conditions given in the theorem and its corollaries are graph-

theoretic and can be checked polynomially, it may be interesting to relate rigidity to
other graph-theoretic properties. One such property is connectivity. This is also
motivated by the trivial fact that among structures restricted to the line, connectivity
and rigidity are equivalent.

THEOREM 2. Every 6-connected graph is stiff.
We remark here that the number 6 is the best possible:
Example. Let Go be a 5-regular 5-connected graph on v points. Split every vertex

of Go into 5 vertices of degree 1, and identify these 5 vertices with the vertices of a
complete 5-graph. The resulting graph G is 5-connected and not stiff. It is easy to see
that G is 5-connected. To show that G is not stiff, we use Corollary 4: if G1, , Go are
the complete 5-graphs corresponding to the vertices of Go, and Go+l," , Gk are the
subgraphs consisting of one edge of Go each (clearly k 7v/2), then

k 5 19
Z (2[v(a)l-3)=7v+-v=-v<2lV(G)l-3= 10v-3
i=1

if v > 6. One specific example is shown in Fig. 1.
Finally, we formulate two results in combinatorial linear algebra (or in the theory

of representable matroids). The first of these was proved in [7]. Let A1,." ", An be
subspaces of the n-dimensional linear space F over a field F, andH a hyperplane (i.e.,
(n- 1)-dimensional subspace) in the same linear space. We say that H is in general

FIG. 1. A 5-connected nonstiff graph.
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position with respect to A 1, , An if there exists a basis for every Ai and an equation
c. x 0 for H (i.e., c is a normal vector of H) such that the entries of c are algebraically
independent over the field generated by all entries of all vectors in the bases of
A1," ,An.

THEOREM 3. LetA 1, ",An be subspaces off and letHbe a hyperplane in F in
general position with respect to A 1, , A,,. Then

k

dim (H A1," ", H f3 A,) min (dim (Ar" r e Ni) 1),
i=1

where {N1," , Nk} ranges over all partitions of {1,.. , m} into nonempty subsets.
This theorem will serve as a lemma to prove the following, which is an algebraic

generalization of Theorem 1"
THEOREM 4. LetFbe a field, a 1, , a, Fn, and let y, z F such that the entries

of y and z are algebraically independent over the field Fo generated by the entries of
al, a,,. Then the dimension of the subspace spanned by the vectors

is given by

((aiy)ai, (aiz)ai) Fan

k

min (2. dim ar r Ni 1),
i=1

where {N1," ’, Nk} ranges over all partitions of {1,. , m} into nonempty subsets.

and

3. Proofs.
Proof of Theorem 4. Let

Ai {(Aai, Iai)" A, i.t, F}
_
F2n

H= {(x, x’)F2n" x z x’ y}.

Note that ((aiy)ai, (aiz)ai)sAif-IH, and since dimAifqH 1, it follows that Air’Ill
consists of the multiples of the vector ((aiy)ai, (aiz)ai). So

dim (((aiy)ai, (aiz)ai)" 1, ., m) dim (H Ai" 1,..., m).

Furthermore, the coefficients of the linear equation defining H are the entries of y and
z, and these are by assumption algebraically independent over the field F0 generated by
the entries of the bases {(ai, 0), (0, ai)} of Ai. So Theorem 3 applies and we get that

k

dim(HfqAi" i= 1,..., m)=min (dim (Ar" rNi)-l)
i=1

k

=min (2dim(ar’rsNi)-l),
i=1

as claimed. [3

Proof of Theorem 1. By (4), we want to determine

dim (((ajy)aj, (ajz)a)" j 1,..., m).

By Theorem 3, this is equal to

k

min (2 dim (ar" r Ni)- 1),
i=1
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where {N1, ’, Nk} ranges over all partitions of {1,.. , m} into nonempty subsets. By
a fundamental fact in matroid theory, this is equal to

k

min Y (2. r{ej’ Ni}- 1),
i=1

where r denotes the rank function of the polygon matroid of the graph G. But
k k

min Y (2r{ej’jNi}-l)=min ., (21V({ei’jNi})l-3).
i=1 i=1

In fact, each term on the right-hand side is at least as large as the corresponding term on
the left-hand side, and the partition N1,..., N minimizing the left-hand side is
automatically such that the edges corresponding to each Ni form a connected graph, and
so the minimum term on the left-hand side is equal to the corresponding term on the
right-hand side. This completes the proof. I-!

Proof of Corollary 1. By (5), G is generic independent if and only if its generic
degree of freedom is 2n 3 m. By Theorem 1, this is equivalent to the condition that
for every system of subgraphs G,.. , G such that G U U G G, we have

(7) E (2[ V(G)[- 3) ->_ m.
i=1

We show that (7) is equivalent to the condition given in the theorem. Assume first that
(7) holds. Let H be an arbitrary subgraph of G. Choose G1 H and let G, , Gk be
the subgraphs consisting of one edge of E(G)-E(H) each. Then (7) implies

21V(G1)[- 3 / (k 1) _-> m.

But clearly k m- [E(H)[ + 1, so this means

2IV(H)[-3>--IE(H)[.
Conversely, suppose that the condition in the theorem holds. Then

k k

i=1 i=1

follows for arbitrary subgraphs G,. , G such that G U CI G G; i.e., (7) is
true. El

Proof of Corollary 2. Suppose first that G is independent. Then by Corollary 1,

2[V(H)I-3 >-_IE(H)I
holds true for every subgraph H. If we double an edge of G, then every subgraph H of
the resulting graph G’ will satisfy the slightly weaker inequality

2[V(H)I-2>-IE(H)I.
By the theorem of Nash-Williams [8], this implies that G is the union of two forests.

Conversely, assume that doubling an edge results in a graph which is the union of
two forests, for every edge. Let H be a subgraph. Double an edge of H and decompose
the resulting graph into two forests. This yields two subforestsH and H2 ofH such that
H U H2 H and H and H2 have one edge in common. Hence

IE(H)] IE(H1)[+IE(H:)I- 1 -<_ (I V(H)[- 1) + (I V(H)l- 1)- 1

<_- 21v(n)[ 3.

Thus, by Corollary 1, G is generic independent. El
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Proof of Corollary 3. If G is stiff and generic independent, then (ii) follows by
Corollary 1 and (i) follows by (5) and (ii). Conversely, if (i) and (ii) hold, then G is
generic independent by (ii) and Corollary 1, and it is stiff by (i) and (5). 71

Proof of Corollary 4. Trivial by Theorem 1.
Proo of Theorem 2. Suppose that G is a 6-connected nonstiff graph. We may

assume that G has the least possible number n of points among all such graphs. Also we
may assume that G has the largest number of edges among all such graphs on n points.

By Corollary 4, there exist subgraphs G, ,
G and

k

(8) Y’. (21 v(G)I- 3) < 2n 3.
i=1

We may assume that GI, ’, Gk are induced subgraphs. Then it follows that they must
be complete subgraphs, since adding an edge spanned by V(G,) to G would result in a
graph which is also 6-connected, nonstitt (since (8) still holds) and has more edges than
G, which is impossible.

We show that every vertex of G occurs in at least two subgraphs Gi. Suppose
indirectly that v V(G) is a vertex of G1 (say), but not of G2, Gk. Let G’= G- v,
G G1-v, G G2,’ ’, G Gk. Then G’= G (_J LI G, and by (8),

k

Y’. (2[V(G)[-3)<2IV(G’)[-3.
i=1

So G’ is not stiff and so by the minimality of the number of points of G, the graph G’
cannot be 6-connected, i.e., there exists a set T V(G’) such that ITI-<- 5 and G’- T is
disconnected. Let G’-T H1LI H2, where H1 and H2 are vertex-disjoint nonempty
subgraphs. Since G T is connected, v must be adjacent to at least one point vi of H, for
both 1 and 2. But then Ol, 02 V(G1) and so vl and/22 must be adjacent (since G1 is a
complete graph). So T does not separate vl and/22 in G’, a contradiction.

Let/2 V(G). Since G is 6-connected, v has degree at least 6, and so

(9) E (I V(G,)I- 1) >_- 6.
V(Gi)v

Hence we deduce

(10) Y (2-3 )>2.Iv( ,)l

In fact, let (say) v V(G1),"" ", V(Gd), /2 V(Gd+),’", V(Gk). Without loss of
generality assume that V(G1)[-> >=IV(Gd)[. By the above, d => 2. Each term in (10)
is at least 1/2, so if d => 4 then (10) is obvious. If d 3 then (9) implies that V(G0[ _-> 3, and
so the left-hand side of (1 0) is at least 1 + ()+ (1/2) 2. Finally, if d 2 then (9) implies
that V(G1)I-> 4, and also that in the cases V(G1)[ 4, 5 and >- 6 we have V(G2)[ _>- 4, 3
and 2, respectively. So the left-hand side of (10) is at least (45-) + (45-), (])+ 1 and ()+ (1/2),
respectively. This proves (1 0).

Now, summing (10) for every vertex v we get

E IV(G,) 2-. E (21 v(o,)l- 3)_-> 2n,
i=1 [VGi) i=1

which contradicts (8). 71
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4. Concluding remarks. The proof of Theorem 2 would also yield that if we delete
3 edges from a 6-connected graph, the resulting graph is still stiff. On the other hand,
deleting 4 "vertical" edges from the 6-connected graph in Fig. 2 we get a nonstiff graph.

FIG. 2. A 6-connected graph which does not remain stiff if 4 edges are deleted.

It is natural to ask for an extension of these results to 3-dimensional structures. In
spite of considerable effort on the part of several people, the problem of extending
Laman’s theorem to higher dimensions is still open. The proof given here, being more
algebraic in nature than previously found proofs, may offer new ways of approach to the
higher-dimensional case, even though the authors were unable to find these. It seems
more promising to generalize Theorem 2 to the space:

Conjecture. There exists a constant c such that every c-connected graph is generic
rigid in the 3-space.

Perhaps c 12; more generally, perhaps c d(d + 1) for the d-dimensional space
(for c d(d + 1)- 1 a counter-example similar to the one given in 2 works).
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UPPER AND LOWER BOUNDS ON THE COMPLEXITY
OF THE MIN-CUT LINEAR ARRANGEMENT PROBLEM ON TREES*

THOMAS LENGAUER

Abstract. The min-cut linear arrangement problem is one of several one-dimensional layout problems
for undirected graphs that may be of relevance to VSLI design.

This paper gives a polynomial time algorithm that finds a min-cut linear arrangement of trees whose
cost is within a factor of 2 of optimal. For complete m-ary trees a linear time algorithm is given that finds
an optimum min-cut linear arrangement.

1. Introduction. The min-cut linear arrangement problem is a fundamental one-
dimensional graph layout problem. The cost measure used in the min-cut linear
arrangement problem models area minimization of VLSI circuits whose components
are laid out in rows.

Usually the min-cut linear arrangement problem (or MINCUT problem for short)
is defined as follows (see [Ga77], [GJ79]). Given an undirected graph G (V, E) with
N vertices find a labeling (also called a layout) : V- {1,..., N} that minimizes the
following quantity (called the width of the layout):

max I{(v, w) e EI (v) =< <, (w)}l.
l<=i<=N

The graph represents a circuit and the labeling a linear layout of the circuit. The
active elements of the circuit, represented by the vertices of the graph, are laid out
in a row, starting at the left with the vertex having the smallest label and proceeding
toward the right in ascending order of the labels. The width is the maximum number
of edges (wires) passing between each pair of neighboring vertices in the layout, and
gives a measure for the width and if multiplied with the number of vertices in the
graph also for the area of the circuit layout. Thus the MINCUT problem applies to
area minimization of such layouts.

There are several approaches to LSI and VLSI design that structure the layout
task by confining themselves to laying out the active elements of the circuit in rows.
(See for instance [Fe76], [PDS77].) Such layout systems typically do not achieve the
smallest area possible but make chip design fast and cheap. However, the heuristics
that are used in such systems to place the active elements of the circuit are either
simple-minded or defy analysis. A careful study of the MINCUT problem could be
a first step to improve this situation.

Here we introduce the MINCUT problem in a slightly different way. We define
it as a pebble game on graphs. The game is played on an undirected graph G. Pebbles
are placed on the vertices of G in a certain order. All vertices start out pebble-free
and end up pebbled. The order in which the pebbles are placed on the graph constitutes
a strategy. Each placement of a pebble is a move. The reversal $ of $ is the strategy
that performs the moves of $ in reversed order. The (edge) cut after each move in $
is the set of edges that connect an unpebbled vertex with a pebbled vertex. The cost
of $, denoted by cost (S), is the maximum size of an edge cut during the strategy.
Note that cost ($)= cost ($). The object is to minimize the cost of S. The minimum
cost for any strategy is denoted by cost (G).

* Received by the editors November 24, 1980.
Bell Laboratories, Murray Hill, New Jersey 07974.
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The correspondence between the MINCUT problem as defined in the literature
and the pebble game defined here is as follows. The strategy S lists the vertices of
the graph in the order of ascending labels. Thus as time progresses in the pebble game
the layout is scanned from left to right. The cut after the ith move in S is the set of
edges that pass between the ith and (i + 1)st vertex in the layout. Thus the cost of S
is the width of the layout.

Considering the MINCUT problem as a game has the advantage of stressing the
dynamic character of the problem. However, the above definitions vary conceptually
from those of different pebble games in the literature. Usually the cost measure is
the number of pebbles used and the special characteristics of the game are encoded
in the pebbling rules. We could have defined our pebble game in this way. However,
this would have meant that we had to allow multiple pebbles on a vertex (one for
each edge on the cut). The rules would therefore have been too confusing. Hence,
here we made the pebbling rules trivial, and put the "semantics" of the game into
the definition of the cost measure. This makes the game intuitive and easy to work
with. It has also the advantage of clearly exhibiting the affinity of the pebble game
studied here to another one discussed in [Le80]. The pebble game studied in [Le80]
is the vertex separator version of the pebble game defined above, and can be linked
to register allocation problems for nondeterministic straight-line programs, or
equivalently to black-white pebbling of dags (see [Lo79], [LeTa80]). The proofs of
the results about the MINCUT problem in this paper also make use of ideas from
black-white pebbling arguments. This shows that cross fertilization is possible between
the areas of one-dimensional graph layout and register allocation in nondeterministic
straight-line programs.

Despite its relevance to printed circuit board and VLSI layout, not many results
have been established about the MINCUT problem. It is known that the MINCUT
problem for general undirected graphs is NP-complete ([Ga77], [GJ79]). Harper shows
in [Ha64] that the n-dimensional hypercube (with N 2 vertices) can be pebbled
optimally in the MINCUT problem in O(N log N) time. In fact this can be achieved
by pebbling its vertices in ascending order with respect to their respective binary
labels, if the vertices are considered as corners of the n-cube. No other nontrivial
subclasses of graphs have been found for which the MINCUT problem is polynomially
solvable. On the other hand the MINCUT problem has also not been shown NP-
complete for any nontrivial subclass of graphs. Approximation algorithms are not
known either.

This paper considers the MINCUT problem on trees. Section 2 gives a lower
bound for the MINCUT problem on trees. Section 3 gives an O(N log N) time
algorithm for the MINCUT problem on trees that finds a strategy whose cost is within
a factor of 2 of the bound given in 2. Section 4 gives a linear time algorithm for the
MINCUT problem on complete m-ary trees that finds a strategy with an optimal cost.

2. A lower bound for the MINCUT problem on trees. In this section we prove
a lower bound on cost (T) where T is an undirected tree. As the example in the
Appendix shows, the lower bound proved in this section is not tight for arbitrary
trees, but it will turn out to be tight for complete m-ary trees (see 4).

We start out by arbitrarily choosing one vertex r of the tree T as the root. We
will call the neighbors of the root r its children and denote them by rl,’’’, r, where
m is the degree of r. With T1," ’, T,, we will denote the rooted subtrees induced by
rl,. , r,,. The tree T/is the tree containing ri after we delete r and all its edges from
T. The root of T is ri. The height h of T is the length of the longest path from the
root to a leaf.
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After thus making T into a rooted tree, we will use an argument similar to the
one given in [LeTa80] to prove a lower bound on the number of pebbles needed to
pebble a directed rooted tree with black-white pebbles. The lower bound will be
proved by induction on the height of T. However, just inductively computing the
lower bound will not be enough to carry through the induction. We will use a parity
argument. In addition to computing the bound we will keep track of where the
maximum cut-sizes occur in optimal pebbling strategies.

Specifically we will compute a value L(T) which is about twice as great as the
lower bound. Furthermore, if L(T) is even, then pebbling strategies achieving the
lower bound may exist for which the maximum cut occurs only after the root is
pebbled. If L(T) is odd, then all pebbling strategies for T that achieve the lower
bound are such that the maximum cut occurs both before and after the root is pebbled.
(Note that the tree consisting of just one vertex with no edges is in the following
called the trivial tree.)

DEFINI:ION 1. Let T be an undirected rooted tree with root r. Let the two
quantities L(T) and a(T) be defined as follows:

L(T) 1 and a (T) 1 if T is the trivial tree.

Otherwise let the root r of T have degree m >= 1. Let its children ri be ordered such
that L(T1) =>" ->_ (T,), where T/is the subtree of T induced by ri. Then

L(T) max {L(Ti)+ i- 1 + a (Ti)I1 -<_ _-< m},

1 if m is even andL(T) m-l,
a (T) 0 otherwise.

The quantity a (T) encodes a special situation which occurs if T is "shallow" and the
degree of r is even. In this case optimal pebbling strategies will essentially pebble half
of the children of the root before the root and the other half after the root. The
maximum cut-sizes will occur both directly before and directly after the root is pebbled.
a(T) also takes care of a technical adjustment that has to be made if T is the trivial
tree.

The quantity a (T) is needed for tightly matching the upper bound on the linear
arrangement of complete m-ary trees given in 4. Note that a(T) is not necessary
for proving the result given in 3.

The following theorem is the heart of the lower bound proof and justifies the
above definitions. (For an example see the Appendix.)

THEOREM 2. Let T be a rooted undirected tree. Consider any strategy that pebbles
T. Let be the time at which the root r is pebbled.

(a) If a(T)= 1 then at t-1 or at at least [L(T)/2J + 2 edges are on the cut, or
else both at t- 1 and at t, [L(T)/2J + 1 edges are on the cut.

(b) If during [0, t- 1] at most [L(T)/2J edges are always on the cut then sometime
in [t, o) at least [L(T)/2] + 1 edges are on the cut.

Note that statement (b) in this theorem is more stringent when L(T) is odd than when
L(T) is even. When L(T) is even the theorem merely says that if [L(T)/2J + 1 edges
did not appear on the cut before then they must appear on the cut sometime after
t. When L(T) is odd the theorem says that any strategy with a maximum cut of size
[L(T)/2I + 1 must have a maximum cut once before and once after t.

Proof. By induction on the height h of T. Trivial for h -0.
Let h >_-1. Then m->_ 1. Statement (a) is trivially true since if a(T)= 1 then

[L(T)/2J + 1 is exactly one half times the number of edges leaving r. For the proof
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of (b), let f be the smallest value such that L(T) L(T.) +/" 1 + a (T.). Deleting subtrees
T.+I, ", T,, from T neither changes L(T), nor does it increase the cut. Thus we can,
without loss of generality, assume that /’=m and L(Ti)>-L(T)-m+I-a(Ti) for
l<=i<__m.

We reorder the children of r in the following fashion. We select a critical value
c such that 1-<_c-<m, depending on the case we want to prove. Then we let
T1, , To-1 be the c 1 subtrees that received a pebble first. The remaining m -c + 1
subtrees To,..., T,, are numbered in the sequence in which they receive their last
pebble. The first of these subtrees, T, is called the critical subtree. We will find times
at which there are many edges on the cut in T by finding times at which there are
many edges on the cut in T.

We have to make a case distinction’
Case 1. L(T) is odd. Choose c [m/2]. Assume that at most [L(T)/2I edges

are on the cut before t. Since c- 1 subtrees receive their first pebble before T, Tc
has during [0, t- 1] a cut-size of at most [L(T)/2I -c + 1.

Case 1.1. a (T) 0. In this case

(*)

LL(T)/2] -c + 1 (L(T)- 1)/2 + I-m/2] + 1

L(L(T)- 1)/2-(m/2-1)]

[(L(T)-m + 1)/2J -< LL(Tc)/2].

Case 1.1.1. Assume that before rc is pebbled at most [L(Tc)/2] edges are on
the cut inside T. Then at some time t’ after rc is pebbled at least [L(T)/2] + 1 edges
are on the cut in Tc by induction. Furthermore t’> holds because of (*). Thus in
addition, for each of the trees Ti, (i c + 1,..., m) at least one edge is on the cut at
time t’. This is either an edge inside T (if T has received a pebble before t’) or the
edge between r and r (since r has a pebble at t’). Thus the cut at t’ has size at least
[L(Tc)/2]+l+m-c.

Case 1.1.2. Otherwise. At some time t’> before rc is pebbled there at least
[L(Tc)/2] + 1 edges on the cut in Tc. In addition, at t’ as in Case 1.1.1, there is one
edge on the cut in T for each T (i c + 1, , m). Furthermore the edge between r
and r is on the cut at t’. Thus the cut at t’ has size at least

[L(Tc)/2J + 2 + m c >- [L(Tc)/2] + l + m c.

In both cases the number of edges on the cut at t’ is at least

[L(Tc)/2] + 1 + m-c [L(Tc)/2] + 1- I-m/2]
>- [(L(T)-m + 1)/2] I-m/2] + 1

(L(T)+ a)/2 + [L(T)/2] + ,
and the theorem is proved for Case 1.1.

Case 1.2. a Tc 1. At most

[L(T)/2I -c + 1 I(L(T)-m + 1)/2] <- [L(Tc)/2] + 1

edges are on the cut inside Tc before t. Furthermore the root of Tc cannot have been
pebbled before t, because in that case either directly before r is pebbled [L(Tc)/2] + 2
edges are on the cut in Tc, or directly after rc is pebbled [L(Tc)/2] + 1 edges are on
the cut in Tc and the edge between r and ri is on the cut. in both cases the total
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cut-size around the time that rc is pebbled would be at least (observe that L(Tc) is odd)

[L(Tc)/2J + c + 1 (L(Tc)- 1)/2 + [(m + 1)/2J + 1

L(L(T) + m)/2] + 1 _-> [L(T)/2] + 1.

Thus rc is pebbled after t. Let t’> be the time when rc is pebbled. As above at time
t’- 1 or time t’ we have a cut of size at least

[L(r)/2]+2+m-c,

where one edge is contributed as in Case 1.1 by each of the trees ti (i c + 1, , m).
Now

[L(Tc)/2] +2+m-c>= [(L(T)-m)/2] +2+ [m/2]

(L/T)+ 1)/2 + [-(m + 1)/2] + 2 + [m/2]

[L(T)/2] [(m + 1)/2] + 2 + [m/Z]

[L(T)/2] + 1.

This completes Case 1.
Case 2. [L(T)] is even. Choose c [m/2] + 1. Assume that at most [L(T)/2]

edges are on the cut before t. As in Case 1, Tc has never before more than
[L(T)/2] -c + 1 edges on the cut.

Case 2.1. c (To) 0. In this case

[L(T)/2I c + 1 L(T)/2 r(m 1)/2]

L(T)/2 + [-(m 1)/2]

[(L/T)-m + 1)/2]

<-[L(Tc)/2].

As in Case 1.1 we get a case distinction. In both cases the cut at t’ is at least of size

[L(Tc)/2] + 1 + m -c [L(Tc)/2] + [m/Z]
>-_ [(L(T)-m + 1)/2] + [m/2]

L(T)/2 + [-(m- 1)/2] + [m/2]

L(T)/2- [(m- 1)/2] + [m/2]

[L(T)/2] + 1.

Case 2.2. a(Tc)= 1. As in Case 1.2 at most [L(Tc)/2] + 1 edges are on the cut
inside Tc before t. Furthermore, as in Case 1.2, if rc were pebbled before t, then either
directly before or directly after rc is pebbled the total cut would have size at least

[L(T)/2] + c + 1 (L(Tc)- 1)/2 + [m/Z] + 2

[(L(Tc)+ m 1)/2] => [L(T)/2] + 1.

Thus rc is pebbled after t. Let t’> be the time that rc is pebbled. As in Case 1.2 at
time t’- 1 or at time t’ the cut has size at least

[L(Tc)/2] + 2 + rn-c >= [(L(T)-m)/21 + 1 + [m/2]

L(T)/2 + L-m/2] + 1 + [m/2] -<__ [L(T)/2] + 1.

This completes the proof of the theorem.
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The parity argument is a necessary enhancement of the induction hypothesis for
the induction to succeed. It can be left out in the statement of the lower bound, however.

COROLLARY 3. For an undirected rooted tree T we have

cost (T)>= [ff--] + 1.

Since we are using recursion on T, it is often of value to include the edge between
r and r when we consider T. If T is pebbled completely before r is pebbled, this
edge is on the cut starting from the time that r is pebbled until the pebbling of T/is
completed. In this case, when we confine ourselves to considering Ti we can think of
its root r being permanently anchored with an edge to an additional unpebbled vertex.
This observation motivates the following definition.

DEFINITION 4. We call an undirected rooted tree anchored if we consider its
root to be permanently attached to an unpebbled vertex in the MINCUT problem.
The edge attaching the root to the unpebbled vertex is called an anchor. We denote
the corresponding min-cut by cost (T).

Note that in terms of the layout, a tree is anchored if its root is considered to
have an additional long edge attached that reaches to the right across the whole layout.

COROLLARY 5. For any undirected rooted tree T we have

costa(T) [LT)]>_- +1.

Proof. Follows from the note preceding the proof of Theorem 2, and from the
fact that for pebbling strategies in the MINCUT problem cost (S)= cost (). [B

3. An approximation algorithm for the MINCUT problem on trees. This section
introduces a recursive algorithm SHUFFLE-PEBBLE that pebbles an undirected
rooted (anchored or unanchored) tree T in the MINCUT problem and computes the
cost of the strategy. SHUFFLE-PEBBLE pebbles T by computing the strategies for
the subtrees induced by the children of r. Then the subtrees are ordered in decreasing
difficulty and the pebbling strategies are concatenated as follows. First all odd-
numbered subtrees are pebbled in order of decreasing difficulty. Then r is pebbled.
Then all even-numbered subtrees are pebbled in order of increasing difficulty. This
idea of "shuffling" has widely been used in similar problems (see [Me78] and [Sh79]).

SHUFFLE-PEBBLE uses the following variables. It takes as input the tree T
and a logical variable anchored that is 1 if the tree is anchored and 0 if the tree is
unanchored. SHUFFLE-PEBBLE returns a permutation S of the vertices of T that
represents the strategy computed, and an integer U containing the cost of the strategy.
We now give a high level version of SHUFFLE-PEBBLE.

proe SHUFFLE-PEBBLE (tree T; bit anchored; vertex sequence S; integer
U):
begin

if degree(r) 0 then
begin
S:=r;
U := if anchored then 1 else 0

end
else

begin
foreach ri among the children of r do
SHUFFLE-PEBBLE (Ti, 1, Si, Ui);
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9.
10.

11.

end

sort ri such that U1 >-" >= Um
S:=;
U:= U’ := O;

for from 1 by 2 to 2[1-1
begin S

U’ := max {U’, Ui +(i- 1)/2}
end;
S :- SIIr;
for/from l by-2 to2do

begin S := S Si;
U := max {U, Ui + i/2-1}

end;
if anchored then

case (U’< U): S := S,
(U’= U)" U := U + 1,
(U’> U): U := U’

esac
else U := mac {U, U’}

end

It is clear that the algorithm SHUFFLE-PEBBLE constructs a valid pebbling
strategy. It runs in time O(N log N) since everything except the sorting runs in linear
time. We have to prove that it computes the correct cost of the strategy.

THEOREM 6. After the call SHUFFLE-PEBBLE (T, anchored, S, U), U is set to
the cost of the strategy S.

Proof. The theorem is trivial in the case that T is the trivial tree. If T is nontrivial,
U (resp. U’) maximize correctly the cut-size before (resp. after) r is pebbled in S.
(Remember that the root of an anchored tree is adjacent to a permanently unpebbled
vertex. Therefore the strategies Si have to be reversed in statement 7.) If T is
unanchored then statement 11 correctly computes U. If T’ is anchored and U’< U
then by reversing the strategy S we can account for the anchor without increasing U.
If U’= U the anchor has to be accounted for separately. !-1

Note that SHUFFLE-PEBBLE computes U USl,(T) (resp. U U;r,(T) if T
is anchored) according to the following recursive scheme:

Usp(T) O
Uv T) lJ

if T is trivial.

Otherwise let the children of the root r of T be ordered such that Up (T1)>_-... >_-
Up (T,), then

Use(T)=max { U, (T/) + [-] 1

1
/3(t)

0

Ue T) Use(T) + T), where

if the maximum for USl,(T) is achieved both with an odd and an even i,
otherwise.
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The following lemma uses this characterization of Usp(T) to show that SHUFFLE-
PEBBLE comes within a factor of 2 of the optimum arrangement, and indeed within
a factor 2 of the lower bound from Theorem 2.

LEMMA 7. Let T be an unanchored tree and T be the anchored version of T. Then

(a) Up (r) <- L(T) + 2,

(b) Usv(T) <_- L(T) + 1.

Proof. By induction on the height h of T. Trivial for h 0. If h >0 we can
inductively assume the lemma to be true for all trees of height less than h.

(a) Let rr be a permutation of {1,..., m} such that if L(Tx) ->. >-L(T,,) then
sP (T) _->. _-> Usp (T,) Let the maximum for Usp (T) be achieved at i, i.e

(*) Up (T) UI, (T,,)) + [21] + fl(T).

Furthermore let this be even if possible. For 1 -</" -<_ we have Uv (T)) >= Ur, (T))
and by the induction hypothesis

(**) L(Tj) + 2 _-> Up (T,).

Equation (**) therefore holds for the largest values of L(T) and especially for L(T);
i.e.,

L(T,) +2 >_- Up (T,).

Substituting this into (*) we get

U p T <= L Ti + [i21J + fl T + 2

If fl (T) 0 then, since [(i 1)/2] _-< 1, we have

Up (r) <-L(Ti) + i- 1 + 2 <=L(T)+ 2.

If fl(T)= 1 then by the choice of and the definition of fl(T), is even, such that
[(i 1)/2 -<_ 2 and again

U (T)<=L(T)+ i-2 + 1 + 2_-< L(T) + 2.

(b) An argument analogous to that in (a) applies. We define a permutation r’
such that if L(T) >=. >=L(Tm) then Usp(T,(I) ->" >= Usp(T,,(,). The case/3(T) 1
above does not apply in this case. [3

COROLLARY 8. SHUFFLE-PEBBLE finds a strategy that is within a factor of 2
of the lower bound given in Theorem 2.

The above analysis, even though it is rather loose on shallow trees, is almost tight
on complete binary trees. For complete binary trees of T of height h >= 2 we have

L(T) Up (T) Usp(T)+ 1 h + 1.

So the analysis is tight up to an additive constant of 2 which enters because of the
difference between L and Ucp on trees of heights less than 2.

4. The MINCUT problem on complete m-ary trees. This section contains a linear
algorithm OPTIMUM-PEBBLE that finds an optimum strategy for pebbling the
complete m-ary tree T’ of height h in the MINCUT problem. The algorithm is
derived from the algorithm S in [Lo79] for pebbling complete m-ary trees with
black-white pebbles.



MIN-CUT LINEAR ARRANGEMENT PROBLEM 107

FIG. 1. A complete m-ary tree.

Again we consider the tree to be rooted. We will adopt the following notation
in the algorithm. The root of T is denoted by r. The vertices rl, , r,, are the children
of r in T. T1,. ., T,, are the subtrees induced by rl," ", rm. For 1,. ., m and
] 1,. ., m, rij are the children of ri, Tgj are the corresponding subtrees (see Fig. 1).

We use variables similar to those in 3. This time the integers m, h specify the
tree; the algorithm will construct the tree T from m and h and store it in the data
structure T. The logical variable anchored again specifies whether the tree is anchored
or not. The vertex sequence $ contains the computed strategy, and U Uo(T’)
(resp. U Up (T) if T is anchored) is the cost of the computed strategy. Beside
the algorithm we list as a comment the maximum cut-sizes during critical statements.
Since all subtrees on a level in T’ are isomorphic, this time we only need one recursive
call to OPTIMUM-PEBBLE. The resulting strategy can be tailored to a specific
incarnation of the subtree by translation. If S’ is the strategy that has been recursively
computed for Tz, say, then we use the notation "S’ on T" to denote the translation
of the strategy $’ into the specific tree T. This translation can be done in linear time
in the size of T and therefore the algorithm runs in linear time.

proc OPTIMUM-PEBBLE (integer m, h; bit anchored; vertex sequence S;
integer U)"
tree T;
T := Construct m-ary tree of height h; cut-size
if h 0 then

begin
S:=r;
U := it anchored then 1 else 0

end;
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5.
6.

7.

8.

10.

11.

12.

if h 1 then
begin
S:=;

for from I to [] do

S := Sllri;
s := Sllr;

fore from [] +1 to m do

S :- Sllr,;

U := if anchored then tJ + l else []
end;

if h -> 2 then
if anchored then

begin
S:=;
OPTIMUM-PEBBLE (m, h -2, 1, S’, U’);

for/from 1 to [] do

begin

for] from 1 to[l do

S := SIIS’ on Ti;
S :- SIIri;

for j from [J +1 tom do

s :- sIl on Zi
end;

for j from I to[l do

S S S’ on T,/: +

s := Sllr;

S := Sllrr/:+;

for] from [1 + 1 to m do

S := SllS’on
for from [] +2 to m do

begin

for/from 1 toil] do

S := SilS’ on Tii;
S :- Sllri;

for/from [J +1 to m do

s := sIIs’ on Ti
end;

U’+m-1

U’+m-1

U’+m-1

U’+m-1
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13.

14.

U := max { U’ + m l, 2 [J + l }
end

else "(T is not anchored)"
begin
OPTIMUM-PEBBLE (m, h 1, 1, S’, U’);

15. ,or ,rom 1 to [] do U’+[]-I
s := slls’ on T;

S := Slit;

S := S+S’ on T;

18. U := U’+[/-1
end

It is clear that OPTIMUM-PEBBLE correctly computes the cost U of S. We get
Table 1 for U Uop(T)(resp. U Up (T)).

TABLE

Up(T Uop(T

h=0

h_->3 Ugly, (T’_) + m

0

Ur, T’- + -1

Inductively it is easy to see that for h -> 2

2

Up(T) Ih(m -1)]
Note that we have the following values for L(T’).

L(T) 1,

L(T’)=m-1,

L(T’)=(h-1)(m-1) +2 [J for h ->2.

Using these values for L(T’) one can easily check that the lower bounds derived
in 2 coincide with the upper bounds derived in this section. Thus OPTIMUM-
PEBBLE finds optimum strategies for complete m-ary trees.
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Let us compare the performance of OPTIMUM-PEBBLE and SHUFFLE-
PEBBLE on complete m-ary trees. The costs of the layouts computed by SHUFFLE-
PEBBLE on complete m-ary trees are as follows:

goP (Th )"- h + 1,

Thus, as m increases, the ratio between the costs of the layouts computed by
SHUFFLE-PEBBLE and OPTIMUM-PEBBLE decreases. Specifically we have for
even m and h 2

Up(T)= (Th)+[]-1Uop

If m is odd, then SHUFFLE-PEBBLE is in fact optimal on complete m-ary trees.
This is not surprising" The main difference between SHUFFLE-PEBBLE and
OPTIMUM-PEBBLE is that OPTIMUM-PEBBLE is careful about pebbling the root
at ust the right time, in order to save a little of the layout cost. However, if m is
odd, the cost ol the layout of T is relatively insensitive to the exact time that the
root is pebbled. In particular, in both algorithms the size of the cut does not change
at the time that the root is pebbled.

g. eel. In 2 of this paper we proved a lower bound for the MINCUT
problem on undirected trees. In 3 we described a polynomial time algorithm that
comes within a factor of two of the lower bound on arbitrary undirected trees. This
algorithm has an interesting additional property. If we select two edges of T then
either both or none of the end vertices of one edge is pebbled between the end vertices
of the other edge. Thus in this sense no edges cross" over in the layout. In 4 we
gave a linear time algorithm that achieves the lower bound on complete m-ary trees.
This algorithm does not have the additional property described above.

The example in the Appendix shows that neither the upper bound nor the lower
bound proved in this paper about the MINCUT problem is tight in all cases. We need
new insights to improve both bounds. A udicious choice of the root may be a step
in the right direction, but it alone is not sucient (see Appendix).

Approaches similar to those which are successful in the sum linear arrangement
problem on trees (see [Sh79], [Ch80]) may be transferable to the MINCUT problem.
In the sum linear arrangement the cost of a layout is computed by adding up the
lengths of all edges. The MINCUT problem is harder to analyze than the sum linear
arrangement problem. This is because the cost of the sum linear arrangement consists
of contributions for each edge, where each edge contributes the distance of its end
vertices in the arrangement. Therefore the modification of a layout implies a change
in the cost, which can easily be estimated. In the sum linear arrangement it is in
general not advantageous to move adjacent vertices in the graph far away from each
other in the layout. The same is not true for the MINCUT problem. Here the
modification of a layout implies a change in the cost which is harder to predict. In
prticular it may be possible to improve on the cost of the layout by widely separating
adjacent vertices in the graph.
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Appendix. As an illustration to the above discussion let us consider the following
example. Let T be the undirected tree depicted in Fig. 2.

FIG. 2. The tree T.

If we root T at the vertex labeled with * we get the L-values given in Fig. 3. (The
number next to a vertex in Fig. 3 is the L-value of the subtree induced by this vertex.
The number next to an edge is the contribution of the subtree at the lower end of
the edge toward the L-value of the vertex at the upper end of the edge.)
Thus if T is rooted at r then L(T)= 5, i.e., cost (T)=> [5/21 + 1 3.

Note that this is not a tight lower bound. In fact, no pebbling strategy with a
maximum cut of size less than 4 exists. This can be seen as follows. Assume the
existence of a pebbling strategy S with a maximum cut of size 3. For the subtrees T1,

4 3

r 2 -I

3

-I -I -I -I -I -I -I -I -I

-I -I -I -I

FIG. 3. The L-values alter rooting T.
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T2, T3 we have cost (T)=> 3, by Corollary 5. Therefore each of T1, T2, T3 has to
contain either the first or the last vertex pebbled in S. This is impossible, since the
subtrees are disjoint, and there are only two such vertices.

Furthermore, no matter which vertex we choose as the root, L(T) never exceeds
the value 5. Thus the above lower bound is not tight for T.

The algorithm SHUFFLE-PEBBLE pebbles T, if rooted at the vertex labeled
with *, with 4 pebbles. The pebbling strategy computed by SHUFFLE-PEBBLE
corresponds (as described in the Introduction) to the layout of T depicted in Fig. 4.

3 4 6 9 lo 11 12 13

r r 3

14 15 16 17 18 19 20 21

r r 4 r

FIG. 4. The layout computed by SHUFFLE-PEBBLE.

The number under each vertex v is its label h (,), as defined in the Introduction. Note
that the maximum cut-size of 4 is only achieved once, namely between the vertices
labeled 11 and 12. Thus, if L(T) where one greater the lower bound would be tight.
In this particular example, SHUFFLE-PEBBLE finds an optimum strategy, whereas
the lower bound is not tight. There are other examples, for instance complete m-ary
trees, for which the lower bound is tight, whereas SHUFFLE-PEBBLE does not find
optimum strategies.

Finally, in Fig. 5, we give an example of a layout computed by OPTIMUM-
PEBBLE, namely the layout of the complete binary tree of height 4.

1o 12 13 14 15 16 17 18 19 20 21 22 23 24 2.5 26 27 28 29 30 31

FIG. 5. The layout of T computed by OPTIMUM-PEBBLE.

Aeknowledgmelat. I am grateful to A. V. Aho for his many helpful suggestions
that led to improvements in this presentation.
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SWITCHINGS CONSTRAINED TO 2-CONNECTIVITY
IN SIMPLE GRAPHS*

R. TAYLOR

Abstract. This paper follows as a natural extension of the ideas in a previous paper where we showed
that any connected graph may be transformed by a sequence of switchings to any other connected graph
of the same degree sequence, in such a way that all the intermediate graphs formed are connected. This
was done for simple graphs, multigraphs and pseudographs. Here we show that the corresponding result
is true for 2-connected simple graphs. The result for multigraphs and pseudographs will appear elsewhere.
We also note that for k-connected graphs where k-> 3, this transformation theorem seems much more
difficult to prove and in the last section of this paper we mention these difficulties.

1. Introduction. Unless otherwise specified, we will adopt the notation and
terminology of Bondy and Murty [1].

The degree sequence of a graph denoted _d (all, ’, d,) is the list of the degrees
of all the vertices of the graph, conventionally arranged in nonincreasing order
beginning with the maximum degree. When several of the terms in _d are equal we
may use exponential notation so that, for example, _d (3, 3, 2, 2) (32, 22).

A graph G is a realization of a degree sequence _d if the collection of the degrees
of the vertices of G is the same as the collection of terms in d. A labelled realization
of a degree sequence _d (d:,..., d,), d:_->d2_>- =>d, is a graph whose vertices
are labelled vl,..., v with the restriction that the degree of vi (denoted d(vi)) is
equal to di. Unless otherwise stated, any labelled realization of a degree sequence is
to be considered as having this restriction.

A switching is a _d-invariant transformation on a graph that eliminates two edges
and introduces two new ones. Thus a switching involves two edges (u, v) and (x, y)
say, and transforms the graph by eliminating these edges and introducing new edges
(u, x) and (v, y). This is illustrated in Fig. 1. Algebraically we may represent this
operation as [(u, v), (x, y)] [(u, x), (v, y)]. Since we are dealing with simple graphs
we may switch only when the edges (u, v) and (x, y) are independent, that is when u,
v, x, and y are all different and the edges (u, x) and (v, y) are not already present in
the graph.

To formalize the way in which the various realizations of a degree sequence are
related by switchings, the following graph has been introduced by Eggleton and Holton
[3].

DZFINITION. The graph of realizations (respectively, the graph of labelled realiz-
ations) of a degree sequence _d is a graph whose vertices are identified with the

u@

va --y

FIG.
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realizations (respectively, the labelled realizations) of _d, and where two vertices are
adjacent if and only if the realizations corresponding to these vertices are a single
switching apart. This is denoted by R (_d) and Rl(_d), respectively.

Often we are interested only in realizations of a degree sequence which have a
certain property. Motivated by this we make the following definition.

DEFINITION. Let P be a property which a graph may possess. Then R (_d, P),
Rl(d, P) are the subgraphs of R(_d), Rl(d_), respectively, induced by those vertices
which correspond to graphs with property P.

Properties for which R (_d, P) is connected are said to be complete (see Colbourn
[2, p. 68]). If a property is complete we may find all the graphs of a given degree
sequence with the property by switchings constrained to graphs with the property.
Switching algorithms based on complete properties may provide a relatively efficient
means of finding those realizations which possess the relevant property.

A relationship between completeness of a property in the labelled and unlabelled
cases is given in the following theorem.

THEOREM 1.1. Let P be a property of graphs. If Rl(d_, P) is connected, then R (d_, P)
is connected.

Proof. See [6]. 71
Colbourn [2] showed that the property of being a tree is complete, and in [5]

Syslo extended this to the property of being unicyclic. In [6] we generalized these
results to show that the property of being connected is complete. The main result of
this paper is that the property of being 2-connected is complete.

2. Safe switchings. We shall develop certain switching types which are used later
in the proof of the main theorem.

DEFINrrION. Let G be a 2-connected graph and o- a switching on G. We say the
switching tr is safe if, when r is applied to G, the resulting graph tr(G) is also
2-connected.

DEFINrrION. Let (x, y) and (u, v) be independent edges of a graph G. The
switching [(u, v), (x, y)]-> [(u, x), (v, y)] is called a type-1 switching if the edges (x, y)
and (u, v) are on independent cycles in G.

LEMMA 2.1. Any type-1 switching is safe.
Proof. Let [(u, v), (x, y)]-> [(u, x), (v, y)] be a type-1 switching on a 2-connected

graph G that results in a graph G’. Assume that the switching is not safe and so G’
is connected but not 2-connected (clearly the switching preserves connectivity). Thus
G’ must have some cut-vertex w. Let A be any component of G’-w and B the rest
of G’-w. Now since G was 2-connected, either (x, y) or (u, v) joins A and B (that
is, has an end-vertex in A and in B). Suppose without loss of generality that (x, y)
E(G) is such an edge (see Fig. 2). Observe that w cannot be u or v since this would

FIG. 2
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FIG. 3

imply that the edges (x, y) and (u, v) in G are not on independent cycles. For the
same reason (u, v) cannot join A and B. Thus u and v must both lie in A or in B.
Assume without loss of generality that u and v are in B. But then (x, u) E(G’) joins
A and B, which contradicts the choice of w.

DEFINITION. Let (x, y) and (u, v) be edges on a cycle C in G in such a way that
there is a path between u and y on C independent of the vertices x and v, and a
path between x and v independent of y and u (see Fig. 3). Under these circumstances
we say the switching [(u, v), (x, y)]--> [(u, x), (v, y)] is a type-2 switching and that the
cycle C is type-2 with respect to this switching.

LEMMA 2.2. Any type-2 switching is safe.
Proof. Let cr [(u, v), (x, y)]--> [(u, x), (v, y)]be a type-2 switching on a 2-connected

graph G, and let r(G)= G’. We assume that r is not safe, and so G’ is connected
but not 2-connected. Thus G’ must have a cut-vertex w and we may partition G’-w
into A and B as before. Further assume without loss of generality that (x, y) joins A
and B, with, say, x A and y B. Firstly we note that w cannot be u or v. To see
this assume that w u, say. Then since the edges (x, y) and (u, v) are on a cycle as
in Fig. 3, we must have v A. But then (v, y) joins A and B, contradicting the choice
of w. As in Lemma 2.1, we may also conclude that the vertices u and v cannot both
be in A or in B. Now (x, u)eE(G’) and (y, v)eE(G’), and since there are no edges
joining A and B in G’, we must have u A and v B (see Fig. 4). By inspection we
see that (u, v) and (x, y) cannot occur on any cycle in G in the required order. Thus
cr is not a type-2 switching. This contradiction proves the lemma, l-1

3. 2=connectivity. In this section we prove that 2-connectivity is a complete
property. This is done first for labelled graphs, the result for unlabelled graphs following
as a corollary by Theorem 1.1.

THFORFM 3.1. Rl(d_, P) is connected, where P=-"2-connected".
Proof. The proof is by induction on n, the number of terms in _d.

FIG. 4
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n 3. This follows trivially since there is only one labelled 2-connected simple
graph on three vertices (see Fig. 5). Assume then that the result holds whenever
n<=m-1.

I)3

FIG. 5

n m >= 4. First we treat the case d (2’). The only 2-connected labelled realiz-
ations of (2’) are isomorphic to C, (the cycle on m vertices). Thus, we need only
show that we may relabel a labelled C,, in any way by switchings which create only
cycles on m vertices. To do this it is sufficient to indicate how any two adjacent vertices
on the cycle may be interchanged. So let G be any labelled cycle on m vertices, and
let (..., c, a, b, d,...) be the labelled cycle G (see Fig. 6). We switch [(c, a), (b, d)]
[(c, b), (a, d)], and this interchanges the vertices a and b on the cycle.

c a b d

FG. 6

Now for _d to have any 2-connected realizations, clearly we must have dl > d2 =>
=> d,-> 2, and by the case just treated we may assume that d >= 3. Further, we

may also assume that d2 > 3 since the only connected realization of _d with d >= 3 and
d2 d3 dm= 2 consists of a collection of cycles all passing through the vertex
v (see Fig. 7). Here v is a cut-vertex, and so _d has no 2-connected realizations. We
proceed with the main body of the proof.

FIG. 7

Let G and G2 be any two labelled 2-connected realizations of _d. We show how
to switch Ga and G2 into 2-connected graphs G* and G2* in which G’--Vm and
G2*- v,, are both 2-connected graphs of the same degree sequence. This will allow
us to use the induction result. Take G for example. We shall switch on G so as to
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make v,, adjacent to /-)1, /)2,’"", /)s where d(v,,)= d, s. So let v, be adjacent to
Vl, v2," , vp, rip+l, , vis in G1, with Vp+l # vii for any ] > p. We demonstrate how
to switch on G1 to make v,, adjacent to vl," , vp, Vp+l, , vis. Now d(vt,+l)>=d(vip+l)
and so Vo+l must be adjacent to some vertex a which is not adjacent to vi,+l. Consider
the edges (v,,, rio+l), (a, Vp+l). Since G1 is 2-connected they must both lie on some
cycle. If the cycle is of the form indicated in Fig. 8, the type-2 switching [(v,, rip+,),

/)m a

)ip

FIG. 8

(Up+l, a)]--> [(V../)p+l), (/)i,+1, a)] will give us the required result. Thus we may assume
that the two edges lie on a cycle of the type shown in Fig. 9. Let b be the vertex
adjacent to Vp+l on the path between Vp+l and v,, in Fig. 9. If b is not adjacent to
vi,+l the type-2 switching [(v,,, rip+l), (V+l, b)]--> [(v,,, v+l), (b, rip+l)] will produce a

l)m I)+1

vi,, a

FIG. 9

graph with the required properties. Assume then that b is adjacent to vio+l (see Fig.
10). But d(Vp+l)>= d(vi,,+l) so vp+ must be adjacent to some vertex c # a which is not
adjacent to vio+l. Divide the subgraph shown in Fig. 10 into two parts, the cycle
(v,,,..., b, vi,,+l, v,,,) denoted by C, and the rest of the graph denoted by R. Since Ga
is 2-connected there is a path between c and v,, independent of the vertex Vp/l. Let
q be the first vertex on this path which is in the subgraph of Fig. 10. If q R, then

vm b

tip a

FIG. 10
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(v,,, vi,+l) and (V,+l, c) are on independent cycles, whilst if q C and q Vi,+I, then
(vp+l, c) and (vi,+, v,,) are on a single cycle of type-2 with respect to the switching
[(vp+l, c), (Vm, Vi,+)]- [(Vm, V,+I), (C, Vi,+l)]. This switching will be either of type-1 or
type-2 and will result in a graph of the required form. Thus we may assume that
q rio+l, and the situation is as depicted in Fig. 11. Now since d(v,/l)d(vi,,+,)>=4
we must have yet another vertex d adjacent to v,/l which is not adjacent to v,+.
We partition the graph of Fig. 11 as we did in Fig. 10 into the cycle C and the
remainder R’ and by the same reasoning as above we may assume that there is a path
from d to Vip+I independent of any other vertex in Fig. 11. But again d(Vp+l) -> d(vio+l) >=

FIG. 11

5 and we continue in this way until we find some vertex e adjacent to /)p+l, not
adjacent to vi,.+, where (vp/l, e) and (vg,+, v,,) are both on independent cycles or on
a single cycle of type-2 with respect to the switching [(v,,, vi,,+),
(rio+x, e)]. In either case this switching is safe and produces a graph in which v,, is
adjacent to vl, , Vp, V+l, vg,.+v ", vis as desired. Continuing this process we trans-
form G1 to G by a sequence of safe switchings where Vm is adjacent to vl, v2," ", vs
in G.

We now perform a series of safe switchings on G and transform it into a graph
G* where GI*-v, is 2-connected and the neighborhood of v, is unaffected. So
assume H G v,, is not 2-connected and has cut-vertices x 1, , Xk which separate
connected blocks A 1, , At, where eachA contains no cut-vertices of H. We observe
that the graph H has at least two blocks which are adjacent to at most one cut-vertex
each. These blocks together with their respective cut-vertices correspond to end-
vertices in the block-cutpoint tree of H (see Harary [4, p. 36]). We now describe how
to switch on H so as to decrease the number of blocks by at least one.

Let Ai and Aj be any two blocks of H which are adjacent to only one cut-vertex
each. Note that every vertex adjacent to Vm in G has degree at least three. This
follows for if d,, 2, then vn is adjacent only to Vl and v2 which both have degree at
least three, whilst if d,, >_-3, then every vertex has degree at least three. Now since
G is 2-connected v,, must be adjacent to a vertex in A and a vertex in Aj, say x
and y, respectively. Since d(x)-> 3 and d(y)_>-3, x and y must have degree at least
one in Ai and in A. And so Ai, Ai must contain edges (x, z) E(A) and (y, w) E(A).
By construction x, z, y, w are not cut-vertices of H and so (x, z) and (y, w) are on
cycles in H. If (x, z), (y, w) are on independent cycles in H, then we make the type-1
switching [(x, z), (y, w)] [(x, y), (z, w)] which merges Ai and Ai into one larger block
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and so decreases the number of blocks in H by at least one. Assume on the other
hand that (x, z) and (y, w) are not on independent cycles in H. This could only occur
if they are separated by a single cut-vertex xr with both cycles passing through xr.
Thus x is adjacent to at least two vertices in Ai and in Aj. Now if there is a cycle in
Ai or Aj, then any edge on that cycle and any edge in the other block must be on
independent cycles. Switching between these edges is safe of type-1 and results in a
graph which has at least one block fewer than H has. We may therefore assume that
both Ai and A are trees. In the following we consider various cases for the value of
d,, and show that each leads to a contradiction.

d, 2. Here we must have x vl and y v2 (see Fig. 12). We now show that x
is adjacent to at least dl- 1 vertices of Ai. If Xr is not adjacent to Vl, then the degree

Ai

FIG. 12

of vl in Ag is d-1 and so Ai has at least d-1 vertices of degree 1. Now in H all
vertices of Ai are not cut-vertices and so every vertex of degree 1 in Ai must be
adjacent to x in H. Thus x is adjacent to at least dl- 1 vertices in A. If on the other
hand xr is adjacent to v, then the degree of Vl in Ai is dl-2, and so using the
argument above we may conclude that Xr is adjacent to at least d-2 vertices of
degree 1 in Ai (other than vl). Including v we see that x is adjacent to at least dl- 1
vertices of A. Thus d(x) -> d- 1 + 2 d + 1, and this is impossible.

d,, 3. In this case v, must have only one edge in common with either Ai or AI,
say Ai. Since A is a tree it has at least two vertices of degree one, let q be one of
them which is not adjacent to v,. But in G we can have at most one extra edge
incident with q (between it and x) and so d(q)<=2. But this contradicts the fact that
d(q)>-dm=3.

d, -> 4. Clearly all vertices of A and A have degree at least two and so cannot
be trees.

o.1 O’2

G1 > G ) G’ < G2

FXG. 13

Thus we may switch G to a 2-connected graph G where the neighborhood of
v, is unaltered and where G v, has at least one block fewer than G v,. It follows
then that by a sequence of safe switchings we may transform G into a graph G
where v,, is adjacent to v, v2,"’, vs in G* and G*-v, contains only one block
and so is 2-connected. Thus we may transform G1 into G* by a sequence of safe
switchings trl. Similarly by a sequence of safe switchings tr2 we may transform G2
into a graph G2* with v, adjacent to Vl, v2," ’, vs in G2*. Now GI* -v, and G -v,
are both 2-connected graphs with degree sequences _d’
(dl- 1,. ., d 1, d/l, .., d,-l), and so by the induction hypothesis we may trans-
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form G* -v, into G2* -v, by a sequence of safe switchings 0. Thus the sequence of
switchings defined by trl0O’] (acting from the left) transforms G1 into G2 in the
required manner (see Fig. 13). Since G1 and G2 were arbitrary 2-connected labelled
realizations of _d we have the result for n m. The theorem follows by induction.

COROLLARY 3.1. R (_d, P) is connected, where P =-"2-connected".
Proof. By Theorem 1.1.

4. k-connectivity. In view of the fact that k-connectivity is a complete property
for k 1, 2, we believe there are sufficient grounds to suppose that the same result
is true for all k. In this section we indicate some of the difficulties involved in trying
to prove this using the same basic approach that has been successful for k 1, 2. Take
k 3 for example.

(i) We must be able to switch on a 3-connected graph so as to make vn adjacent
to vx,..., vs, where dn= s. To ensure that the graphs formed at each step are
3-connected we would have to develop switching types that preserve 3-connectivity.

(ii) We need to switch on a 3-connected realization G of a degree sequence _d
so that G-v is 3-connected. However this is clearly not possible for any _d with
d3 <= 3 since then G v, would have at least one vertex of degree 2. This class contains
for instance all the 3-connected cubic graphs. Thus the case _d (3) would have to
be treated as a special case just as we treated _d (2) for 2-connectivity (see Theorem
3.1). However, although the structure of the 2-connected two regular graphs is
elementary (they are simply cycles), there are many nonisomorphic 3-connected cubic
graphs on n vertices.

As a first step then in proving that 3-connectivity is a complete property, we
believe a proof showing that this property is complete for cubic graphs would be
useful. The techniques used in such a proof may even lead to a solution of the general
problem concerning k-connectivity.
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A CLASS OF MATRICES CONNECTED WITH VOLTERRA
PREY-PREDATOR EQUATIONS*

RAY REDHEFFER’t AND ZHOU ZHIMING

Abstract. If (Pii) is a real n n matrix, conditions are given which ensure (aiPii)<-0 for some set of
positive constants a, where (a@o)<= 0 means that the associated quadratic form is nonpositive. Within this
class, a companion paper gives an effectively complete solution to the problem of asymptotic stability for
n-variable Volterra prey-predator equations; that is why the class is important. Both the algebraic problem
considered here and the analytic problem of stability involve a novel blend of topological and combinatorial
considerations.

1. Introduction. Throughout this paper p (P0) is a real n n matrix such that
pii <-0fori=l,2,’’’,nand

pqpji < O if(i-f)p0, i, j l, 2, n.

A perturbation of p is a change to another matrix/ such that/0 0 if, and only if, P0 0.
The perturbation is small if maxl/q-PJl is small. Our objective is to give conditions
under which p is stably admissible in the sense of the following definition:

DEFINITION 1. The matrix p is admissible if there exist positive constants a such
that (apo)<= O, where this condition means. aipowiwi <-_ 0 for all (w, W2, Wn) n.

i,j=l

The matrix is stably admissible if every sufficiently small perturbation/ is admissible.
These conditions have an interesting bearing on the Volterra system

(1) 3i x(ei q- . piixj), i= 1,2,’’’,n.
i=l

It turns out that the study of boundedness and global asymptotic stability of solutions is
very much simplified if p is admissible. The condition of stable admissibility is more
appropriate than admissibility, however, because the coefficients are known only with
limited precision. The relation of Definition 1 to (1) is fully discussed in !-6] and
motivates the present investigation. See also Volterra [7, Ch. III], where the importance
of the two cases (i) p skew symmetric and (ii) p, < 0 for all is convincingly demon-
strated.

As in [6], the graph of p is a graph of n vertices or nodes 1, 2,. , n in which the
node is adjacent to/" in the sense of 1 if and only if pii O. The graph has a black dot at

if pii < 0 and an open circle o if it is known only that pii <= O. We assume that the graph is
connected, since if it is not, the problem breaks up into two or more simpler problems of
the same type. An edge which directly connects two black dots is called a strong link, and
otherwise the link is weak, thus"

O 0 0 0 O

strong weak weak

* Received by the editors September 15, 1980, and in revised form June 1, 1981.
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We use (1, 2,. , m) or [1, 2,. , m to denote a path or loop, respectively, which
connects the nodes 1, 2,. , m in succession. (The latter has an edge joining 1 to m, the
former does not). Aside from these special conventions borrowed from [6], we use
standard graph-theoretic terminology as described, for example, in [1]. In this
terminology the graph of p is connected, unoriented, and except for the black dots,
unlabeled.

If/5 is a sufficiently small perturbation, p and/ have the same graph, including the
distribution of black dots. This is the reason for restricting the term perturbation so that
no new nonzero coefficients are introduced, and no nonzero coefficients are changed to
0. When the perturbation is sufficiently small, the inequalities pijpji < 0 for j are also
preserved.

We conclude this introductory discussion with a brief summary of the historical
development. The most important reference is Volterra [7]. Here we find the basic
hypothesis of sign antisymmetry, the introduction of the multipliers ai, and the
fundamental condition of equality for products of successive coefficients (see eq. (7)
below). Sign antisymmetric matrices are discussed further in [3] and [5], and as was
pointed out by the referee, the condition for diagonalization there developed gives an
alternative approach to the results of Volterra. Additional topics in the same circle of
ideas are taken up in [4], where matrices satisfying Volterra’s hypothesis pij 0 pji 0
are referred to as combinatorially symmetric. The fact that none of these references
mentions [7] perhaps lends color to Krikorian’s remark [2] that Volterra’s work is still
insufficiently known and improperly understood.

Volterra did not introduce the graph of p and makes no distinction between trees
and loops. (In the case of a path free of loops his condition holds automatically, since
both products are 0). However, aside from our labeling, the graph is introduced, in just
the form used here, in [5]; in [2], [3], by contrast, the graph is directed after the manner
of current research in control theory.

2. General remarks. If the graph of p is a tree, then p is admissible since ai can be
chosen so that

(2) aipii + aipii 0

whenever and/" are adjacent. Conversely, this condition is necessary for admissibility if
and j are adjacent and (i, ]) is not a strong link. Hence, every loop must contain at least

one strong link if p is stably admissible. This fact plays a basic role in [6].
In applications it is essential to choose ai > 0 not only so that (aipi) <- 0 but so that,

in addition,

aipiiwiwi 0 => piwi 0,
i,]=1

i=l,2,...,n.

Such a choice of a may not be possible if p is merely admissible but is always possible
when p is stably admissible To see this, let e be a small positive constant and let

i] Pii for j, ii (1 e)Pii.

If ai are so chosen that ai > 0 and (aiii)<= 0 the equation
2. aiPiiWiWi aiiiwiw -b E aiPiiW

shows that the quadratic form on the left is 0 and that it can vanish only if piiwi 0 for
each i.
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From another point of view it will be found that (aipij) <-- 0 leads to a certain number
of weak inequalities, that is, inequalities of the form A <-B. If we require these same
inequalities to be strong, A < B, we can split off ep, as above and again get the side
condition p,w- 0. Note also that strong inequalities are preserved by small pertur-
bations.

Another remark of a general nature pertains to the uniting of graphs. Suppose two
matrices p and p* are stably admissible, and suppose the graph for p 4- p* is obtained by
joining the graphs for p and for p* at a single point; in other words, the graphs for p and
p* have exactly one vertex in common. Then p 4- p* is stably admissible. This is so
because the conditions involving the aj are homogeneous. Let aj be the coefficients for p
and a for p*. Then Aa will also do for p*, where A is any positive constant; and we can
choose A so that Aa * ai at the particular vertex which the graphs have in common.

The same method gives the following: Suppose the graphs for p and p* have no
vertex in common, and form a new graph by connecting one vertex of p to one vertex/"
of p*. Then the matrix corresponding to the new graph is stably admissible if, and only
if, p and p* are stably admissible; we assume that the new coefficients introduced by this
process satisfy pqp O. For proof, choose A > 0 so that

aiPii 4- ha’fpii 0

and reason as above. Necessity follows because the variables associated with p or p*
could be taken to be 0, while the others remain arbitrary.

As a special case, these remarks show that adding any number of trees to the graph
of a stably admissible matrix (without forming any new loops) will again lead to a stably
admissible matrix. Thus, in getting conditions for admissibility, trees can be ignored.

3. The case n = 3. In [7] it is seen that a necessary and sufficient condition for
admissibility when n- 3 can be deduced, theoretically, from two homogeneous
inequalities of degrees 13 and 26, respectively. Here we give a simpler criterion, based
on the Hurwitz inequalities, which reduces the problem effectively to the solution of a
single quartic equation. The discussion sheds light on the difficulties associated with the
general case.

Since the problem is trivial for a tree, let the graph with n 3 be a triangle. If there
is no strong link the matrix cannot be stably admissible, and hence we assume
p11pE2 : 0. A sufficient condition for stable admissibility is then

(3)
1 P_lP2___._R 4--- 2 4

IPlEP.lI’
where R [P12P23P31[

[P21P32P131"
For the proof, it is readily checked that the condition is both necessary and sufficient
when p33- 0, and a term in p33 is helpful.

If all three diagonal entries p, are negative one can state three conditions like the
above, and any one of them is sufficient. To get a condition which is both necessary and
sufficient (when each p, <0) assume without loss of generality that p, =-1 and
a (1, x, y). Denoting the corresponding matrix (api) by A (x, y) we see that p is stably
admissible if and only if for some positive (x, y)

(4) M(x, y)= A(x, y)+A’(x, y)<0

where M is defined by the equation. We set D(x, y)=det M(x, y). Then a necessary
and sufficient condition for (4) is D(x, y)< 0 and also

(5) 4x > (plz + xp21)2, 4y > (P13 + YP31)2, 4xy > (xp23 + YP32)2.
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The inequalities (5) reduce to

(6) Xo < x < x 1, yo < y < y 1, mo < --y < m 1,
x

where xi, yi and mi are roots of the quadratics obtained with instead of < in (5). The
hypothesis PgjPii < 0 ensures that these roots are positive and unequal. Their values are
regarded as known.

The region defined by (6) is called the feasible region and is illustrated in three
typical cases in Fig. 1. A necessary and sufficient condition for stable admissibility is that

yt

0 x 0 x 0 x

FIG.

the feasible region be nonempty and that D (x, y) < 0 at some point thereof. By a brief
analysis it is found that evaluation of D(x, y) at 12 points (x, yi) suffices to decide the
question. Of these points eight (on the boundary of the rectangle) are obtained from
quadratic equations while four (interior) require a quartic. Evaluation of D(x, y) at 12
specified points lends itself to automatic computation, or alternatively, and perhaps
preferably, one could apply any standard minimizing algorithm to D(x, y) over the
feasible region.

4. A general criterion. According to [6] the loop [12... m] is balanced if it
satisfies Volterra’s condition,

(7) [P12Pz3 P,ll--[p21P32"’’ Plml.
(Similar products were introduced in another connection in [4].) We want a measure of
asymmetry to describe the extent to which this condition fails. If (pi) is replaced by
(cpj) where c is a symmetric matrix with nonzero elements, it is desired that the
measure of asymmetry shall remain unchanged. This suggests the ratio R of the two
quantities in (7) as a measure of asymmetry. However, we also want the measure of
asymmetry to be independent of the direction in which the path is traversed. Since
reversing the direction changes R into 1/R, the measure R + 1/R is suggested. Finally,
we would like the measure to be 0 when the loop is balanced, that is, when (7) holds.

These remarks may serve to motivate the following definition:
DEFINITION 2. The measure of asymmetry of the loop [12... m] is

1
A =R +--2

IPlzP23 P_____]where R
IPzlP32 Plml"

A similar definition applies to any loop, with a more elaborate use of subscripts. It
should be noticed that the value of A is not affected if we retrace steps in traversing the
loop, going backward and then again forward. The extra coefficients pii introduced by
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the backtracking occur in both numerator and denominator of R and cancel out.
Further properties of this sort are discussed in 6.

We also require the following"
DEFINITION 3. The strength of a strong link joining directly to ] is measured by

Bii [PiiPii ["
Suppose next that a graph is such that every loop in it has at least one strong link.

Assuming that at least one loop is actually present, choose a loop and break one of its
strong links. If a loop is still present, choose another loop and break one of its strong
links, and so on. Continuing this process, we get a definite set of strong links such that
breaking all of them reduces the graph to a tree.

Underlying this procedure is a theorem which in the referee’s formulation reads as
follows: Suppose G is a connected graph with the property that every cycle has at least
one distinguished line. Then the successive removal of these lines by the above rules
always results in a spanning tree T of G. Moreover the lines so removed constitute a set
of chords of the tree T and the set of cycles from which they were removed is a basis for
the cycles of G. A formal proof follows by induction on the number E of edges. For
E 3 the result is obvious, and removing a single one of the distinguished lines reduces
the case E + 1 to the case E.

We specify a strong link by giving its endpoints; thus, Li is a strong link joining to
/’. The link is not oriented, so that the same link is represented by Lii. Let us list only the
links that were used in the above process, and each link only once. That being done, let
n(i) be the number of times the index occurs in this list as a subscript on L. For
example, if the links in the list are

t12, L34, L13, L41, L23, L35,

then n(1)= 3, n(2)=2, n(3)=4, n(4)=2, n(5)= 1.
Since the graph after removal of the strong links Li is a tree, there is a unique

simple path from to ] after the removal. Restoring the single link Lii we get a unique
measure of asymmetry Ai associated with the nodes and . A measure of the strength
of Li is given by Bi in Definition 3.

The following theorem is the principal goal of this discussion"
THZOZM 1. Let L be strong links whose removal generates a tree as described

above. Then the matrix p associated with the original graph is stably admissible if the
inequality

BiAii<4n(i)n(f)

holds for each pair o] subscripts (i, f) in the set {Lii}.

5. Proo[ o[ Theorem 1. For a single loop [12... m] with a strong link at (1, m)
Theorem 1 is established by choosing a > 0 so that

(8) aipi i+1 + ai+lpi+a O, 1, 2, rn 1.

Then all cross products wwi+l except w,wl disappear from the associated quadratic
form and the latter reduces to

m-1

’. aiPuW
2 w2 + (a + a,,p,, )w w,, + ap,,w2

i=2
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Clearly a sufficient condition for stable admissibility is

(9) (axpl, + a.,p.,1)2 < 4ala,pllp,m

and this condition is necessary as well as sufficient if (1, m) is the only strong link in the
loop. Writing (8) in the form

ai+_____ Pi i+

ai Pi+

we find, by an elementary computation, that (9) is equivalent to A I,, < 4B1, in the
notation of Theorem 1.

It is important that any particular value ai in this process can be arbitrarily
prescribed, subject to ai >0, and then the remaining a are uniquely determined.
Because of that, the process applies to several loops simultaneously, provided their
strong links are disjoint. The latter condition means n(i)= 1 in the notation of
Theorem 1.

Suppose, then, that the removal of a certain set of disjoint strong links Lii leads to a
tree. Let a be determined for the tree by the equations analogous to (8), so that all cross
products except those associated with the L vanish. (The details require a more
elaborate notation which, however, will not be spelled out here.) The important feature
is that, if we look at the loop associated with any given strong link, the definition of ai for
the tree agrees with the definition of a for the loop that led to the above condition
AI, < 4B1,,. Hence, if Aii< 4Bii holds for each link Lii, we find again that p is stably
admissible. The condition is necessary and sufficient if the only strong links in the graph
are the Li.

Finally, we have to account for the possibility that n (i)> 1. This means that the
index is involved in more than one strong link, and hence, the term aiPuW2i must be
suitably parceled out. To this end let us write

Pii Pii Pii
P -ff +-+ + n n terms)

and use one of these terms for each ot the strong links involving the index i. This has the
effect of replacingp by p/n (i) in the foregoing calculation, and likewise, pii is replaced
by pii/n (f). The earlier condition Aii< 4Bi then becomes the same as the condition in
Theorem 1.

It is clear that the process used for implementation of Theorem 1 is far from
unique, and that one sequence of removed links may fail to show stable admissibility
while another sequence succeeds. This possibility was already illustrated in the case
n 3, where we pointed out that one can permute subscripts in (3) if each pu < O.

6. Balanced matrices. If the graph contains a loop, the requirement that a matrix
be balanced is not preserved by small perturbations, as we have already remarked.
Nevertheless, balanced matrices have many interesting properties and a brief discussion
is given now. The graph of a balanced matrix p will be termed p-balanced. In this
context it is thought that the graph is oriented and that it has the label Ip/pl attached to
the edge from to/’.

For an open path (1, 2, , m) we define a ratio

R*= IPlzP23 Pro-1

IP21P32" Pm

analogous to R; in fact R*= Rlpl,,,/p.,ll. One of the most interesting properties of
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p-balanced graphs can now be formulated as follows. Let and j be any two distinct
vertices of a p-balanced graph and let L be any path whatever in the graph which starts
at and ends at . (It is permitted that L have arbitrarily many loops and self-
intersections.) Then the ratio R* computed relatively to L is independent of L; it
depends on the ordered pair (i, j) only. The proof is left to the reader.

This remarkable fact leads to a far-reaching generalization of Theorem 1. Instead
of a tree, let us start with any p-balanced graph, and introduce strong links Lij at
selected nodes (i, ) (see dotted lines in Fig. 2) By the above remark R* is well defined,

FIG. 2

hence Rii is well defined, and therefore Aii is. When these new links Lii are introduced
the new network is not, as a rule, balanced. But it will be stably admissible if each loop in
the original graph has a strong link and if

Bij
n(i)n(j)

for each of the added links Lij. This follows as in the proof of Theorem 1.
In the special case of Theorem 1, the p-balanced graph with which the process

starts is a tree and Aii is well determined because there is a unique path from to/" that
does not intersect itself (actually backtracking does no harm, as stated in 4). Here, on
the contrary, there may be a multiplicity of paths, and the requirement that the matrix
be balanced is essential. In fact, if R is independent of path for a single pair (i, j), it
follows necessarily that the graph is p-balanced.

7. Analogy to electrical networks. The fact that R* is independent of the path is
reminiscent of the theory of electrical networks, where the voltage drop from node to
node ] is also independent of the path. Upon a change in orientation of the path R* is
changed to its reciprocal and the voltage to its negative. For quantitative development
of this analogy, let the voltage drop from to j be defined by

Then a matrix is p-balanced if and only if the total voltage drop around any closed loop
in its graph is 0. When this holds we can assign voltages V at the ith node and determine



MATRICES FOR VOLTERRA PREY-PREDATOR EQUATIONS 129

Vii by

v,..
The choice of any particular voltage, say V1, as reference level is arbitrary. The
condition that the graph be p-balanced is precisely the condition that this represen-
tation for Vj shall lead to no inconsistency.

We shall not pursue this analogy in detail here, but mention that it gives

n(n-1) n2+3n
n ++(n-1)=-I

2 2

for the total number of independent parameters in an n n balanced matrix. The same
result is obtained by introduction of triangles as a basis for the loops of the graph, as the
reader can verify.

8. The clam shell. There are two respects in which Theorem 1 can be improved.
First, one can use a more general decomposition of pii such as

n(i) n(i)

Pii Y’, CikPii, Cik > O, Cik 1.
k=l k=l

Theorem 1 corresponds to the choice Cik 1In (i). Second, one can exploit any strong
links other than the L that may be present. We shall illustrate these refinements in
several examples. The scope of these examples is increased by the possibility of
combining graphs, as explained in 2.

As a first example, let the links Lij be such that they have one end in common and
the other ends are all distinct. The common end is labeled 0 and the other ends

1, 2, ., m as shown for m -4 in Fig. 3a. This figure resembling a clam shell is the
simplest example of the type of graph we have in mind and suggests the name. However,
the configuration can be generalized as in Fig. 3b. The main requirement is that
breaking all of these strong links produces a tree. We write

Poo (cx + 2 -Jr’’ "-+- Cm)PO0

where the ci are positive constants whose sum is 1.

FIG. 3

(a) (b)
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If Ai is the measure of asymmetry associated with the ends (0, i) of the tree, and Bi
is the strength of the strong link joining 0 to in the original graph, the condition
Ai < 4ciBi ensures that the matrix p is stably admissible. The constants ci can be
determined if, and only if,

AI A2 +Am++... <4.
B1 B2

This condition represents a very substantial improvement on Theorem 1, since the
latter requires Ai/Bi < 4/m for each i.

9. The ladder. We suppose now that n (i) 2 except for 0 and m, in which
case n (i) 1. The typical graph satisfying these conditions is obtained by closing links in
a comb, as suggested by the dotted lines in Fig. 4. The graph obtained after closure looks
like a ladder, hence the name.

0 2 3

FIG. 4

As indicated by the figure, the free ends of the tree are numbered consecutively
from 0 to m. We write

Pii (1 ci)Pii -1- ciPii, 0 < Ci < 1,

for 1, 2, .., m 1. If Ai is the measure of asymmetry for the small loop containing
(i 1, i) and Bi is the strength of the link joining (i 1, i) a sufficient condition for stable
admissibility is

MI<I-cl, ME<Cx(1-c2), M3<c2(1-c3), "’’, M,.,,<cm-,

where Mi Ai/(4Bi). The conditions on ci are least restrictive when ci-1 is as large as
possible. Hence, the optimum choice is obtained if we choose ci to give equality in all
relations except the last and strict inequality in the last. By a small change of {ci} the
leeway given in the last relation can be distributed over the others, so that strict
inequality holds in all of them.

This procedure show that p is stably admissible if the m quantities

M2 M3 M2 M4 M3 M2
M1,

1 MI’ 1 1 MI’ 1 1 1 M’
are all on the open interval (0, 1).

10. The pinwheel. If the ladder is bent into a loop, elimination of the unknown
coefficients ci is more difficult, because it leads to an equation involving a continued
fraction. We shall discuss the special case shown in Fig. 5, in which the ladder has been
bent into a loop and one side has been shrunk to a point. With the convention that
c,,+1 c1, the method of the preceding section leads to

(10) Mi <ci(1-Ci+l), i= 1, 2,.", m,
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/
/

/

/
/

FIG. 5

as a sufficient condition for stable admissibility. The condition is necessary and sufficient
if the only strong links are the ones on the circumference. Here Mi Ai/(4Bg) as before,
whereA is the measure of asymmetry and B the measure of strength of the strong link
in the ith pie-shaped loop. The sole condition on the constants cg is 0 < cg < 1.

If m 2, a necessary and sufficient condition for existence of cg is easily shown to be

M1 +ME + 2x/MIME < 1.

When m 3, a necessary and sufficient condition is

(11) M1 +M2 +M3 + 2x/M1M2M3 < 1,

as seen next.
When m 3, a brief argument shows that (10) implies the inequality

(12) M1 +ME +M3 < 1

which is needed later. For fixed Cl X let us make an optimum choice of C2 and C3. As in
the discussion of 9, we should choose c2 as large as possible, and also Ca as large as
possible. This gives the inequalities

M1(13) M1 < x < 1, <x < 1
1

where clearly the first is superseded by the second. If these hold we can can make the
optimum choice, and if one of these fails, no cg will do even when M3 O. It is seen thus
that cg can be determined if, and only if,

MEX(14) M3< (1-x)(1
for some x satisfying the inequalities (13).
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By an elementary calculation, it is found that the maximum occurs at

x MI+(MIM2 1-MM)X/21-
This choice of x satisfies (13) and reduces (14) to a relation which, in view of (12), is
equivalen to (11). In terms of Ai and Bi the condition is

A1 A2 A3 [A1A2A3\ 1/:

(15) B---+B---+B-+\3-ff2B3],, <4.

11. The necklace. Here we consider the effect of having more than one strong link
in a single loop. It is assumed that the strong links are separated, in the sense that at least
one open circle o is between any two of them. To identify links, let us label the first black
dot of each link as we walk around the loop in the negative (clockwise) direction. If there
are m links the labels run consecutively from 1 to m, and the strength of the ith link is
Bi. Separated links with their labels are shown in Fig. 6a for m 5.

(a) (b)

FIG. 6

Let us add a vertex 0 and corresponding links joining this vertex to the nodes
1, 2, , m introduced above; see Fig. 6b. The new coefficients pij with 0 or/’ 0

are required to satisfy

(16) aoPoi + apo 0, 0, 1, 2, , m,

where a are the positive constants associated with the rest of the Pii and where a0 > 0 is
arbitrary. The usefulness of this construction depends on three properties described
next.

(i) The new terms in WoW added to the quadratic form all have coefficient 0,
hence the new form agrees in value with the old one. This shows that admissibility and
stable admissibility hold for the one case if for the other.

(ii) Let R and A be the ratio and corresponding measure of asymmetry for the
small pie-shaped loop containing the ith link in Fig. 6b, where it is understood that these
links are traversed in the negative direction. In computingR and Ri/ the radial path to
vertex (the spoke of the wheel) is traversed twice, once in one direction and once in the
other. Hence, the factors for this part of the path cancel out in the product and we
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conclude that

(17) R1R2 R,, R

where R is the corresponding ratio for the loop in Fig. 6a. This calculation involves
considerations similar to those in 6 and 7.

(iii) Since the coefficients Pi for 0 or 0 can be chosen at will, subject to (16),
there is no restriction on the Ri other than (17). In other words, if Ri are any positive
quantities whose product is R, we can choose the coefficients in such a way that the R in
Fig. 6b agree with these.

We now apply Theorem 1 to Fig. 6b, noting that n(i)= 1. The result is that the
graph of Fig. 6b, and hence also of Fig. 6a, is stably admissible if Ai < 4B for

1, 2,..., m, where

1
A R +--2.

Since R and 1/R are interchangeable in our analysis, there is no loss of generality
in orienting the outer loop so that R > 1 and in choosing the new coefficients in such a
way that also each Ri > 1. Then A <R- 1 and a sufficient condition is R < 1 + 4B.
Since the sole restriction on the Ri is that their product shall be R, we conclude finally
that a sufficient condition for stable admissibility is

(18) 1 <_-R _-<(1 + 4B1)(1 +4B2)... (1 + 4B,).

It follows from (20) below that one or more of the terms 4Bi could be replaced by
which is an improvement whenever B < 1/4.

On the other hand since A >R- 2, a necessary condition is

(19) R < (2+4B1)(2+4B2).’’ (2 +4Bin).

The gap between (18) and (19) can be filled by solving forR in terms of Ai, when Ri > 1,
and noting that the resulting relationship is monotone. This gives the necessary and
sufficient condition

(20) 1-<_R < [I+2B,+2(B+B)a/2].
i=1

If the B are numerous and large, these results represent a vast improvement on the
result obtained by breaking a single link as in the proof of Theorem 1.

12. The necklace, onlinuetl. Let us now drop the hypothesis that the strong links
are separated. This means that a black dot can be common to two strong links. In such a
case the corresponding coefficient p, must be replaced by

(1-c)p,+cp,, 0<ci<l,

as in 9 and 10. If the successive groups of black dots are separated, the optimum
determination of ci proceeds much as in 9, and if the black dots form a loop (that is, if
every vertex is black) the problem reduces to that in 10. In particular, (15) suffices
when m 3. However, there is a further complication, because one must still determine
an optimum decomposition R RR2 Rm. A brief argument, which we omit, shows
that the optimum choice of c is close to the value c 21- used in Theorem 1, provided
each R is large.

If c 1/2 (which is a permissible choice whether optimum of not), it is easy to extend
the results of 11 to the case under consideration here. With the same consecutive
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10

FIG. 7

numbering of strong links as before, let n (i) 1 if the ith link is isolated, n (i) 2 if the
ith link has exactly one black dot adjacent to it, and n (i) 4 if the ith link has two black
dots adjacent to it. For example in Fig. 7 we have

n(i)=1,2,4,4,2,2,2,2,4,2

for n 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. Then the results of 10 remain valid
without the separation condition, provided each Bi is replaced by Bi/n (i).

In particular, if every vertex of the loop has a black dot, then n (i) 4 and the basic
inequalities become Ag < Bi instead of Ai < 4Bi. If all the Bg are equal in this case we
may as well take all the Ai to be equal too, hence R R a/,, where m, the number of
strong links, is also the number of nodes. Thus a sufficient condition for stable
admissibility is

R a/,, + R-a/,, 2 < B,

where B B is the common measure of strength.
Applying these results to each loop in a general graph, we get a sharpened version

of Theorem 1 in which extra strong links are not merely ignored, but are exploited. We
do not give a formal statement because the same result can be achieved by adding
fictitious nodes and branches as in Fig. 6b and applying Theorem 1 as it stands to the
new graph so obtained. The fictitious nodes are introduced only for loops that have
more than one strong link.

Acknowledgment. The authors are grateful to the referee for his careful reading of
this paper and for his constructive suggestions.
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AN ODD ORDER SEARCH PROBLEM*

R. S. BOOTH?

Abstract. Select k + points in a given interval. Successively remove an end subinterval and select a
new point in the remaining interval. It is desired to calculate how fast the sequence of lengths of successive
intervals decreases. The answer has long been known when k is even or when k or 3. The present
paper deals with k 5 and exhibits the difficulties in proceeding to higher odd k.

1. Introduction. Let D [a, b] be a compact interval of the real line, and let k
be a positive integer. Select (k + 1) points xl, x2," ’, Xk/l in D so that

a <xk+x<x <"’<Xl<b.

This divides D into k + 2 intervals. The procedure is to remove either of the two end
subintervals, select one new point in the remainder and successively repeat until a
total of n points (including the original k + 1) have been selected. At this stage, after
removing an end subinterval, a final interval D’c D is produced, n is a preassigned
integer. The rule for selecting each point is called a strategy. The aim is to describe
a strategy which minimizes the maximum length of all possible final intervals D’
obtained this way.

More particularly, suppose D has length d, and let S be any particular strategy.
Let d,,(S, k) be the maximum length of all final intervals obtained by employing $

with n points, and put

p(S,k)=]irninf[d/d,(S,k)]l/n, p(k)=sUspp(S,k).
p(S, k) is a measure of the efficiency of the strategy. It is the "average" ratio of lengths
of intervals of consecutive steps in the strategy.

The problem as stated above arises when one attempts to locate the zero of the
kth order derivative of a suitable function from the class of all functions defined and
possessing a continuous kth order derivative on D. The simplest such problem, when
k 0, leads to the classical bisection strategy S, for which p (S, 0) 2. Indeed, p (0) 2.
J. Keifer [3], seems to have been the first author to examine this problem for k ->_ 1.
When k 1, we have the classic Fibonacci search problem for locating maxima or
minima. We refer the reader to Kiefer’s paper for this and other background informa-
tion. Also relevant is some of the material in the book Applied Dynamic Programming
by Bellman and Dreyfus [1, Chap. 4]. The general problem was examined by C. L.
Mallows (unpublished, to the author’s knowledge). Mallows produced an efficient
strategy, S, valid for all even k. It is efficient in the sense that p(S, k)= p(k) for all
even k, and moreover, p(k)= 22/(+2) for all even k. This result is described by the
author [2].

It is known [2] that, if k is odd, if p (k + 1)/2 and if tip is the positive root of
the equation

X
p+I

X ’Ji- 1,
then p(k) =/3p when k 1 and k 3.
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Moreover,

22/(k+31<__p(k) <_ Bp <22/(

for all odd k.
It is natural, on the basis of the above, to conjecture that p(k)-/3, for all odd

k. The conjecture is an attractive one, especially after the simplicity of the even k
and k 1, k 3. The present paper shows, however, that the conjecture is false for
k 5, suggesting that, in particular, 0(3) equals/32, as derived in [2], only because of
a "lucky" circumstance.

Henceforth, k 5 and, thus k + 1 6. An interval together with its six selected
points will be called a configuration. If the interval is [a, b] and the six points are xa,
X2, X6, with Xl X2" X6, then this will be written

[a; X6, X5, X4, X3, X2, X1; b].

The procedure leads to either the configuration

[a X6, X5, X4, X3, X2; Xl],

in which one new point y must be selected, or to

IX6; X5, X4, Xl; b],

in which one new point y’ must be selected. The new point is inserted in its correct
position with regard to order, and is written in boldface.

It is permitted, if desired, to choose two (or more) new points after the removal
of an end subinterval. In this case, one (or more) of the xi must be removed from the
configuration, and ignored, so that the new configuration still contains exactly six
points in its interior. Removal is indicated by a caret ^.

2. The result.
THEOREM. Let h be the positive root of the equation

(1) h2=2h8+l.

Then p(5) h.

Remark.

h 1.2186533... </33= 1.2206....

Proof. We show first that 0(5)--< . Let

Ln sup{L >0: there is a strategy $, such that if D [0, L], then dn($, k) <- 1}.

Commence with the interval [0, L], containing six initial points Xl, x.,..., x6, such
that

0<X6<X5 <" <X1 < L,.

This is the configuration

[0; X6, X5, X4, X3, X2, Xl; L,].

As in [2], it is necessary that

(2) x3 <- Ln_3,

(3) x4 <- Ln_4,
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After three stages of reduction, we may be left with the interval [0, x3], containing
x4, xs, x6 and three other points. It is easy to see that these three points must be less
than x4. So, by relabelling x5 and x6 if necessary, we have the configuration

[0; X9, X8, X7, X6, X5, X4; X3],

in which, in particular, X6 <- Ln-6.
After four further stages, we may be restricted to the interval IX6, X3], which must

contain x4, x5 and four other points. There are two possibilities. Either at least two
of the new points are greater than x4, in which case

(4) x4-x6<Ln_lO,

or at least three of the new points are less than X4, in which case

(5) x3-x4<Ln_12.

It follows by (2) and (3) that either Ln -Ln-3-Ln-6<=Ln-lO or L, -Ln_4-Ln_4<=
Ln-12. Hence,

2Ln-4 + Ln-I2,(6) L, -<_ max
Ln-3 + Ln-6 + Ln-o,

at least for n => 13.
L, 1 for 1 <= n =< 5, and L, <= A" for 6-< n .<= 13. It is easy to show by induction

on n that L, <= A" for all n, by using (6). (The fact that A-3 + A-6 + A-o < 1 is needed.)
Hence, 0(5) =< lim sup,_. L/" -<_ A, which completes the first part of the proof.

In order to establish the reverse inequality, we must describe a strategy $ for
p(S, 5)=> A. It is possible to employ a sequence {U,} such that U, => L, for all n, where
L, is as defined earlier, with U, 2U,_4 + U,-2 at least for n => 14. We prefer to use
an asymptotic strategy, which is somewhat easier to describe.

We introduce the notation

"-"/-4 (=0.453397 .),

(7)
Ix t/(1- t)

x=l-t3(=2t)
y 1--ix3t3

(=0.829484’’’),

(=0.906794’’ "),

(=0.946806’’ ").

Notice that

(8) 1 =2t+t3,
(9) 1 IX Ixt2,

2(10) 1-ix =t,
3(11) 1-ix =ty.

Define {d,}, n 0, 1, 2,. ., where, if n 4m + q, m integer, q 0, 1, 2 or 3, then

d. Ix qtm.
The strategy $ will describe how to proceed from a configuration on an interval of
length d,, to one of dn/p, for some positive integer p. This yields

p(S, 5) lim imf [1/Ix qt"]/" lit/4= A

This implies/9(5)-> A and hence, establishes the theorem.
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We need just one lemma, the result of which is easy to see.
LEMMA. Given the configuration

[XT; X6, X5, X4, X3, X2, X1; X0],

suppose there is a strategy for which, after n-6 further points are selected, the final
interval has length at most d’ ]’or some d’ < Xo-XT. If

[YT; Y6, Ys,’’’,Yl; Y0]

is another configuration, in which

Yi- Yi+I Xi--Xi+l
for

0, 1, 2, 3, 4, 5, 6,

then there is a strategy ]’or which, after n -6 further points are selected, the final interval
]’or this second configuration has length at most d’.

We return now to the theorem itself, and the construction of the strategy. We
begin with the configuration

AI=[0; tz
2 t, i, t, t, tz

3
tz

2
tz 1].

(There is no loss of generality in scaling the initial interval to one of length 1.)
3If the right-hand subinterval at A1 is removed, we select the new point /z.,

indicated in boldface, to obtain

B1 [0; 13t, p,2t,/xt, t,/x 3, p,2;
We identify B1 with the configuration A, below, and consider it later on. If, instead,
the left-hand subinterval of A is removed, we must select a new point in the interval
[/zt, 1]. It is convenient (and unless otherwise indicated, we will automatically do so
when the left-end subinterval is removed) to transfer the origin to the right-end point,
in this case 1, and reverse the orientation. This gives

[0; 1 -/z, 1 -/2, 2, 1 --/Z 3, 1 t, 1 --/zt; 1
2In this new coordinate system, we simplify the numbers 1-/x, 1-/x etc., by using

(7)-(11); select the new point Ixt, again indicated by boldface, to get

BE [0; /zt2,/xEt, Ixt, ty, 1 t, 1 --/xt;

Now we proceed similarly from BE, obtaining

C --[0; /zt2, 3t,/z2t,/zt, ty, 1- t; 1- txt],

which applies if the right-hand end of BE is removed. Similarly, we obtain

C2--[0; /.tEt3,/z2t2, t2,//,3t, p,2t, #t; /./, 3X]
if the left subinterval of B2 is removed. As before, the origin is shifted and the
orientation is reversed. Now C1 leads to both

D1 =[0; /xt2, t2,/x3t,/z2t,/xt, ty; /./,3--/./,3t4],
3D [0; t, tz2t2,1xt2, 2,/x t, 2t,/zt t],

and C. leads to both

2t3 2 3 2D3 [0;/z 3t2, 2, t2, 2,/.t, t,/z t;/zt],

D4 [0; 2t2, 131,t2, 2,/.t,3t,/z2t,/zt; t].
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The superscript T for the configuration D2 denotes a departure form the conven-
tion regarding choice of origin and orientation. The orientation is reversed from what
it would be if the T were not present. Thus, D is obtained from C1 by removing
[0,/xt2] from C1 and subtracting/xt2 from all points in the remainder of C1. This is
done for ease of identification.

The configuration D4 is precisely the configuration A scaled down by the factor
A -4. At most four new points have been selected to arrive at D4. So we may

identify D4 with A 1, in the obvious sense tha the strategy which applied to A also
applies to D4.

The same remark applies to D, where we selected two new points simultaneously
as indicated and ignored one other point, namely t3y, to produce the required
identification. The caret is used to denote the removal of an unwanted point.

D1 is identified with the configuration A,3 considered later on. This involves an
application of the lemma, which applies trivially with the choice

A.3 [0; /zt2, 2,/z3t,/.t,2t,/xt, ty;

We observe that only three new points have been selected to arrive at D1, Of length
3at most/x

Finally, with as scaling factor, D3 can be identified with A,, which we consider
next.

The procedure and pattern for handling A,, and later on A,2, A,, A’ and A%
is the same as that for A 1. For this reason, we adopt the same notation and conventions
as previously, including the labelling of the configurations. No confusion need arise
if all configurations B, C, D and E are taken in context.

In A,, for reasons of future identification, it is convenient to allow for either of
two possible locations for the second point from the right. We take

This leads to

and

3 3 2A. [0; /z
3 t, /z

2 t, /x t, t,/x x or/x ,/x

2 3 3B1 [0; t2, /3t,/z t,/zt, t,/z X or/z /z

2t2 3X; 3]B2 [0;/z p.3t, Ix2t,/xt, t, z /x

3 3 3Notice that, since/x-/z =/z and/z-/z x =/x2t, one of the two "new" points
in B2 is already present, so we need only to select the other.

B1 is identical to A.2 considered below. Proceeding from B, we have

2t2 2 3
XC1 "-[0; /./, t2,/./,3 t,/.z t,/zt, t; /z ],

3 3t2 3 2 3t4C2 [0;/.t, 3, p, ixt2, t2y, t,/x t;

and hence, as before,

D1 [0; /-t2t2, It2, 2,/z3t,/x2t,/xt; t],

2t3 2t2 2
D2 [0; /z 3t2,/.6 t2, 2, 3t, t’, t],

D3 [0; , t3, 3t2 2t2 t2, tEy, 3t; 2t],
3 212 3

D4 [0; 2, ,t2,t2, tx,, t].

These can be identified respectively with A 1, A,, A,, A,, all scaled by the factor t.
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Three new points were selected passing from A. to Da, four new ones in the case of
D2, D3, D4.

With the same notation as before, we consider A,, with two alternative indepen-
dent possibilities. We put

A, [0; /z
3 t, /x t, /x t, ty or t,/z3x or/z3; /z].

This leads to

Ba =[0; II,t2, 2,/z3t,/z2t,/zt, or ty; /j, 3X or

which we identify with A,3 (at the right end we can replace/xax with/.3 if desired) and

BE’-- [0; 3t2, l,t2, tzatx or/zat, p, Et,/xt, ty; /.t,2-- t2].
Again, only one new point needs selection in B2. Proceeding from B2, we obtain first

Ca [0; /z3t2,/zt2, t2, la,3tx or/z3t,/z2t,/at; ty],

C2-- [0; #3t3, t.t,3t2x, Izt2, tEy, 13tx--tz3t5 or/z3t-/z3t5,/z2t;
Hence, with the same pattern as before,

Da [0; /.t,3t2, ILEt2,/.tt2, 2, tz3tX or/.tat,/z2t; /d,t],

P =D2 [0; /x3t3,/z3t2, I31,t2, t2y, p,3t-tzt4,/z3t; /z2t],
3t2 2t2 3D3r= [0; t3,/z /z ixt9, 2,/z t; /x2t],

D4r= [0; t3, t3,/z3t2, p. 2t, it2, tZy,/z 3 t,’ /z t].
Here Da is Au and D3, D4 are A.2, all scaled by the factor t. Dz here needs

separate identification; we name it P and deal with it later. In D2, only one of/at2,
ty needs selection, likewise in D4.

Of the "cycle" A a, A., A.2, A.3 of configurations, only A. is left. We begin with

A. [0; /at2, 2
/z

3 t, /x
2 t, /a t, yt or t;

It leads to

Ba [0; 2t2, p,t2, 2,/z3t,/z2t,/at; t],

which is AI scaled by the factor t, and

BE =[0; /z3t2 or p,2t2, It2, tEy,/z3t,/z2t,/zt--/z3ts; t--/z3/3].
From Bz follows

C1 --[0; ]L3t2, 2t2, txtz, tZy,/zat,/z2t; /zt--/zats],
C2-- [0; /.t,t4, t3y, IjI,3t2- 3t6,/./,2t2 2,/.t,3t-2t4; p, Ztx]

and, as before

3/2 3 2Da [0; t3,/ 2t2, p,t2, t2y, Idt, t; lz t],

3t3 DEt2 3 3 3t5Q D2 [0; /. /./,3t2x, ,/at2, t2y, /X -/zt4, -/z ],

atE 3 2t2 2 at_ 2t4R D3 [0; /zt4, tay, i.t, -t.t, 6, 131,2tEx,/.t, /z /.t,

3t3 2t2 //,3 304 [0; /z /zt3, 13, 3t2,//, #t2, t2y; t-lz ts].
Of these, D identifies with A,, D4 identifies with A,, by the scale factor and

application of the lemma.
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Of course, at this point, the construction would be complete if we knew what to
do with the three outstanding configurations P, Q and R. After some experimentation,
we are led to consider the following modifications to AI and A,3, which we denote
respectively by A and A,%. First

3 3 2 3A’ [0; Ix3t, Ixt, t, IX X or IX IX IX 1 IX t3].
It is not hard to show that if the right-hand end is 1, then the choice Ixax as indicated
would not be available. We proceed as before, obtaining successively

Ba [0; IX3t, t,2t, Ixt, t, IX3X or IX3, IX2; IX],

which is A.,

and

B2--[0; Ix3t2, Ix3t, Ixt, ty, IX3__ Ixt3, IX3; IX2],
C1 [0; Ix3t2, Ix3t, 2t, Ixt, ty, IX3_ Ixt3; IX3],
C2 [0; Ix3t2, t2y, Ix3t, Ix2t, It, ty; Ix3]

D1 =[0; Ix3t2, t2, Ix3t, Ix2t, Ixt, ty; IX3--IXt3],
2t2 3Df [0; IX Ixt2, t-y, t2, IX t, Ix2t, Ixt; t],

3t2 3 2D3 [0; IX t2, t, t2, IX t, IX t, Ixt; ty],

2t2 3D4 [0; IX gtt2, t, 12, IX t, Ix2t, Ixt, t].

Of these last four, D" and D4 are suitably scaled copies of A a, and D3 is a
suitably scaled copy of A ’. Moreover, the configuration P is now not outstanding; it
is B2 above, scaled by the factor t. D1 is identified with A% below.

We put
3 3A,3 =[0; Ix3t2, , tx tx or Ix3t, Ix2t, Ixt, ty; Ix -ixt3].

This leads to

B1 [0; Ix3t2, IJI,t2, /2, IX3tx or Ix3t, Ix2t, Ixt; ty],

which is A scaled by t, and

B2=[0; Ix2t3, Ix3t2, t2--ix3t4, t2, ix3tx or Ix3t, Ix2t-ix3t4; Ixt],

C1 "-[0; Ix2t3, Ix3t2, 1l,2t2, 2- IX3/4, t2, IX3tx or Ix3t; Ix2t--Ix3t4],
C2 [0; t, t3, gt3t2, 12t2, Ixt2, t2y Ix3t; Ix2t].

C2 is A.2 scaled by t; we need only proceed from Ca, which leads to

Da =[0; Ix2t3, Ix3t2, Ix2t2, [i,t2, t2--ix3t4, t2; Ix3t],
D [0; tz

3 3, t3, IX
3 2, IxEt2 tl,t2, t2y; IX

3 t--Ixt4].
Since D" is identifiable with A’, scaled by t, we proceed from D1 only, to obtain

2 3 2Ea [0; IX 3, t3, t3, IX 2, IX , Ixt, -IX t2],
which is A scaled by 2, and

3t3 3,t, t3 3t2 2t2E2 [0; Ix Ixt Ix Ix ixt2; t2y],
which is A’ scaled by t2.
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It is now easy to resolve the configurations Q and R. Consider Q, which is

Q -[0; /3t3,/3t2x,/2t2,/t2, t2y,/3t-/t4; /3t-/3ts].
Removing its right end subinterval, we obtain

E1 =[0; /3t3, t3,/3t2x,/2t2,/t2, t2y; /3t--/t4],
which is A,% scaled by the factor and, hence, can be treated like A,3, as above. On
the other hand, if the left subinterval of 0 is removed, we obtain, with simplification
and the usual convention of orientation,

E2 [0; /3t4,/3t3, /t3, t3,/3t2x,/2t2, t2; t2y].

Since this is A’ scaled by , we need pursue this no further.
Finally, since

R =[0; /t4, t3y,/3t2--/3t6,/2t2x, be2t2, t2; /3t--/2/4],
we obtain, after removing the right subinterval and then reversing the orientation,

2t3 /3Er [0; / /t3, 3, 2, 12t2,/t2; tEl,
which is A scaled by the factor t2. If, instead, the left end subinterval is removed,

4we preserve the orientation by subtracting/ from all terms, to obtain
3 3E2T [0; / 3,/t3 ,/3t2x, 2t2,/t2, t2y].

This is A scaled by 2, considered earlier.
This completes the construction, and the proof of the theorem.
Remark. The above construction was inferred from a study of the sequence { U,},

mentioned earlier, defined by

UI= U2= U= U4= Us= I,

U6 U7 U8=2, U9 Ulo-- 3,

U11 4, U12 5, U13 6,

Un 2Un-4 + Un-12 for n --> 14.

Here, if n --2 (mod 4),

while lim Un-4/ Un --t.

U,_ U.-2 U,-3
lim lim lim

Un Un-1 Un-2

3. Conclusion. It would be pleasant to be able to find at least an analogue of
the first part of the theorem, valid for p(k), k odd, k => 7. The author can show, by
a method similar to that used here, that

where

0(7)-<I 1.166287

/ 17 2h 2 + 1,

and

l)(9) < h 1.134544 </35,
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where

/ 22 2 16 + 1.

However, the method does not seem to extend easily to higher k, and it is by no
means clear whether these inequalities are best possible. One of the main problems
is how to compare the relative sizes of the zeros of two polynomials of high degrees.

There is another complication. For k 5, the speed arises from the sequence
L. 2Ln-4 + L,,-12, in which the value of L.-L._ can be selected by suitable choice
of initial conditions to equal Ln-9 or Ln-8. No such choice can be made for the
sequence L. 2L._5 +Ln-7 which pertains to the best known estimate for 0(7).
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COMPUTING AN OPTIMAL INVARIANT CAPITAL STOCK*

PHILIP C. JONESt
Abstract. This paper derives a new termination criterion for Lemke’s linear complementarity algorithm

which is applied to the problem of computing a capital stock invariant under optimization for an economy
with a linear technology and piecewise linear utility. We derive a condition which guarantees that the
computed solution is nontrivial. When the economy has a Leontief technology and linear utility, we give
a method for solving the associated linear complementarity problem in O(n3) operations.

1. Introduction. The problem of computing a capital stock invariant under
optimization has been studied by several authors. Hansen and Koopmans [5] showed
that a fixed point algorithm yields approximate solutions when the utility function is
continuously differentiable and increasing. Dantzig and Manne [2] investigated the
case of piecewise linear utility and found that Lemke’s linear complementarity
algorithm can be applied to find a solution.

This paper derives a new termination criterion for Lemke’s algorithm which
generalizes that obtained by Dantzig and Manne [2]. We also discuss a condition
which guarantees nontriviality of the computed solution. Finally, we examine the
special case where the economy has a Leontief technology and linear utility. Although
the linear complementarity problem, in general, has been shown by Chung [1] to be
NP-complete, we find that the linear complementarity problem associated with this
special case can be solved in O(n 3) operations.

Section 2 describes the model and shows that solving an associated linear com-
plementarity problem yields a solution. In 3, we derive the new termination result
for Lemke’s algorithm and discuss its application to our problem. Section 4 discusses
the special case.

2. The economic model. We suppose that the economy has two types of goods.
Those that can be produced by various activities are called producible, while those
that cannot be produced are called primary and are assumed to be made available at
fixed levels in each time period. The technology is then given by A R"n, B R/
and b R where

Aij denotes the amount of good used to operate activity ] at unit level;
Bij denotes the amount of good produced by operating activity ] at unit level;
bi denotes the amount of good exogenously provided in each time period (b < 0

denotes a good withdrawn for subsistence).
The utility function u’ R R is assumed to be piecewise linear, concave and

bounded below. We denote by xt R ", 1, 2,. ., the activity levels in period and
consider the following problem, which we denote P(bo)"

P(bo) Given bo R find {xt}=l solving

max Y tst-lu(xt),
t=l

s.t. Ax <= bo + b,

Axt <-nxt-1 + b, 2, 3, ",

xt >- O, 1, 2, ,
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where 6 (0, 1) is the discount rate. The problem with which we are concerned can
then be stated as:

P Find x R such that xt x, 1, 2, solves P(Bx).

Having solved problem P, we will have obtained a capital stock invariant under
discounted optimization. This is the natural extension of the notion of an optimal
stationary program defined by Gale [4] for the notion of overtaking optimality without
discounting.

First we note that since the utility function is piecewise linear and concave we
can write it as

u (x) max z, s.t. ze <= Vx + d,

where e is the vector of all ones and row of V, together with di, constitutes the ith
linear "piece" of the utility function. It is then straightforward to show that the
problem P(b0) is equivalent to the following linear problem:

Given b0 R n, find [(z,, x,)]= solving

max Y’. 6t-lzt,
t=l

s.t. ze <= Vx, + d, 1, 2, ,
Ax <= bo + b,

Axt < nxt-1 + b, 2, 3, ,
xt>=O, t= 1, 2, .

This is equivalent to replacing A, B, b, b0 and u(xt) in P(bo) with

0e 0,

This reduction shows that it is sufficient to deal with the case of linear utility. We
shall henceforth assume that u (x)= vx, where v R".

To see that the problem P can be solved as a linear complementarity problem,
we need the following lemma which was used by Dantzig and Manne [2]. It is derived
by taking limits of t-period sums.

LEMMA. If (X, y) satisfies the following four conditions, then x solves P.

1) (A-B)x <=b, x >=O.
2) y(A-B)x yb.
3) y(A-SB)=>v, y=>0.
4) y(A-SB)x vx.

We define the vector q and the matrix M as follows:

q= M=
B-A 0

A solution z (x, y) to the linear complementarity problem (q, M);

Find z R such that q +Mz >- O,
z->0,
zq + zMz O,

satisfies the four conditions of the lemma.
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3. A termination result. In this section, we use the arguments of Dantzig and
Manne [2] to establish a new termination criterion for Lemke’s algorithm and show
that it applies to the problem (q, M) defined in 2. The result generalizes-that of
Dantzig and Manne [2]. We conclude by discussing a condition guaranteeing non-
triviality of the computed solution.

Before stating and proving our main theorem, we briefly describe Lemke’s
algorithm. Lemke’s algorithm is applied to the augmented system given in tableau
form by

z w 0

where e is a column vector of all ones. If q >_-0, then w q, 0 0, z 0 solves the
problem. Otherwise, for 0 sufficiently large, the system will be feasible with z 0,
w-q + e0. A starting basis is obtained by letting 0 decrease until some component
of w is driven to zero. This is done by performing a linear programming type pivot
on row of the 0 column, where row is chosen by picking the component qi of q
which is most negative. The basis then consists of 0 and all w variables except wi.
The complement of wi, zi is then introduced to the basis using the usual min-ratio
test and pivot of linear programming. After each pivot, either 0 0, in which case
we have found a solution, or there is a distinguished pair (zj, wj), both terms of which
are nonbasic and one of which has just left the basis. We then attempt to introduce
the complement of the variable which just left the basis into the basis. If the min-ratio
test fails to find an acceptable pivot row, then the new variable cannot be entered
into the basis and we have terminated on a ray. As the algorithm cannot cycle,
.eventually either 0 leaves the basis, in which case we have found a solution, or we
encounter a ray.

TI-IEOrFM. If the linear complementarity problem (q, M) satisfies
1) M+Mt>-O,
2) q Mtz >- O, z >- 0 is feasible,

then Lemke’s algorithm applied to (q, M) terminates in a solution.
Proof. We apply the algorithm to the augmented system

w q +Mz + eO,

where e is a column vector of ones. The algorithm stops if 0 0 (in which case we
have obtained a solution) or if we encounter a ray. If we terminate in a ray, let
(w,,z,, 0,) denote the finite end of the ray and let (Wh, Zh, Oh)O denote the
homogeneous part of the ray solution. That is, Wh Mzh + eOh and points along the
ray are given parametrically by

Wr W:g -- i Wh ), Zr (Z, AI-- Zh).

Note that by almost-complementarity we have

WrZr W, -[- l Wh )(Z, "" tZh 0,

and we may then conclude that

(1) W,Z, WhZ, W,Zh WhZh --O.

From (1) we have that 0 WhZh Zh (MZh -I-eOh). Since ZhMZh >- 0, we find

(2) ZhMZh 19heZh O.
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From (2), we know that either Oh 0 or Zh O. If both equal zero, then (Wh, Zh, Oh) is
a trivial homogeneous solution and could not be used to generate the ray. Suppose
that Zh 0 and Oh >=0. Then Wh >=0 and WhZ, 0 would imply that z, 0. The final
ray would then be of the form [Zr 0, Wr q + e0r, 0 0r], where 0r 0, + AOh. But this
is the same ray as the initial ray which is a contradiction as Lemke’s algorithm cannot
cycle. It must then be the case that

(3) Oh =0.

From (3), we may then conclude that z,MZh z,[Mzh +eOh] Z,Wh. From (1), we
then have

(4) z,MZh O.

Since w, qMz, + eO,, ZhW, "-Zhq + ZhMZ, + ZheO,, which equals 0 by (1). Equation
(4) then allows us to write 0= Zhq +zh(M+Mt)z,+zheO,, and since M+Mt>=O we
may conclude that

(5) Zhq O, ZhMZ, >- O.

Suppose now that zhq <- O. Since MZh >-" 0 and Zh >- O, we have by the Farkas lemma a
violation of the second hypothesis of the theorem. Therefore,

(6) Zhq =0.

From equations (1), (5) and (6) and the fact that W,Zh Zhq d" ZhMZ, -b ZheO., we obtain
the conclusion that 0, 0. Hence, we cannot terminate on a ray.

To apply the theorem to our problem, we need to guarantee that the two
hypotheses are met. First note that M+M >- O, because

and B >_-0, (0, 1). The second hypothesis can be stated as:
There exists (x, y) such that
i) y(A-B) ->v, y =>0,

ii) (A-SB)x<-b,x>=O.
The duality theory of linear programming allows us to restate condition i) as

(A B)x -< 0, x >= 0 implies vx <= O.

This is essentially a boundedness condition guaranteeing convergence of the
infinite sums, and has the interpretation that any activity vector which is self-sufficient
in that it uses no primary goods and produces all the production goods it uses must
yield nonpositive utility to the economy.

The second condition is met by x 0 if we restrict b to be nonnegative. Alterna-
tively, condition ii) can be assumed directly. It has the interpretation that there exists
a ray along which the economy could grow at a rate of 1/8 if there were no restrictions
upon the use of primary goods.

So far, we have not guaranteed that the computed solution is nontrivial, i.e.,
vx > 0. (Note that x 0 may solve P.) To do this, we strengthen condition ii) and
require the existence of x-> 0 such that (A- B)x < b. This condition was first used
by Peleg and Ryder [6] in a slightly different context and is called &productivity. It
says that the economy could grow at a rate greater than 1/8 if there were no restrictions
upon the use of primary goods.
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THEOREM. If the technology is 8-productive and (x, y) satisfies the conditions of
the lemma, then x is nontrivial.

Proof. First note that since (x, y) satisfies the four conditions of the lemma, it
must be the case that vx >- yb. Consider now the primal linear programming problem:

min yb s.t. y (A SB >-_ v, y >- O.

By 8-productivity the dual problem has a feasible solution such that v>0.
Applying the duality theorem of linear programming yields the conclusion that yb > 0.

4. The Leontief model. In this section, we examine a special case of the economic
model which has a Leontief technology. Although the linear complementarity problem
is in general NP-complete, the particular case examined here can be solved in O(n)
operations.

To fix ideas, we describe the Leontief consumption model. There are n production
goods and 1 primary good, which we call labor. The technology has n productive
activities, each of which produces exactly one production good and consumes various
amounts of labor and production goods. We adopt the natural convention that the
ith activity produces the ith good. There is an exogenously given supply of labor in
each period which we take to equal 1. The utility is linear and is positive only for
consumption activities. We have then

c Io -o-,,-o-’
where c R /, vR/ and (I-A)Rn" is a Leontief matrix. That is, (I-A) has
nonpositive off-diagonal elements and positive principal minors. The paper by Fiedler
and Ptik [3] contains a discussion of such matrices.

The results of Fiedler and Ptak [3] show that 8-productivity implies that (SI-A)
is also a Leontief matrix. Thus (I-A) and (SI-A) have nonnegative inverses. A
subscript on a vector denotes its ith component. The solution is then found as follows.
Let

=c(l-A)-,
pick

=c(I-A)-1,

] e arg/rnax {1,ciJ

w max
ciJ

and let f (fl, rE,’ ’, f,) be given as

Let z (I A)-f.

if i=].

THEOREM. X (7., f) as defined above solves the problem P.
Proof. Let y (ff, if). The pair (x, y) then satisfies the sufficient conditions of

the lemma.
At this point it is appropriate to note that f is obtained at the cost of solving two

linear systems, n comparisons and n + 1 divisions. The vector z can then be found
using the factorization of (I-A) already obtained.
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Finally, we remark that for the Leontief consumption model examined in this
section, it is not difficult to show that the conditions of the lemma are necessary as
well as sufficient. Furthermore, if the model is irreducible, the only solutions are those
given by the method shown above.
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SPREADS, TRANSLATION PLANES AND KERDOCK SETS. I*

WILLIAM M. KANTOR"

Abstract. In an orthogonal vector space of type l)/(4n, q), a spread is a family of q2n-l+ totally
singular 2n-spaces which induces a partition of the singular points; these spreads are closely related to
Kerdock sets. In a 2m-dimensional vector space over GF(q), a spread is a family of q + subspaces of
dimension m which induces a partition of the points of the underlying projective space; these spreads
correspond to affine translation planes. By combining geometric, group theoretic and matrix methods, new
types of spreads are constructed and old examples are studied. New Kerdock sets and new translation planes
are obtained having various interesting properties.

1. Introduction. A Kerdock set is a collection of q2n-1 skew symmetric 2n 2n
matrices over GF(q) (with zero diagonal) the difference of any two of which is
nonsingular. Each such set produces a spread of an I+(4n, q) vector space; conversely,
each spread produces at least one type of Kerdock set (up to a suitable version of
equivalence). Certain Kerdock sets were first used by Kerdock [12] when q 2 in order
to construct nonlinear error-correcting codes having interesting properties (cf. Delsarte
and Goethals [4], Goethals [9], MacWilliams and Sloane [14, Ch. 15]). Cameron and
Seidel [1] give an elegant description of the relationship between Kerdock sets with
q 2 and codes.

Each translation plane over GF(q) of order q" can be coordinatized by an
algebraic system which is equivalent to a set of q" matrices, each of size m m, the
difference of any two of which is nonsingular. Each such set produces a spread E of a
2m-dimensional vector space V (Liineburg [13, p. 8]). The plane can be recovered from
V and E as follows: points are vectors, and lines are cosets A + v with A E and v V
[13, p. 2]. We will be concerned with a special type of spreads of V" symplectic spreads,
in which there is an underlying Sp (2m, q) structure on V such that each member of E is
a totally isotropic m-space.

The similarity between the situations in the preceding paragraphs is obvious. For
fields of characteristic 2, there is an elementary procedure for passing from orthogonal
spreads to symplectic ones (Dillon [7], Dye [8]). This procedure is far from bijective: an
f+(4n, q) spread produces many different Sp (4n-2, q) spreads, and hence many
translation planes. Inequivalent orthogonal spreads never produce isomorphic trans-
lation planes.

The purpose of this paper is to construct new orthogonal spreads, and hence new
Kerdock sets and translation planes; and to briefly study some of the translation planes
arising from known orthogonal spreads. The main results can be summarized as follows.

The Kerdock sets originally constructed by Kerdock [12] and Delsarte and
Goethals [4] correspond in a natural manner to desarguesian affine planes.

The f/(2n, q) spreads (for q even) obtained from the desarguesian affine plane
AG(2, q2n-1) give rise to large numbers of pairwise nonisomorphic nondesarguesian
translation planes of order q2n-x, each admitting a collineation of order q2,-+ 1,
transitively permuting the points at infinity. While the spreads defining these planes
have been known implicitly for a while, the surprising fact that the planes are
nondesarguesian was not.

* Received by the editors March 5, 1981.

" Bell Laboratories, Murray Hill, New Jersey 07974. Permanent address’ Mathematics Department,
University of Oregon, Eugene, Oregon 97403.
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The unitary group GU(3, q) (with q-=0 or 2 (mod 3)) gives rise to an f/(8, q)
spread on which the projective unitary group PGU(3, q) acts 2-transitively. When
q 22e/1 > 2, one of the associated translation planes is a nondesarguesian plane of
order q3 admitting an SL(2, q) acting with two orbits at infinity, of lengths q + 1 and
q3_ q. The spread X also produces Kerdock sets of 4 4 skew symmetric matrices.

The group $L(2, q3) (with q even and q > 2) produces yet another 12/(8, q) spread,
another Kerdock set, and two new translation planes.

Sections 2 and 3 contain background material. Section 3 contains the basic idea of
the paper, and explains why our approach only produces translation planes of even
order of the form q2n-1. That section also contains the crucial nonisomorphism criterion
(3.6), which applies to all of the translation planes discussed throughout the paper. This
criterion also makes it possible to determine the full collineation groups of our planes by
using the more richly structured orthogonal spreads which produce the planes.

In 4, "cousins" of desarguesian planes are constructed. Section 5 describes the
elementary procedure for passing between orthogonal spreads and Kerdock sets.

Section 6 is concerned with a representation of GU(3, q) (essentially the adjoint
representation) and the corresponding spread (when q-= 0 or 2 (mod 3)); some of the
resulting translation planes are discussed in 7. An irreducible 8-dimensional
representation of SL(2, q 3) produces spreads and planes in 8, while an isolated GF(8)
example due to Dye [8] is discussed in 9.

Section 10 summarizes all the previous results in terms of Kerdock sets.
Automorphism groups are listed; they are subgroups of the groups of the corresponding
spreads. The ease of dealing with automorphism groups is an example of the advantage
of "extending" a Kerdock set to a spread: the latter has a richer structure. (This is
reminiscent of adding an overall parity check to a code.) Perfect 1-codes in certain
graphs are discussed in 11.

In a sequel we will construct spreads in orthogonal spaces of arbitrarily large
dimension over any field of characteristic 2. Unfortunately, despite remarks in [19,
2(b)] and [20, l(b)], examples are not even known in 1)/(8, q) spaces when q--- 1

(rood 6).

2. Preliminaries. We begin with a brief review of orthogonal geometry (cf.
Dieudonn6 [6]). Let V be a 2m-dimensional vector space over a field K. A quadratic
form O on V, with associated symmetric bilinear form (., ), satisfies O(av) a 20(v)
and O(u + v) O(u) O(v) (u, v) for all u, v V and a K. The form (u, v) will be
nonsingular, unless stated otherwise (cf. (6.3), (6.8)).

A singular vector v satisfies O(v) 0, while a totally singular subspace W satisfies
O(W) 0. Here, dim W _-< m. We will be concerned with spaces of type lq+(2m, K), in
which totally singular m-spaces exist. For such a space, there are two types of totally
singular m-spaces; two have the same type if and only if the dimension of their
intersection has the same parity as m [6, pp. 50, 65, 86, 87]. Each totally singular
(m- 1)-space is contained in exactly two totally singular m-spaces, one of each type.

If V is an fl+(2, K) space, it is called a hyperbolic line. If 2m 2 and V is not a
hyperbolic line, it is called anisotropic; there are then no nonzero singular vectors.

An orthogonal 2m-space is an l+(2m, K) space if and only if it is the direct sum of
pairwise orthogonal hyperbolic lines.

A point is, of course, just a 1-space. It may be singular or nonsingular.
If char K 2, then V is symplectic as well as orthogonal: y -< y+/- for each point y.

Then y+/-/y is another nonsingular symplectic space. In particular, if y is nonsingular
then the natural map y- y+/-/y from the (2m 1)-dimensional orthogonal space y- to
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the (2m-2)-dimensional symplectic space y+/-/y bijectively maps totally singular
subspaces to totally isotropic subspaces, and f(2m- 1, K)-Sp(2m-2, K) if K is
perfect.

FL(2m, K) is the group of invertible semilinear transformations of V, while
FO/(2m, K) is its subgroup preserving Q projectively. (Thus, each g FO/(2m, K)
determines a c K and a b Aut K such that Q(v g) cQ(v) for all v V.) The group
FSp(2m- 2, K) is defined similarly.

If G -<_ FL(2m, K) and ,E is a family of subspaces of V, then

Gx {g (/IEg Y-.}.
Also, Cv(G) {v VIv v for all g O}.

3. Spreads and translation planes. Let V be an f+(4n, q) vector space with q
even. Let ,E be a spread of V. Then Y,, consists of q2n-1 + 1 totally singular 2n-spaces, and
each nonzero singular vector lies in exactly one of them. If y is any nonsingular point,
then

(3.1) (y+/- t"l )/y ={(y, y+/-F)/ylFX}
is a spread of the symplectic space y+/-/y. (For, each nonzero singular vector of y+/-
belongs to exactly one space ylf’)F; moreover, y+/- cannot contain any F so that
dim y+/- f3 F 2n 1.)

Conversely, let g’ be a spread of a symplectic space V’ of dimension 4n- 2 over
GF(q), where q is even. Identify V’ with y+/-/y, for a nonsingular point y of an f/(4n, q)
space V. Fix a type of totally singular 2n-space of V. Set
(3.2)
Y(’) ={FIF is a totally singular 2n-space of the fixed type, and (y, y+/- fqF)/y E’}.
Then ,E 5e(g’) is a spread of V. (For, each F’ Y,,’ arises as (y, y+/- f’lF)/y for a unique F
of the fixed type. If FI, F2S/’(,’), F F2, then (y+/-fqF)fq (y+/-f’lF2) 0 since ’ is
spread. However, dim (Ft f-)F:)-= 2n (mod 2). Thus, F F2 0, and hence

ILl {F- {0}IF }1 (q:"-I + 1)(q:n 1), so Y,, is indeed a spread of V.)
Clearly,

(3.3) Y,,’=(y+/-f’)Y’(,E’))/y and Y,,=O((y+/-fqg)/y).
The preceding constructions are due to Dillon [7] and Dye [8].
With each spread ,Y,’ of V’ is associated a translation plane M(,Y,’) of order

which was defined in 1. Here,

(3.4) Aut (g’) V’ xl FL(4n 2, q)x,.

Note that FL(4n -2, q), can be larger than FSp(4n- 2, q)x, (cf. 4).
If 5;’ and " are spreads of the symplectic space V’, and are equivalent under the

action of FSp(4n-2, q), then 6e(,E’) and Y’(Z") are equivalent under the action of
FO/(4n, q) (but not conversely). Moreover, d(E’) and (") are isomorphic; remark-
ably, the converse is true.

THEOREM 3.5. Let ,i be a spread of an Sp(2m, q) space Vi (i 1, 2), where q is
even. If () (2), then there is a semilinear transformation s V1 V2 such that

(i) =2, and
(ii) (u s, vS)2 a(u, v)i ]’or some a GF(q), some z Aut GF(q), and all u, v Va.
Proof. Let 0 be the polarity of PG(2m- 1, q) determined by the symplectic

structure on Vx (so that W W+/- for each subspace W of V1). Define b similarly for
V2. We are given a semilinear transformation g’V V2 such that := Y-,2. Set
0 g =g-Og.
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If F e Z1 then F F and (Fg)’ Fg. Moreover, (Fg)g Fgg-lg Fog Fg.
Thus, & and 0 g are polarities of the projective space corresponding to V2, both of which
induce the identity on E2. Then O0g is a collineation of that projective space, and hence
is induced by a semilinear transformation h of V2. Here, h is the identity on X2, and
hence is an homology of M(E2). In particular, [h is odd since q is even (Dembowski [5,
p. 172]).

Set 1OOgl=2f+l and f=(&Og)( Then (Og)=& since &=l and 0=1.
Consequently, = 2 and Oge= O. There is thus a semilinear transformation
s: Vx-* V inducing gf and satisfying (ii) (Dieudonn6 [6, Ch. III, 3]); clearly, s also
satisfies (i). !-I

Remarks. The above proof provides some insight into the nature of a symplectic
spread: the polarity is trying to act on M() as an homology.

If Xl 2, then (ii) asserts that s FSp(2m, q)xl.
COROLLARY 3.6. Let Ei be a spread in an l+(4n, q) space Vg (i 1, 2), where q

is even. Let yi be a nonsingular point of Vi. Assume that ((yi 1)/Y1)’
M((y- f3 E:)/y:). Then there is a semilinear transformation h" V V2 such that

(i)
(ii) y Y2, and
(iii) O2(v h) aO(v)* for some a GF(q), some - Aut GF(q), and all v V.
Proof. By Theorem 3.5, there is a semilinear transformation h ’y - --> y- such that

(y- Xl)h y- X2, yl Y2, and (iii) holds for some a, some - and all v y-. There
are exactly two extensions of h to a map V--> V2 satisfying (ii) and (iii), only one of
which maps the type of 2n-space in Xl to the type of 2n-space in X2. In view of (3.3), the
latter extension satisfies (i)-(iii).

COROLLARY 3.7. If X, X’ and y are as in (3.3) then every collineation ofM(X’) fixing
0 can be written in the form sf, where s is induced by an element of FO+(4n, q)x.y andfis
an homology of M(Z’).

Proof. This is implicit in the proof of Theorem 3.5.

4. Desarguesian spreads and their cousins. If [., .] is a nonsingular symplectic
form on a 2-dimensional GF(q")-space V, then (u, v)= T[u, v] defines a nonsingular
symplectic form on the GF(q)-space V for any nonzero GF(q)-linear functional T on
GF(q’*). One-dimensional GF(q’*)-subspaces become totally isotropic m-spaces, and
we obtain a spread of V. Any symplectic spread obtained in this manner will be called
desarguesian" the corresponding translation plane is just the desarguesian one
AG(2, q") (Liineburg [13]).

If q is even and rn 2n 1, then we obtain a spread E’ of an Sp(4n -2, q) space,
and hence can apply the previous section. The spread S(E’) will be called a desarguesian
spread of an fl+(4n, q) space.

DEFINITION. Two spreads E’ and E" of an Sp (4n- 2, q) space (with q even) are
called cousins if 6(E’) and (E") are equivalent under the action of FO/(4n, q). In this
case the translation planes M(E’) and M(E") will also be called cousins.

It should be noted that the process of passing from a translation plane to one of its
cousins is quite different from that of derivation or net replacement (Liineburg [13]). In
fact, the planes we are considering have order qn-1, which need not even be a square.

Given a spread E’ of an Sp(4n-2, q) space V’ (with q even), all cousins are
"found" as follows. Form the spread E 5(E’) as in (3.2). Then construct the various
slices (3.1) of E. Of course, all that is really desired are slices that are inequivalent under
the action of FO/(4n, q). This naturally leads to the consideration of the orbits of
nonsingular points under the action of FO/(4, q)x. When E’ is desarguesian, the latter
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group was determined by Dye [8] and Cohen and Wilbrink [2]. It is then straightforward
to determine the orbits of FO/(4n, q) on nonsingular points. This was done by Dye [8]
in the case of O/(4n, q) orbits. For completeness, we will describe these orbits.

LEMMA 4.1. Let ,’ be a desarguesian spread of an Sp(4n-2, q)-space, where q
is even. Define V, y and Y (,’) as in (3.2). Exclude the case n =q 2. Then
G= FO+(4n, q)F Sp (4n-2, q)f=(SL(2, q2n-)X GF(q)*) Aut (GF(q2"-a)).
The cousins of E’ arise as "= (y"+/-f3 E)/y", with y" one of the following types of
nonsingular points (where log2 q).

(I) y"= y.
(II) y # y" < y+/-, [G[ q2,-l(q 1)(2n 1)/(one G-orbit); Gyfixes one mernberof, (which meets (y, y") nontrivially) and is transitive on the remaining ones.

(III) (y, y") is a hyperbolic line, IG,,I (qa"-- )(q 1)(2n 1)1" with l"lt (at least
(1/2q- 1)/l such orbits); Gy,, has three orbits on ,, of lengths 1, 1 and q2,-1_ 1.

(IV) (y, y") is an anisotropic line, IG,,I a)(q- 1)(2n 1)/" with r’lt (at
least q/ such orbits); Gy,, has a cyclic subgroup transitive on

Proof. That G FSp (4n 2, q)x, (SL(2, q2,-1) x GF(q)*). Aut GF(q2n-) is
essentially contained in [8] and [2]. Thus, G fixes y; consider its action on y+/-. It is
transitive on the hyperplanes of y+/- through y, on the singular points of y-, and on the
nonsingular points other than y. There are thus 3 point-orbits on y-, and hence also 3
hyperplane-orbits (Dembowski [5, p. 78]), which can only be the hyperplanes through y
and the nonsingular hyperplanes H of y+/- of each type. Note that H+/- is either a
hyperbolic line or an anisotropic line through y. This accounts for all the types (I)-(IV).
Keeping in mind the fact that G contains all scalar transformations, the lemma follows
easily.

THEOREM 4.2. Let q be even and q" > 8, where n > 1. Let E be a desarguesian
spread of an l)+(4n, q) space, and consider the resulting cousins ofAG(2, q2n-1).

(i) If two cousins M((y-fqE)/yi) are isomorphic (i 1, 2), then yl and y2 are
FO+(4n, q)v.-equivalent.

(ii) The cousin arisingfrom Lemma 4.1 (II) is a nondesarguesian semifieldplane of
order

(iii) The cousins arisingfrom Lernma 4.1 (III) are nondesarguesian oforder q2,-a.
There are at least (q- 2)/(2 log2 q) of these cousins. The full collineation group of each
induces a subgroup of GF(q2"-a)*. Aut GF(q2-) on the line at infinity, with orbit
lengths 1, 1, q2-1_ 1.

(iv) The cousins arising from Lemma 4.1 (IV) are flag-transitive nondesarguesian
planes of order q2,-. There are at least q/(2 log2 q) pairwise nonisomorphic cousins of
this type. The full collineation group of each of them induces a group of order dividing
(q2,-1 + 1) log2 q2,-1 on the line at infinity, having a normal cyclic subgroup transitive on
the line at infinity.

Proof. By Corollary 3.6, (i) holds. All remaining assertions are immediate
consequences of Lemma 4.1 and Corollary 3.7.

Further information concerning these cousins will not be required in this paper,
and hence is postponed until a subsequent paper.

5. Kerdoek sets. Fix an fl+(4n, q) space V (where q may be even or odd), and two
totally singular 2n-spaces E and F such that V EO)F. There are bases el," ’, e2n
and fl," ", f2, of E and F such that (ei, f.) &j for all i, j. Of course, Q(e) Q(f.) O.

Writing matrices with respect to the ordered basis e 1, ’, e2,, f, , f2,, we find
that I O} preserves Q:-M and M has zero diagonal,(5.1)

M 1
Mr=

/



156 WILLIAM M. KANTOR

where O and I denote the 2n 2n zero and identity matrices. Thus, the group P of
matrices (5.1) preserving Q is isomorphic to the group P of skew symmetric matrices
(with zero diagonal), via M M ( o) for M P.

A Kerdock set is a subset yc of P consisting of q2n-1 matrices the difference of any
two of which is nonsingular. Clearly, 7c determines a subset { of P. Define

(5.2) 0(Yf) {E} U {Fg[g

If g (t o)and g’= (, o)belong to P, then Fg N F’= 0 precisely when
M-M’ is nonsingular. Thus, 6e(Y/’) is a spread o.f V.

Conversely, let ; be any spread of V. Pick any two members of , call them E and
F, and pick a basis ea,..., ez,, [a,""", [, as above. Define

(5.3) K() {M e PIFM -{E}}.

Then IK(Z)[ [E[- 1 q2,-, and hence K(E) is a Kemock set since any two members
of intersect trivially.

Clearly, K((Y{))=Y{ and Z=(K()), assuming that we fix our basis
Ca, ezn, fl, fZn.

Two Kerdock sets { and { in P are called equivalent if there is a transformation
M dA-aM (A-a) + C sending Y{ to Y{1, where d GF(q)*, A GL(2n, q),
Aut GF(q) and C P.

LZMMA 5.4. LetY{and{1 be Kerdock sets in P. Then Y{and Y{a am equivalent ifand
only if them is an element g FO+(4n, q) such that Y(Y{)g (Y{).

Proof. Let g FO+(4n, q). Then v g v ( )( for 2n x 2n matrices A, B,
C, and Aut (GF(q)), while O(v g) dO(v)+ for some d GF(q)* and ff
Aut GF(q). Then ff , while ABt= dI and C P.

If F( ) (Yf), so N Y{, then

=F( O)(NQ )(A 0(I )=F(A I 0
-N*B I)

Thus (N)g (Y{) if and only if N dA-N*(A-) + C takes Y{ to N.
Note that (5.4) shows that K(E) depends on neither F nor the choice of basis

e,..., e, of E (up to equivalence). Also, by Lemma 5.4 the determination of all
Kerdock sets in P is equivalent to the determination of all pairs (E, E) consisting of a
spread E of V and a member E of E. Examples E exist for which G FO+(4n, q) is
not transitive on E, and hence which produce at least two inequivalent Kerdock sets.
However, if E’ is a desarguesian spread of an Sp(4n- 2, q)-space with q even ( 4),

then E (E’) has G acting 3-transitively on E as PFL(2, q"-). The corresponding
Kerdock setK((E’)) is then independent of E. This is precisely the usual Kerdock set,
discovered by Kerdock [12] and Delsarte and Goethals [4] (compare MacWilliams and
Sloane [14, Ch. 15]). It will be called the desarguesian KeMock set.

6. Unitary spreads. In this section, spreads will be constructed using the unitary
groups GU(3, q). It will be convenient to avoid finiteness initially and to start with any
field F of characteristic p.

The group G0 GL(3, F) acts by conjugation on the space V0 sl(3, F) of 3 x 3
matrices of trace 0. If M, N e Vo then (M, N) tr (MN) defines a symmetric bilinear
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form preserved by G. If M (/zij), define

(6.1) O(M) Z/ziitzji + Z/zitxi.
i<] i<]

Then Q(M +N)- Q(M)- Q(N)= (M, N), so that O is a quadratic form with asso-
ciated bilinear form (., .).

LEMMA 6.2. Go preserves Q.

Proof. If p 2 then (M, M) 2Q(M), and the lemma is obvious.
The case p 2 can be handled by calculation, or as follows. Let R be a com-

mutative ring in which 2 is invertible. Adjoin indeterminates/zi, aij and bi (1 -<_ i, <= 3)
subject to the relations i/x, =0 and AB =L where A =(ai) and B =(bi). Set
M (/xii). If Q is defined by (6.1), then Q(BMA) Q(M) once again. Now pass mod 2
and specialize the indeterminates in order to deduce the lemma. 71

LEMMA 6.3. If p 3 then rad Vo=0. If p 3 then rad V0 (I), where I is the
identity matrix.

Proof. If Eij is the matrix having (i, ])-entry 1 and all other entries 0, then tr
is the (i, j)- entry of A. Let A=(ai)rad V. Then ai=0 for iS/’. Also, 0=
tr (A(Eii-Eft)). Thus, A allL as required.

LEMMA 6.4. Let p 3. Then Vo has type 12+(8, F) if and only if F contains a
primitive cube root of unity.

Proof. The matrices

0 a 0 0 0 c 0 0 0 a 0 0

b 0 , 0 0 0, 00 0 0 / 0,0 0 d 0 0 f 0 0

are pairwise orthogonal, and produce a decomposition of Vo into four nonsingular
2-spaces. On the first three of these, Q induces the form xy, while on the last it induces
the form -a -(-a -)-(-a -)- a2--[-a _[_2, Thus, Vo has type YI+(8, F)if
and only if xZ+ x + 1 0 has a root. 71

We now turn to transvections (i.e., elations of PSL(3, F)). A nontrivial trans-
vection is defined to be a matrix of the form I +X with X= 0 # X. Clearly, such a
matrix X belongs to Vo. A full transvection group consists of all transvections with a
given center and axis. (In terms of the desarguesian plane PG(2, F), the axis is the line
fixed pointwise and the center is the point fixed linewise; cf. Dembowski [5, p. 119].)
Such a group has the form {I + aXla F}. All nontrivial transvections are conjugate [6],
SO Q(X) O(E13) 0.

Let denote the set of all the corresponding singular points (X).
LEMMA 6.5. ff (X) alp, set To(X) {M VolXM MX 0}. Then dim To(X)

3 and Q(To(X))= O. (Moreover, if p 3 then To(X) consists of all singular vectors in
Cvo(X).)

Proof. If X EI then Cvo(X) consists of all matrices

a b c

M= 0 -2a d,
a0 0

with a, b, c, d s F. Here, MX 0 if and only if a 0, while O(M)=-a(-2a)-
a a (- 2a)a 3a. Thus,
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(6.6) To(X)= 0 b,c,dF ifX= 0 0

0 0 0

This proves the lemma. El
Remark. To(aX)= To(X) if a # O.
LEMMA 6.7. If (X), (Y) b and To(X) f-) To(Y) O, then To(X) fq To(Y) contains

some (Z) .
Proof. (X) corresponds to a flag in PG(2, F) (namely, the center-axis flag of

I + X). By (6.6), To(X) "contains" every flag having the same center or axis as I / X. If
the center of I +X lies on the axis of I / Y, or vice versa, then To(X) and To(Y)
"contain" a common flag. We can now use the transitivity of (Go)(x in order to
specialize Y to Y X’; but then To(Y) To(X) by definition, while To(X) (q To(X)
0 by (6.6). V1

From now on, we specialize to the case F GF(q2). Set a tf for a F, and write
K GF(q). Let G- GU(3, q) be the unitary group consisting of all matrices A
GL(3, qZ) such that A-= A’, and set

V {M Vol/r’= M}.
Then dimK V 8.

Note that G acts on V (since A-1MA (A-l/rA)’).
If M (/zii) V, then Q(M) is still given by (6.1). Since/z, K and/zji =/2j, we

have Q(M) K. Thus, Q is a quadratic form V K. Its associated bilinear form is just
the restriction of (., .) to V x V.

LEMMA 6.8. lfp 3 then rad V 0. Ifp 3 then rad V (I).
Proof. Compute! 1
LEMMA 6.9. Let p 3. Then V has type fV(8, q) if and only if q 2 (mod 3).

(6.10)

Proof. Set

a c 0

[a,b;a]= a b 0 and [/3,7]
o 0 -a-b

(6.11) Vl={[a,b;a]la, bK,aF} and V {[/3, 3’]lfl, 3’ F}.

Then V= V1 J- V2. The matrices [a, b; 0], [0, 0; a], [/3, 0] and [0, 3’] are pairwise
orthogonal, and hence produce nonsingular 2-spaces. The last three 2-spaces are
anisotropic lines. The first is anisotropic if and only if O([a, b; 0]) a 2 + ab + b2 is never
0 for ab O, which is true precisely when GF(q) does not contain a primitive cube root
of unity, i.e., when q =-2 (mod 3). This proves the lemma. [-!

The transvections in G have the form I + Y with y2= 0 and I- Y (I + Y)-a
it+ IT.t. Fix 0F with =-1. (If p 2, set 0 1. If p 2 then 0 can be taken as
(b )/2 for any d’ F K.) Then I + Y I + OX with X2 0 X and X V.

Set lq {(X)IX2 0 X,X V}. Then f consists of singular points of V which are
permuted 2-transitively by G (Dembowski [5, p. 54]; Liineburg [13, p. 157]).

LEMMA 6.12. If (X) fi, let T(X) {M VIXM MX 0}. Then
(i) dim T(X)=3,
(ii) T(X) consists of singular vectors, and

(iii) T(X) fq T(Y) 0 if (X) (Y) f.
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Proof. (i) Clearly, T(X)= V O To(X). If a F-K then To(X)_ T(X)+aT(X),
so 6 dim,: To(X) >= 2 dim,: T(X).

Let p 2. Then M-, ]r is an involutory K-linear transformation on To(X).
Hence, its set of fixed points has dimension ->1/2 direr To(X), proving (i) in this case.

If p 2, recall that ff -0. If M To(X) then M 1/2(M + rt) + 1/2(M- hrt), while
OT(X) (N To(X)[ -N}. Thus, dim,: T(X) dim,: OT(X) 1/2 dim: To(X) 3.

(ii) See Lemma 6.5.
(iii) Since no two members of f can be perpendicular, this follows from (6.6)

(compare Dembowski [5, p. 104]; Liineburg [13, p. 154]).
DEFINITION. If q=2 (mod 3), fix a type of totally singular 4-space of V (cf.

Lemma 6.9). Let F(X) be the subspace of that type containing T(X). Set
{F(X)[(X) l}.

TI-IEOEM 6.13. (i). If q =--2 (rood 3), then Z is a spread of the 1+(8, q) space V
permuted 2-transitively by PGU(3, q).

(ii) I’q=-O (mod 3) then {(T(X),I)/(I)](X)EI} is a spread o]: the 11(7, q) space
V/(I) permuted 2-transitively by PGU(3, q).

Proof. (i) Two totally singular subspaees of the chosen type have intersection of
dimension 0, 2 or 4. By Lemma 6.12 (iii), distinct members of Z intersect trivially. They
thus cover [Z[(q4-1)/(q 1) (q + 1)(q + 1)(q + 1) singular points, that is, all the
singular points of V.

(ii) This time V/(I) has exactly ]l’),[(q 3-1)/(q- 1) singular points. !-3
DEFINITION. Let q =-- 0 (mod 3). Let V# be an fl+(8, q) space containing V/(I) as a

hyperplane. Fix a type of totally singular 4-space of V#, and let F(X) be the subspace of
that type containing (T(X), I)/(1). Set {F(X)I(x) f}.

THEOREM 6.14. Ifq (mod 3) then , is a spread of V# permuted 2-transitively by
PGU(3, q).

Proof. This is proved exactly as in Theorem 6.13.
The spreads of Theorems 6.13 (i) and 6.14 will be called unitary spreads. For

q 32e+t, they are due to Thas [19]. When q--2 (mod 3), they can be extracted from
Tits [21, Ch. IV].

PROPOSITION 6.15. (i) If q 2 then FO+(8, 2) A9.
(ii) Ifq 3 then FO+(8, 3). is isomorphic to the derived group of the Weyl group of

type E7.
(iii) If q > 3, and q =-0 or 2 (rood 3), then FO+(8, q)PGU(3, q).
(iv) If q is even and q > 2 then E is nondesarguesian.
If q 2 this is well known. The case q 3 is discussed (implicitly) in Kantor and

Liebler [11, (2.16), Case 8]. When q is even and q > 2, Proposition 6.15 can be proved
exactly as in Cohen and Wilbrink [2]. The case of odd q > 3 can be handled either
geometrically or group theoretically; we omit the details.

For future reference, we will introduce some additional notation concerning the
symbols [a, b; a] and [y, 6] defined in (6.10). Let q be even and abbreviate (ef. 7)

(6.16) (r; ) [0, 0; r] + (N).

If A (A01 ) G, let AIz) be obtained from At by squaring all entries. Then

(6.17) A-t(tr; )A (tr; )AZ)(detA1)-t, A-t[% ]A =[% 6]A1,

where the right sides should be viewed as matrix products.
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7. Translation planes produced by unitary spreads. Define V, G and 5 as in 6,
using q 22e+t -2 (mod 3). According to 3, determines various translation planes
((y- f’) )/y) as y ranges over the nonsingular points of V. We will only mention three
types of planes.

Probably the most interesting example arises when y contains

1 0
0 1
0 0

0
O.
0

Note that Q(N)= 1. The stabilizer G(N) of (N) consists of all unitary matrices of the
form (,1 ), where A-t [ and 6 1. Since this group contains all scalar matrices
61 with 66 1, and each such matrix acts trivially on V, we can restrict our attention to
the group GU(2, q) of those matrices having 6 1. Here (Dieudonn6 [6, p. 46]),

GU(2, q) SU(2, q) 7/,+ SL(2, q) Z+.

THEOREM 7.1. Let q 22e+l > 2, and set M M((N1 f’) Y.)/(N)).
(i) s is a nondesarguesian translation plane of order q3.
(ii) (Aut M)o__L(2, q).
(iii) SL(2, q) has two orbits on the line Lo at infinity, of lengths q + 1 and q3_ q.
(iv) There is a desarguesian subplane So containing 0 and the orbit on Lo of length

q + 1, and Aut sd induces FL(2, q) on So.
(v) There is a cyclic collineation group of order q + 1 fixing Mo pointwise.
Proof. The group D of diagonal matrices diag (6, 6, 1) with 66 1 is a cyclic group

of order q 4-1 fixing all q2 of the vectors (6.16). Since q > 2, the desarguesian plane
AG(2, q3) admits no such group. This proves (i), and provides us with a desarguesian
subplane Mo of order q such that (v) holds. Also, (6.17) yields (iii) and (iv).

It remains to prove (ii). This is immediate by Corollary 3.7 and Proposition 6.15
(iii) but can also be proved as follows. Let H be the subgroup of (Aut M)o generated by
all elations, and assume that H r $L(2, q). Then H merges the two Loo orbits of
SL(2, q), and hence is transitive on Lo. Then s is desarguesian (Liineburg [13, pp.
178-179]). This contradiction completes the proof.

COROLLARY 7.2. There is a primitive cube root of unity to such that (N+/- ,)/(N)
consists of the subspaces (cf. (6.10), (6.16))

(7.3) {(atr2; at)+ [To", yt]la K, yF},

(7.4) {(3/; 39)A(2) + faro, ,r/]A[a K, "yF},

where tr F and A SU(2, q).
Proof. Set

111X= 1 1 0,
0 0 0

so (X)s ft. By Lemma 6.12, T(X) consists of all matrices

a a /
a a ,
3’ "/ 0
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Since F(X) is a totally singular 4-space containing T(X), there is a cube root of unity
to 1 such that F(X) consists of all matrices

a q + bo3 b O.

3" 0 0 0 b

Then (N, N-f’)F(X))/N is just (7.3) with tr= 1. By (6.17), all the subspaces (7.3)
belong to E.

If

10 !10 0
0 1

and X’= P-1XP, then F(X’) consists of all the matrices

a / a 0 0

3’ 0 + 0 b
a q ba3 0

and N-f’)F(X’) consists of those with a b. This gives us the matrices [a, a; 3"]+
[a + aa3, 37] [a, a; 3’]+ [ato, 7]. Modulo (N), this is (3’; 37) + [ato, 37]. That the subspaces
(7.4) consist of all remaining members of (Nx f’) ,E)/(N) now follows from (7.1 iii) and
(6.17). I-I

Remark 1. The representations of SU(2, q) on the spaces (N+/-f") VI)/(N) and V2
(cf. (6.11)) are related as indicated in (6.17) by the squaring automorphism of GF(q2).

Remark 2. The group GU(2, q) has a set of q2_q + 1 subgroups of order q + 1
each of which fixes pointwise a desarguesian subplane of order q. No two of these
subplanes have any common points on L. (These assertions are proved by considering
the action of PGU(3, q) on PG(2, q2): the required groups of order q + 1 are seen to be
the homology groups whose axes are fixed by the group in Theorem 7.1 (v).)

We conclude this section with twe more slices of E.
Example 7.5. Let q > 2. Choose a # 0, 1 in K, and set

1 0 0

M= 0 a 0
0 0 a+l

Then Q(M) a 2 + a + 1 # 0. Form M ((M" f) E)/(M)). The group G(t> induces
H 7/q/ x 7/q/ on M. H has three cyclic subgroups of order q + 1 each of which fixes
pointwise a desarguesian subplane of order q. No two of these subplanes have common
points at infinity. This plane is neither desarguesian nor one of those discussed earlier,
by Corollary 3.6.

Example 7.6. Let A GU(3, q) have order q3 + 1. Then Cv(A) is an anisotropic
2-space. Choosing M in Cv(A) produces a plane of order q3 having a collineation of
order q2_q + 1. By Lemma 3.6, this plane is neither desarguesian nor a type (4.2 IV)
cousin of a desarguesian plane.

8. More spreads and planes. For the next construction, take a field F GF(q3) Of
characteristic 2, and let V consist of all quadruples x (a,/3, 3", d) with a, d K
GF(q) and/3, 3’ F. Set Q(x) ad + T([33"), where T is the trace map F K defined by
T(/3) =/3 +/3 q +/3 q2. Then Q is a quadratic form on V, and turns V into an f/(8, q)
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space. Define

(8.1)
X(oo) {(0, 0, 3’, d)la F, d K},

X(t) {(a, B, atq+q2+ qt2+ t, T(Bta+q)[a K, F},

where F. Define linear transformations ] and It] by

(8.2) (a,/3, y, d) (d, y, B, a),

(a, , y, d)l=(a, at+B, atq+"+B"t"-B"2to +% at1+++ T(Btq+o) + T(yt)+d).

THEOREM 8.3. (i) X {X(t)lt F fq {}} is a spread of V.
(ii) G ([t], lit F) is a subgroup of 0+(8, q)x inducing PSL(2, q3) on X,, acting in

the usual 3-transitive manner.
(iii) If q > 2 then is neither desarguesian nor unitary.

Proof. A straightforward calculation shows that ] and It] preserve O, X(oo) (0),
(0) (oo), X(t) X(t-1) for # 0, oo, X(oo)t= X(oo) and Z(x)tt= Z(x + t) for
x, # oc. This proves (ii). Since E(ec)f’)X(0)=0, (i) follows from the 2-transitivity
of G. Now assume that q > z.

Another calculation proves that G acts irreducibly on V, so that cannot be a

desarguesian spread by Lemma 4.1. The argument in [2] shows that FO+(8, q)x
(SL(2, q3) GF(q)*) Aut GF(q3). Thus, also cannot be unitary, and (iii) holds. [

Examples. Let q>2. Note that (a, , y, d)--) (a/pl++2, fl/p, yp, dp++2)
preserves Q and whenever 19 F*. Thus, the stabilizer of (1, 0, 0, 1) in SL(2, q3) has
order 2(q2 + q + 1). Using fY(8, q6), we find that there is also a nonsingular point whose
stabilizer has order 2(q2-q + 1). Adding orbit lengths, we obtain all q3(q4_ 1) non-

singular points in V (compare Lemma 4.1!).
There are thus just two types of cousins to consider.
One type has its full collineation group inducing a group of order 2(q2+ q +

1)lAut (GF(q3))I on the line at infinity (by Corollary 3.7). There is an orbit there of
length 2.

A second cousin has its full collineation group inducing a group of order 2(q 2 q +
1)]Aut (GF(q3))l at infinity.

9. One more spread and one more plane. Dye [8, 4] constructed a curious
spread X in an fY(8, 8) space V, having the following properties. FO+(8, 8)x ->
(A9 GF(8)*)(b), where b is the field automorphism of order 3. (In fact, equality holds
here although Dye did not prove this.) {F f’) Cv(qb)lF F X} is a desarguesian spread
in the f+(8, 2) space Cv(qb). The A9 prevents the spread X from being equivalent to any
we have already discussed.

Let y be a nonsingular point fixed by b. Then there is a subgroup SL(2, 8) of A9
fixing y. This group has two orbits on X, of lengths 9 and (39)6 (as can be seen from Dye’s
construction).

THEOREM 9.1. (i) M((y-f’)X)/y)=M is a nondesarguesian translation plane of
order 83

(ii) (Aut M)0 has a normal subgroup SL(2, 8) whose orbits at infinity have lengths
8 + 1 and 83- 8. (Aut Mo) fixes a desarguesian subplane of order 8.

(iii) (Aut M)0 contains PFL(2, 8) x 7/3.
(iv) M is not isomorphic to the plane of order 83 appearing in Theorem 7.1.
Proof. (i) and (iv) follow from Corollary 3.6. Now (ii) is proved as in Theorem

7.1(ii), and (iii) follows from the fact that (A9)r PFL(2, 8).
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10. New Kerdock sets. In view of (5.3), each construction of a spread in an
II+(8, q) space produces at least one type of Kerdock set. These can be summarized as
follows, in the context of 4 4 skew-symmetric matrices over GF(q).

Example 10.1. Desarguesian Kerdock sets for q even, due to Kerdock [11] and
Delsarte and Goethals [4]. Automorphism group" 2-transitive, consisting of all x
ax" + b over GF(q3) if q > 2; A8 if q 2 (see Cameron and Seidel [1]).

Example 10.2. Unitary Kerdock sets via 6, with q=0 or 2 (mod 3), q>2.
Automorphism group" transitive, of order q3(q2_ 1) 1ogp q if q > 3 where p is the prime
dividing q; 0(5, 3) if q 3 (Patterson [15]).

Example 10.3. Kerdock sets via 8, with q even, q > 2. Automorphism group:
same as (10.1).

Example 10.4. Two Kerdock sets for q 8, via 9, both with intransitive
automorphism groups. (These arise from the two different orbits of FO/(8, 8)v. on ,E.)

When q 3, Example 10.2 is not new. It was discovered by Patterson [15], who
gave a very different description, found its automorphism group, and noted that there is
just one Kerdock set of 4 4 skew-symmetric matrices over GF(3) (up to equivalence).
The GF(2) example is also unique. These GF(2) and GF(3) examples are unusually
homogeneous. They can be regarded as cohomological curiosities. Namely, they (or sets
of points equivalent to them under triality, cf. 12) arise because of the exceptional
behavior of corresponding first cohomology groups (see Kantor and Liebler [11,
(2.16)], where the sets f in their Cases 2 and 8 correspond to spreads over GF(2) and
GF(3); and also Cameron and Seidel [1]).

If q 2, Kerdock sets produce Kerdock codes as explained in Cameron and Seidel
[1]. Inequivalent Kerdock sets yield inequivalent codes.

If q is odd, Kerdock sets have not yet been found to produce interesting error-
correcting codes.

There is one further known class of spreads we have not mentioned. In an
1)+(8, 32e+1) space there is a spread Y_, arising from the Ree group R(q) (cf. Tits [23]).
When e 0, this is the spread in (6.15). When e > 0, it is a different spread (by (6.15)).
These yield the following Kerdock sets.

Example 10.5. Kerdock sets for q 3:e+l > 3. Automorphism group transitive, of
order q3(q 1)(2e + 1).

11. Some perfect 1-codes. If V1 is a 7-dimensional orthogonal space over GF(q),
form the graph whose vertices are the totally singular 3-spaces, joining two of them
when their intersection has dimension 2. Then a spread of V1 consists of q3 + 1 vertices
such that every other vertex is joined to exactly one of them. Thus, spreads produce
perfect 1-codes in this graph. Analogous statements hold for the graph obtained in
the same manner from totally isotropic 3-spaces of a symplectic 6-space (Thas [18];
Stanton 16]).

Thus our constructions produce examples of such perfect codesmin fact, large
numbers of examples, using yi f’l vz for any nonsingular point y and any spread Y_, in 6,
8 or 9. Even the desarguesian spread produces many sections yi f-) Y_, of this type. Since
Y. is uniquely recoverable from y fie as in 3, different FO+(8, q)x orbits of non-
singular points produce inequivalent perfect codes.

Similar statements hold for the symplectic case when q is even, using (y+/- X)/y
as in 3. Stanton [17] has recently constructed perfect 1-codes in the space
of 3 x3 symmetric matrices which are closely related to desarguesian spreads,
and which have analogues for every 6-dimensional symplectic spread constructed
here.
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12. Ovoids. An ovoid in an orthogonal vector space is a set f of singular points
such that each maximal totally singular subspace meets fl exactly once. These are much
rarer than spreads: Thas [18] has shown that they cannot exist in various orthogonal
spaces. However, they can occur in fl+(8, q) spaces. Namely, the image of a spread
under a suitable triality map (Tits [22]) is an ovoid, and vice versa. The group of the
spread is sent to the group preserving the ovoid.

Thus, ovoids exist in +(8, q) spaces for q even or q ---0 or 2 (mod 3), in view of
4, 6. Examples presumably exist for q 1 (mod 6), but none are known. No examples

are known in dimension larger than 8.
The f/(8, 3) ovoid is especially pleasant: it is related to the root system of type E7

(Kantor and Liebler 11, (2.16), Case 8]). The examples in Thas 20] for D,+(8, 32e + are
among those arising from 6 and (10.5).

An ovoid of a 4-dimensional unitary space is a set fl of q3 + 1 isotropic points such
that each totally isotropic line meets l’l exactly once. The obvious example has f
consisting of all points of a nonsingular 3-space. Since the generalized quadrangles for
SU(4, q) and 1)-(6, q) are duals of one another, an ovoid flips to a spread of totally
singular lines of an fY(6, q) space. Such spreads are easy to construct (Dillon [7], Dye
[8], Thas [19]). Namely, if S is a 6-space of type -(6, q) in an I1+(8, q) space V and if X
is a spread in V, then E t"l S is a spread in S. Unfortunately, it is not clear how to recover
Y,, from ,E f’) S, so it seems difficult to decide whether or not the large number of resulting
I1-(6, q) spreads are equivalent; presumably, fl-(6, q) equivalence implies fY(8, q)
equivalence.
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BOUNDS ON THE RELIABILITY POLYNOMIAL FOR
SHELLABLE INDEPENDENCE SYSTEMS*

MICHAEL O. BALLf AND J. SCOTT PROVAN

Abstract. The reliability polynomial associated with an independence system is g(p)=
Y.k__ofkpk(1--p)n-k where fk is the number of independent sets of cardinality k and n is the cardinality
of the ground set. An independence system (T, F) is shellable if all maximal independent sets have the
same cardinality and if there exists an ordered partition of the set of independent sets into intervals
{[Fi, Gi]}//--1 (an interval IF, G]={F" F_F’_ G}) where for all n’, n’<-I, G,, is a maximal independent
set and (T, LI "’i=l[F, Gi]) is an independence system. For the class of shellable independence systems, tight
upper and lower bounds are given on g(p), when the number of maximal independent sets and the number
of minimum cardinality dependent sets are fixed. These results can be applied to obtain bounds on the
reachability measure, which is the probability that a stochastic network (directed or undirected) contains
a path from a specified node to all other nodes.

1. Introduction. The problem of computing the reliability of a stochastic network
has received significant attention in recent years. All known algorithms (see, for
example, [3], [12], [25]) for computing network reliability exactly have running times
that grow exponentially with the size of the network. In addition, virtually all network
reliability analysis problems of practical interest are known to be NP-hard [2], [20],
[24], [28]. Naturally, this fact has led researchers to look toward approximation
procedures. In this paper we derive bounds on the reliability polynomial for certain
classes of stochastic coherent binary systems. These bounds apply to an important
network problem that arises in the design of communications networks, namely, the
reachability problem. The reachability problem is that of computing the probability
that a stochastic network contains an operating path from a specified node to all other
nodes. In the undirected case, it is the problem of computing the probability that a
stochastic network is connected. Computation of these bounds requires significantly
less effort than exact algorithms.

First we define the general reliability analysis problem. Let T be a finite, nonempty
set, F a collection of subsets of T and p a real number, 0 <p < 1. A stochastic binary
system is a triple (T, F, p) with the following interpretation. The index set T represents
a set of components, each of which can be in one of two states: operative or failed.
The state of each component is a random event that is independent of the state of
any other components. Each component fails with probability p and operates with
probability 1-p. The system can be in either of two states" operative or failed. Its
state is a function of the states of the components. We represent the state of the
components by the set F of failed components. In particular, F represents the random
event in which the components of F are failed and the components of T-F are
operative. The probability of the event corresponding to F is plFI(1--p)IT-FI. We let
F be the family of subsets F of T such that if the components in F fail and the
components in T F operate then the system operates. The probability that the system
operates, denoted by P(F, p), is the probability of occurrence of some event corres-
ponding to an element of F. P(F, p) may be written as a polynomial

(1) gr(p) f,p’(1-p)-’,
i=0

* Received by the editors April 18, 1980, and in revised form June 15, 1981.
f College of Business and Management, University of Maryland, College Park, Maryland 20742.
t Department of Applied Mathematics, State University of New York at Stony Brook, Stony Brook,

New York 11790.
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where

i I{F F: IFI i}[ for O, 1,. ., n.

Note that 0 -< fg -< (’) for all i. A stochastic binary system is called coherent [9] if 4 F,
T F and F F, F’ c F imply F’ F. The reliability analysis problem that we consider
is to determine gr(P) for a stochastic coherent binary system. For any stochastic
coherent binary system, we call the ordered pair (T, F) an independence system. Denote
by d the cardinality of a maximum cardinality member of F. We have for > d, fg 0,
since no set of cardinality is contained in F. A circuit of (T, F) is a minimal set F
not contained in F. Denote by c the cardinality of a minimum cardinality circuit. For
< c, fg (’) since every set of cardinality is contained in F.

Our approach to generating bounds is similar to the approach suggested by Van
Slyke and Frank [29]. They note that fd and f can usually be easily computed ("easily"
will be defined more precisely later) and that bounds on the fg directly produce bounds
on gr. In particular, they apply results due to Kruskal [17] and Katona [16] to give
an upper bound on gr given fc and a lower bound on gr given fd. While our bounds
apply to a more restricted class of independence systems, in general they are much
tighter since they simultaneously take into account both fc and fd and since they take
into account special problem structure.

The main results of our paper are tight upper and lower bounds on gr(P) given
fa and f for a special class of independence systems called shellable independence
systems. That is, we define polynomials g(p) and g(p) which satisfy g(p)<= gr(p) -<
g(p) for all p and for which there exists a shellable independence system with reliability
polynomials g(p) and g(p) and with fo,"’,f and fa as given. Our results use a
second form of the reliability polynomial given by

d

(2) gr(P)=(1-P)"-a E hip i.
i=0

For shellable independence systems, we give a particular interpretation to the hi’s
which allows us to use results due to Stanley [27] to generate bounds.

In 2 we give several bounds on the reliability polynomial. First we summarize
the Kruskal/Katona results as applied to the reliability polynomial. Then we state
our main results which are tight bounds for shellable independence systems.

In 3 we describe two shellable independence systems arising from graphs. In
the first, T is the set of edges in an undirected graph. The system operates if there is
an operating path between every pair of nodes. Thus, F contains all F c T such that
T-F contains a spanning tree. A maximal independent set is the complement of a
spanning tree and a circuit is a network cut. Figure 1 illustrates the concepts defined
earlier for this graph problem. For the second graph problem, T is the set of edges
in a directed graph. The system operates if there is an operating directed path from
a specified node s to all other nodes. Thus, F contains all F T such that T-F
contains a spanning arborescence rooted at s. A maximal independent set is the
complement of a spanning arborescence, and a circuit is an s-directed cut. Both of
these systems arise frequently in the study of communications networks. Throughout
the paper, when discussing these graphs, we will assume that the undirected graph
contains a spanning tree and that the directed graph contains a spanning arborescence.

In 4 we derive several properties of the reliability polynomial that are later
used in determining the bounds. In particular, it is shown that the coefficients h
defined by (2) are identical to a set of similar coefficients defined by Stanley [27].
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n number of edges 12,
d number of edges-number of nodes + 4,
c cardinality of minimum cut 2,
fa number of spanning trees 81 (48) + () + (),
fc () number of minimum cardinality cuts 54 (1/2) + (),
hc (n-a+c-l-number of minimum cardinality cuts 24 (7)+ (),
gr(P) (1 _p)12 + 12p(1-p) + 54p2(1 _p)O+ 108p3(1 _p)9 + 81p4(1 _p)8

(1 p)8(1 + 8p + 24p + 32p + 16p4).

FIG.

This equivalence enables us to use a powerful result due to Stanley in generating our
bounds. Many of the properties contained in 4 are of interest in their own right and
should be useful in other applications. Section 5 contains the proofs of the results
contained in 2.

2. Summary of results. Our approach to generating bounds is to use quantities
that, in practical situations, are known a priori or that can be computed efficiently.
Many previously developed bounding techniques [14], [19] in network reliability start
out by enumerating all maximal independent sets or all circuits. This task in itself can
be quite formidable. Our bounding results use one or more of n, d, c, fa and ft. For
the two graph problems described in 1, n equals the number of edges and d equals
the number of edges minus the number of nodes plus one (see Fig. 1). The coefficient
fa for the undirected problem is the number of spanning trees, and for the directed
problem, fu is the number of spanning arborescences. Both of these quantities can be
computed in polynomial time using the matrix tree theorem [7] and an efficient
algorithm for computing the determinant of a matrix [1]. For the undirected graph
problem, c is the cardinality of a minimum cardinality cut, and for the directed
problem, c is the cardinality of a minimum cardinality s-directed cut. These quantities
can be computed in polynomial time using network flow techniques [15]. In the
undirected case, fc =< (), [10], and consequently, it can be computed in polynomial
time [6]. In the directed case, however, the computation of f is known to be NP-hard
[20]. However, as Van Slyke and Frank have observed, c is typically small and it is
feasible to compute fc by enumeration. We should note that for planar graphs re, in
both the directed and undirected cases, can be computed in polynomial time.

Once n, d, c, fu and f are obtained, all subsequent calculations are bounded by
a polynomial in n. Thus, in all cases they will lead to computationally efficient bounding
procedures. Computational considerations are discussed in [6].

The first bounds we discuss use the results of Kruskal and Katona. In this case
we use the first form of the polynomial given by (1). To bound the polynomial (1),
we look for vectors of coefficients (fo, fl,’" ",f,,) and (fo, fl,’" ",f,,), with
fi-<f," <-/ for all i. Since, for 0<p < 1, pi-(1-p)"-i >-0, such vectors lead directly to
bounds on the polynomial. Given the value fk for some k, Kruskal and Katona were
able to give values for fi for i-< k and f for _>-k and produce systems that satisfy
both simultaneously. The values can be calculated as follows: for any integers m and
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k, m can be written uniquely in the k-canonical form as

(
where m >m_ >. > m >-_ 1, by choosing m, m-l, successively satisfying

mi max { x (7) <-- m
]=i+1

m,/l) SO that mk > rag-1 >" > ml > > 1. Theand noting that m =i+1 (n,)<(i
sequence (mk, ", m) is called the k-canonical vector for m. Now for _>- 1 we define

the (i, k)th lower pseudopower of m to be

m(/k)= k + mk-+...+
i-1/ i-k+l

where (’) 0 if q < 0 or m < q. The bounds given by Kruskal and Katona are f ]k

for k and f f/k) for k. We extend these bounds to bounds on the polynomial
by setting f (7) for < k and f 0 for > k. Thus, we have"

THEOREM 1. If (T, F) is a independence system with IT[ n and fk m known,
then for 0 < p < 1

where
k-1

gl(P) Y’. m(i/k)pi(1 _p),-i + mpg(1 _p),-g,
i=0

(p)= p’(1--p)"-’+mpk(1--p)"- + Y.
i=1 i=k+l

m(i/k)pi(1--p)"-i.

Furthermore, these bounds are tight.
The value of k for which fk is known in Theorem 1 might be c or d or any other

index for which fk was easy to compute. With k c 2 for the system illustrated in
Fig. 1, the Theorem 1 bounds would be computed as follows. The 2-canonical form
of fc=54 is (0)+() and 54(i/2)=()+(_1). Thus, we have gl(p)
(1-p)2+ll(1-p)Ip+54(1-p)1p2 and (p)=(1-p)2+12(1--p)p+
54(1 p)0p2 + 156(1 p)gp3 + 294(1 p)Sp4.

Theorem 2 gives an extension of Theorem 1 to the commonly encountered case
where f,... ,fk and fd are known.

THEOREM 2. Let (T, F) be a rank d independence system with IT] n. Suppose
we are given fd and f for 0, 1,..., k. Then for 0 < p < 1

gE(P) ---< gr(P) <- 2(P),

where
k d-1

gE(P) , -i f/d)pi n-i n-dfp (l-p)" + (l-p) +fdpd(1--p)
i=0 i=k+l

k d-1

2(P) fP(1-P)"-i + E f/k)pi(1--P)"-i +fdpd(1-p)"-d.
i=0 i=k+l

For the system given in Fig. 1, we have f4 81 () + () + (). Thus, with k c 2
the Theorem 2 bounds for the system are" gE(p)=(1-p)12+12(1-p)Ip+
54(1-p)p2+68(1-p)9pa+81(1-p)Sp4 and 2(p) (1-p)2+ 12(1 -p)p
+ 54(1 _p)Op2 + 156(1 p)9p3 + 81(1 _p)Sp4.
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Van Slyke and Frank note that the bounds given by Theorem 1 are not tight for
graphs, nor are they tight for matroids. We direct our attention to the more restricted
class of shellable independence systems and derive stronger bounds that are tight over
this class.

Let (T, F) be an independence system in which all maximal independence sets
have the same cardinality. In this case, we call d the rank of (T, F) and a maximal
independent set a basis. Shellability can be defined in terms of the existence of a
particular partition of F. Any partition of F generates an expression for P(F, p) or
equivalently for gr(p). For any F’

_
F denote by P(F’, p) the probability of the event

corresponding to F’. Then, if {Fi}iI is a partition of F so that F f3 Fi for all
and/" and U=aFi F, then

J

(3) P(r, p)= gr(p)= 2 P(r,, p).
]=1

For any F, G
_
T with F

_
G define the interval between F and G as the family

of subsets, [F, G] {F’___ T: F __c_ F’___ G}. Thus, [F, G] represents the event in which
all components of F fail, all components of T-G operate and the components of
G-F can either operate or fail. It is easy to see that P([F, G], p)= plFI (1 _p)n-lal.
A partition {Fj}]_-I of F is called an interval partition if Fj [F, G] for all/’. Applying
(3) gives

J

(4) gr(P) E PlF’I(1--P) -I’1.
j=l

We say that (T, F) is partitionable if there exists an interval partition of F, with G a
basis for all ]. For partitionable systems, n -IGI n -d; we can factor (l-p)"-a out
of (4), and we derive (2), where we define

(5) hi I{f,." levi- i}1.

We say that (T, F) is shellable if there exists an interval partition {[Fk, Gk]}f=l with
G a basis for all k and with (T, U/=I[F, G]) an independence system for all
Partitionable systems have been defined and studied independently by Ball and
Nemhauser [5] and by Stanley [27]. Shellable systems have drawn considerable
attention using several equivalent versions of the definition given above. (See, for
example, [11], [13], [18], [21] and [27].) Figure 2 illustrates an interval partition
an independence system which also satisfies the condition for shellability.

It follows directly from the interpretation given by (5) that, for partitionable
systems hi _-> 0 for all i. Stanley [27, Thm. 6], gives a deep and powerful characterization
for the hi vector for shellable systems, which is restated in Theorem 5 of this paper.
It is this characterization which is used to derive bounds on the reliability polynomial.
Before stating our bounds we define a second type of pseudopower. For any sequence
(m, m-l, , m) of integers k _-> _-> 1 and any integer _-> 0, define the (i, k)th upper
pseudopower of (mk, m) to be

i-1 i-k+l
Here again we set ()= 0 in the cases when p, q do not satisfy p >-q >-0, except ]’or the
special case (-;1)= 1. The (i, k)th upper pseudopower of an integer rn denoted m
is defined to be the (i, k)th upper pseudopower of its k-cannonical vector. The next
two theorems give bounds on the reliability polynomial that are based on Stanley’s
result. The proofs of the theorems are given in 5.

Theorem 3 gives bounds on the reliability polynomial for shellable independence
systems, given d and hi for _-< k. Section 4 gives formulas for computing hi for <_-k,
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T={a, b,c,d,e,f}
F {S

_
T: T-S contains a spanning arborescence rooted at s}

fdc edc fcb ecb fda eda

fdc

2

edc

Ordered Partition:

{[0, {fdc}], [{e}, {edc}], lib}, {fcb}], [{eb}, {ecb}],

[{a}, {fda}], [{ea}, {eda}]}
3

fcb (
4 5 6

,da )( eda )

FIG. 2
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given fi for =< k. As before, a likely candidate for the value of k is c; this case was
studied by Bjorner [8] under the assumption that (T, F) is a matroid.

THEOREM 3. Let (T, F) be a rank d shellable independence system with TI n.
Suppose we are given hi for O, 1,..., k. Then for 0 < p < 1

where
g3(p) <-- gr(P) <-- 3(p),

k

ga(P)=(1-P)"-d E hip’,
i=0

3(P)=(1-P)"-a Z hiP i+ E h
i=0 i=k+l

Further, these bounds are tight for the class of shellable independence systems.
The proof of this result is given in 5.
With k c 2, the Theorem 3 lower bound for the system given in Fig. 1 is

g3(p) (1 -p)8(1 + 8p + 24p2). To compute 3(p) we require h<2i/2>. The 2-canonical
orm of h2=24 is ()+() and 24<i/2=(+i)+(+_). Thus, we have ga(p)
(1- p)8(1 +8p+24pE+66p3+ 146p4).

Our final result, Theorem 4, gives a stronger set of bounds for the case where fd
is also known, fa has a particular significance on the form of the polynomial given by
(2) since, for any system, ,i"=o hi =fd. (This relation will be proven in 4.) Before
stating Theorem 4, we define some additional notation. For nonnegative integers m, d
and k, d > k, let the (k, d)-factor of m be that number x that solves

X X
(k/d) m.

The (k, d)-factor of m can be calculated by simultaneously constructing the d-canonical
representation of x,

Xd-l _.., Xl

and the expression for the (k, d)th upper pseudopower of x,

k +\ k-1
+"’+

k-d+

so that their difference equals m. That is, xa, Xd-," can be chosen successively as
follows. For > d k,

/xi=max x" \i_d+kl<=m ,
i=i+1 j-d+k]

and if r rn--,=a-k+l [(,,)_rx,-a+kli-a/k )J > 0, then Xa-k, Xa-k-, ", Xl comprise the (d-
k) canonical vector for r. It is easy to show that this is a valid process in that
(,) + (,+/--?)+... + (") is, in fact, the d-canonical representation of x.

We can now state our main theorem.
THEOREM 4. Let T, F) be a rank d shellable independence system with TI--n.

Suppose we are given fa and hi for O, 1,..., k. Define the integer and vector m_
as follows"

max r" h /k) fd E hi
i=k+l

m_ (ma- 1,. , ml- 1),
k

where (ma, ", m) is the d-canonical vector for the (k, d)-factor offa -,i=o hi.
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Then for 0 < p < 1

where

g4(P) -< gr(P) -< g4(P),

g4(P) (1 _p)n-a y,. hipi + E m_
i=o i=k+l

k

/k)pig4(P) (1 p)"-a hip + Y’. h + fa E hi Y’.
i= i=k+l i=0 i=k+l

Furthermore, these bounds are tight ]’or the class of shellable independence systems.
The proof is given in 5.
With k c 2, the Theorem 4 bounds for the system given in Fig. 1 can be

computed as follows. First, we require and _m" =max {r:Y.7=3 24<i/2><--81-33}=
2. To compute the (2, 4)-factor of 48, we first find 48 () (5) + (36) () + () (2o) + ()
so that the (2, 4)-factor of 48 is (])+()+ (42)+ ()= 62. Thus, _m =(6, 5, 3, 1). We now
have g4(P) (1 p)8(1 + 8p + 24p2 + 19p3 + 29p4) and g4(p) (1 p)5(1 + 8p +
24p2+4-8p3). When converted into the form above, the polynomials derived in
Theorem 2 for this system become g2(p) (1-p)8(1+ 8p + 24p2- 8p3 + 56p4) and
g2(p) (1 p)8(1 + 8p + 24p2 + 80p3_ g2p4). Both bounds derived in Theorem 4, there-
fore, are tighter than those derived in Theorem 2.

3. Shellable independence systems arising from graphs. In this section we verify
that the two classes of independence systems defined in 1, namely, the class related
to spanning trees of undirected graphs and the class related to spanning arborescences
of directed graphs, are shellable.

A. Spanning tree systems. It is well known that the independence system defined
in 1 for undirected graphs is a matroid. This matroid is commonly referred to as
the bond-matroid or co-graphic matroid. Provan and Billera [21], Corollary 3.3.2]
have shown that all matroids are shellable. Thus, it follows that

PROPOSITION 1. If T is the set of edges in an undirected connected graph and
F={S’__ T: T-S contains a spanning tree}, then the independence system (T, F) is
shellable.

B. Rooted spanning arborescence systems. We may represent the independence
system, defined for directed graphs in 1, in the following interesting way. Let the
vertices of the directed graph be {r, vx, rE," , vvt}, with r the root vertex, and let the
edges of the directed graph be {e, e2,’"’, eN}. Define the M xN matrix A to have
entries

1 if ei (Vk, I)i) for some k,

if ei (vi, Vk) for some k,

otherwise.

Now consider the linear system in nonnegative variables x (xl, X2," XN),

Pr: Ax 1_, x >=0,

where 1 is a vector of M ones. It is well known that the basic feasible solutions to
Pr correspond to sets of columns whose edges form a spanning arborescence rooted
at r. Further, the system Pr is nondegenerate. Provan and Billera [22, 2a] show that
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the shellability of convex polytopes developed by Brugesser and Mani [11] can be
extended to cover any independence system derived from a nondegenerate linear
system by taking as a basis the complement of the set of indices of positive components
for any basic feasible solution.

PROPOSITION 2. If T is the set of edges in a directed graph that contains a spanning
arborescence rooted at r and F {S

_
T: T-S contains a spanning arborescence rooted

at r}, then the independence system T, F) is shellable.

4. Properties of the reliability polynomial. Equations (1) and (2) define two forms
of the reliability polynomial. In this section we give several properties of the polynomial
which are used subsequently in the paper.

Propositions (3) and (4) give formulas for converting between the two forms of
the polynomial. The proofs of these propositions are given in [4].

PROPOSITION 3. For any independence system, if hi and fk are defined as in (1)
and (2), then for 0 <- ] <- n

(6) hi= fk(--1)i-k(d- k)=o j-k

PROPOSITION 4. For any independence system, if h and fk are defined as in (1)
and (2), then for 0 <- <- n

=o i-j

COROLLARY 1. Under the assumptions of Proposition 4,
d

(8) fd , hi.
i=O

It is interesting to note that for partitionable systems (8) is trivially true and (7)
can be easily derived using geometric arguments.

Equation (6) can be used to show that for j < c

Stanley [27] defines an "h-vector" for general independence systems and gives
several properties of it. Proposition 5 shows that the h-vector defined by (2) and (6)
is identical to the h-vector defined by Stanley. To avoid confusion, we initially define
Stanley’s h-vector as a b-vector. Let the Hilbert function for the sequence f0,"’’, fd
be defined by

1 ifm =0,

fi+l if m >0.
i=O

Define the vector (bo, b,..., ba) as the solution to the equation
oo d

(11) (l-p)a . n(m)x’= . bix i.
=0 j=0

and

(9) hi=(n-d+]-l).!
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PROPOSITION 5. For any independence system, if hi are defined by (2) and bj by
(11), then for 0 <- ] <- d, hi bj.

Proof.
d d k

gr(P)= Y. fkpk(1--P)"-k=(1--P)" Y fk P
)kk=0" k=0 (1-p

=(1-p)’ fkP Z p +1
i--o k-1

([, (m-l) ] )(1-p)" pm +
.,=o k-1

,(m__ [ (m_--))] p, )=(l-p) A +lp
0 k=l k

where ()= 0 for m < n. By definition of H(m), we now have

d

gr(P) (1-p)" H(m)p (1--p)"-d bipi.
=0 i=0

Comparing this expression term for term with (2) gives bi hi for all j.
We can, therefore, refer to the h-vector of an independence system independently

of which context it has been defined.
As was noted in 2, a sucient condition for one polynomial of the form given

by (1) to dominate another is that f f for all i. Proposition 6 gives similar conditions
for polynomials of the form given by (2).

PROPOSITION 6. Given two vectors of integers (ho, h, ., hd) and
(b0, b,"’", b), ior all j

k =0 k =0

then (p) g(p) for all 0 <p < 1, where (p) =op and g(p) =o bp.
The result follows by an inductive argument that uses-the fact that p is a

monotonically nonincreasing function of k.
This section has given several properties of the reliability polynomial. The proofs

given in 5 use these properties. However, we emphasize that this section did not
use any properties particular to shellable independence systems. Consequently, many
of the results may be useful for deriving bounds for more general classes of indepen-
dence systems.

$. Proof ol main results. In this section we prove our main results, Theorems 3
and 4. These results are based on a deep and powerful characterization of the vector
(ho, h,..., ha) due to Stanley [27]:

THEOREM 5 (Stanley). Let (ho, h, hd) be an integer vector. Then the following
are equivalent"

(i) (ho," ’, hd) is the h-vector for some rank d shellable independence system,
(ii) ho 1 and 0 hi+ hi+/i> for 0 j d 1.
For our purposes, a more useful version of Theorem 5 is given by:
COROLLARY 2. Let (ho, h,. , hd) be an integer vector. Then the following are

equivalent"
(i) (ho,’ ’, hd) is the h-vector for some rank d shellable independence system,

(ii’) ho 1 and 0 hi h i/> for 0 < j d.
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The equivalence of (ii) and (ii’) can be obtained from a simple manipulation of
upper pseudopowers. We call any vector that satisfies (ii’) an O-sequence.

Theorem 5 and Corollary 2 actually hold for a stronger class of systems called
Cohen-Macaulay complexes, which are characterized entirely by their global and local
homology. Notable examples are simplicial spheres and balls, which include unshellable
systems. All known practical classes of Cohen-Macaulay complexes, however, are
shellable. In fact, testing shellability seems to be the most tractable way to determine
whether a system is Cohen-Macaulay.

Theorem 3 can be easily demonstrated. The lower bound in Theorem 3 and the
fact that the bound is tight follow directly from Proposition 6 and Corollary 2. The
upper bound also follows directly from these results. The tightness of the bound
follows from Corollary 2 by noting that if hk < hlk/i)" for <k, then h(ki/k) < h <i/i>i for
/’> k. Consequently, if a vector (ho, hi,’’’, ha) satisfies (ii’) for hk, it will satisfy (ii’)
for hi for < k.

We now proceed with the proof of Theorem 4. Figure 3 illustrates the idea behind
the proof. Since hi => 0 and Y]=o hi =fa, we can interpret assigning values to the h/s

Upper
Bound:

Lower
Bound:

Io oo
o

o o%O0 000%0 o o
O0 0 0 (3000

k+l T ’+10 k
Fixed number of balls Filled to capacity

0 0 0 0 O0 oQO

0 k k+l

Fixed number of balls

Empty
Remaining balls

OoOoO ,oo o
o,o oo o iooo
k+2 d-1 d

Remaining balls spread right
as much as possible

FIG. 3

as placing fd balls into d + 1 boxes. We are given the number of balls in boxes 0 through
k. Proposition 7 states, essentially, that to obtain an upper bound on gr we would
like to place as many balls as possible into the lowest numbered boxes, i.e., h(kk/l/k>
into box k + 1, h(kk/2/k> into box k + 2, etc., until we run out of balls (the total if fd)
in box ?+ 1. Again, by Proposition 7, to obtain a lower bound we would like to
place as many balls as possible into the highest numbered boxes and as few as possible
into the lowest numbered boxes. However, so that (ii’) will be satisfied, in order to
place any ball in box d, we must place some in box d- 1, etc., until we are finally
required to place some in box k + 1. Lemmas 1 through 3 establish that _m<a/u> is the
maximum number of balls we can place in box d and that we must put _mi/a in box
i,i=d-l,d-2,...,k+l.

Proposition 7 provides a valuable technique for evaluating bounds on reliability
and provides the bounds of Theorem 4 in a less compact form.

PROPOSITION 7. Let T, F) be a rank d shellable independence system with TI- n.
Suppose we are given fa and h for O, 1,. ., k, then for 0 < p < 1,

g4(P) -< gr(P) ----< g4(P),
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where
d d

g4(P)=(1--P)"- E h_ip i, 4(P)=(1--P)"-a E iP
=O =0

and a{_hi}i--o and {/i}/a_-o are computed recursively as follows"
fori=O, 1,. .,k,

(12) hi hi bi
and for k + l, k+2,..., d,

i-1 d

fd}(13) _hi min m" Y’. _h + E m<i/i)
i=0 j=l

K(i/i_l) <(14) hi =max m" m-<_ni_a +m
i=0

Proof. It is clear from the definitions of (_ho,’", _ha) and (_ho,"’, _ha) that
they are O-sequences that sum to fd. Now gr(p)=(1-p)"-a,ai=ohip i, where
(ho,’", ha) is an O-sequence, and so by Proposition 6 we need only prove that for
all 0, , d.

E _h<= E hi<--E
i=o i=o i=o

The right-hand inequality follows immediately from the fact that for some q

h h/k> >-_ hi, ]=k+l,...,q-1

and

q

E hi=fd.
i=0

For the left-hand inequality, we assume the conclusion is false and let q be the smallest
integer such that

Then _hq > hq, and so

q q

Z h_i > Z hi.
=o =o

d q d q d

Y. hi < Y hi + , h <i/q>q < hi_ 4- Y. (hq_ 1) <i/>
j=O j=O j=q+l /=0 /=q+l

a contradiction. This proves the proposition. E
The fact that h as defined by Theorem 4 gives the required upper bound follows

immediately from Proposition 7 and Corollary 2. To establish the lower bounds for
Theorem 4, we first prove three technical lemmas.

LEMMA 1. For any positive integers m, and d,

m (i/d) Y. (ma- 1,’", ml- 1) <i/d>

i=0

where (rod,’’’, ml) is the d-canonical vector of m.



178 MICHAEL O. BALL AND J. SCOT’r PROVAN

Proof. We use the well-known identity

k k 1 + 0

which holds for any integer p _->-1, with the modifications given earlier. Now

Z (ma-1, ma--l,"’, m-l)</>

i=0

[(ma-l+j-d)+(ma-l-l+j- (m-l+j-

\ l+]-d=o !

( d)me-l+]- + +...+
=o j =o j =o j

ma + (ma-. + m +
+ +...+

\ i-1 l+i--

m(i/d)
and this establishes the lemma.

LEMMA 2. Let rn and d be positive integers, and let rn have d-canonical vector
(ma, m). Then"

(i) if > 1, then m + 1 has d-canonical vector (ma, , m, I- 1);
(ii) if 1, then m + 1 has d-canonical ector (ma," ", mq+, mq+), where q is

the smallest index for which mq+l >m + 1, or if no such q exists, the d-canonical vector
is (ma+ 1).

Proof. Case (i) follows directly from the definitions and uniqueness of the r-
canonical representation. Case (ii) can be obtained by application ot the identity

ml)+1q q-l]

which is given in the proof of Lemma 1.
LEMMA 3. Let d and be integers d >- >- 1, and let m_ (me, ma_, , m) be a

sequence of integers with me > ma- >"" >m >-_ l-1. Then, for any integers and ],
1 <-i <-j <-d, (m_</a>)q/>>--_m_</a>.

Proof. Let p be the smallest index for which mp >= p. If > d I, then

m</a> =(ma+i-d)+. .+(m+i-d)l+i d =(ma+i-d)i +...+(raP+i-d)p+i-d

the last expression being the k-canonical representation for _m</a>. Thus,

j \p+j-d

(ma+/-d) +...+
j l+j-d

since (_) 0 for s 1,. ., p 1.
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If =< d l, then

m<i/d)_ (ma+i-d)i +...+ (md-i+i--d)o
(md+i--d)+...+(ma+i-l+i-d) +11

since rod-1 + d -> -1. By Lemma 2, if p > d i, then

m<i/u> (mu+ i-d) +...+ (mp + i-d) + (p- l + i-d)p+i-d p-l+i-d

and if p _-< d- i, then

\q+l+i-d q+i-d

where q is the smallest integer greater than d- for which mq+l > mq -t- 1. In the first
case,

(m. (i/d))(j/i) (md+f--d) +...+ (mp+f-d) + (p- 1+f-d)j p+j-d p-l+j-d

>=(md+j--d) +...+(raP+J-d)+(P-2+j-d) +...+(’-l+j-d)j p+j-d p-l+j-d l+j-d

m_ <i/d),
and in the second case, using the identity in Lemma 1,

j q+l+j-d \ q+j-d

=(rod+j--d)+...+(mq+x+j-dq+l+1 j d)
+(mq +j-d (m,- l +j-d -q+l q)q+j-d )+\q-l+j-d )+"’+(m 1 )+(mq-0

(m,+j-d>=(ma+j-d) +...+ )/ \ +/-d

m_ <i/d>,
since m, s >= m_, for s I, ., q. This completes the proof of the lemma.

It remains to show that the h defined in Theorem 4 for the lower bound satisfies
Proposition 7. From Lemma 3, we have for k + i,.. , d- I,

b+, _m <+’/> =< (_m</>) <+’/> b
and from Lemma 1 we have

d k d k d k

h_i-- hi’F ., m_ (i/d>= hi-b m_ (i/d>- m_
i=O i=O i=k+l i=O i=O i=O

k
<d/d) (k/d)., hi + m rn

i=0
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Now suppose we have h_’=(ho,...,hk, h_’k+l,...,h’a) with _hi=_m
< m(r/a) 1 That is,i=k+l,...,r-1 and _hr

h,r<(ma-l+r-d) (mq-l+r-d)+...+ -1
r q+r-d

where q max {1 + d- r, 1}. But then, for/" r + 1,. , d,

( )(rn,-l+f-d)<rn(h_,r)(i/r)_<_ md ll.+]-d +.. "+\ q+j-d

so that

(i/d)

d k r-1 d d

h_ <= E hi q- m_ (i/d) "t-

_
(r/d) 1 ""

_
(i/d) N bi 1 <

i=0 i=0 i=k+l i=r+l i=0

Thus, for k + 1,..., d, _hi _m (i/d) is the minimum difference in Proposition 7.
The proof of Theorem 4 is now complete.

for
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AN EFFECTIVE FORMULA FOR THE NUMBER OF SOLUTIONS
OF LINEAR BOOLEAN EQUATIONS*

P. L. BUZYTSKY"

Abstract. The paper is devoted to establishing an approximate formula for the number of solutions
of one boolean linear equation. The formula is deduced by using a technique of analytical number theory.

Let us consider the equation

(1) alXl +" + a,,x,, b,

where ai, b are positive integers, xi 0, 1, 1, , n and b _-< Y4=lai. The analytical
approach to analysis of (1) was first suggested in 1].

This paper is the next step in the course of studying integer programming problems
by means of analytical methods. The research work was suggested by G. Freiman,
and is being conducted under his guidance (see [2]-[5]). In [2] there is an asymptotic
formula for the number of solutions of one Boolean equation (1), and the other papers
are devoted to the analysis of this formula and its applicability.

The aim of this paper is to establish a new formula which should be convenient
for practical calculations.

The number of solutions of (1) 1, is expressed as

(2) I--exp(o’b)l-I (l+exp(-ra)) (p+pexp(2ria))exp(-2’ib)d,
/=I i=1

where
I exp (-(ra)

Pi i + exp (-(rai)’ P2i 1 + exp (-(rai)"
The formula (2) is true for any real . We determine as a solution of the equation

(3) a
=_ (exp (a)+ I)- b.

It is not dicu]t to see that (3) has a unique solution.
We introduce the following notation (see also [2]):

D= i Pip2ia;,
]=1

2

h maxi P2,
3

=1

1
cD /2, c a positive constant,

2D (p+p exp (2ia))l d,
ot j=

(x) exp dz.

* Received by the editors November 8, 1980, and in final form June 24, 1981.

" Academy of Sciences of the USSR, Central Institute of Economics and Mathematics, Vavilov Street
44-2. Moscow V333 USSR.
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The integral that appears in (2) can be partitioned as follows"
1/2 -t 1/2

I= f fi (p+p2 exp (2rita))exp (-2riab) da I +(f_ + ft )
a-1/2 ]=1 -t 1/2

Transforming the integral Ix taking into account (3) and denoting

I.ti 2raaj,

I1+I2.

we obtain

11 I_ 1-I (plj + p2j exp (i/xi)) 1-I exp (-i/zip2i) da
t]=l

i (Pli exp (-i.ip2i)+ PEi exp (i.,Pxi)) d
--tj=l

iPiP2i) 2 da
i=l i=a exp (--gN] Pl]P2])

exp iPlfl2 da +R exp (-22a da + R,
/=1

where

R I_ exp (-2’n’2a.2D)( OlPlj exp (-ip2J)+p2j exp
2exp

Denoting

we find

Pli exp (--il.iP2i) + Pzi exp (iliPli)
Ai exp (-21-/ 2 1,

iPliP2i)

so that we have

(5) IRI exp (-27rEa2D) exp = IAil 1 da.

We now bound the value IAi[ from above

(6)

Pli exp (-i/iP2i)+ P2i exp (iipli)- exp (_1/2p,2iPliP2i)
exp (_1/2/ 2iPliP2i)
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where

Aj(/xj) plj cos (/xp2)+ P2j COS (/ziplj),

Bi(tz) Pi sin (/xp2j)-P2j sin (p),

Ei(/xi) exp (_ziPiP2i).

Using Taylor’s formula, we have, for

[Bi(/xi)] Bi(0) +B (0)/xi + +
2! 3!

where 0
Since B(0)= B(0)=B (0)= 0, we obtain

(7) In()l < Itz13p’p
< [tz13P

3 6 =Y"

We now bound the value l()l IA()-E()[. Since

then

/(o) =[(o) =/7(o) o,

’(t) .IPxP2(Pz sin (:p2)+Pj sin (:p))

2 2 3-pp exp (-: pipzj)( -2pipEi)l,

where 0 <- <-/z. Since PljP2i < 1 and y(3 y2)/exp (y2/2) < 2 for any y, we have

(8) I,.(,)1 -<. (PIPE(Pj +P+ 2pxjp2)) 3,.

From, (6), (7) and (8), we obtain

We return now to the bound (5) for IRI.

(10)

exp (-2.n-2a 2D)(exp (=IA,I)- 1)d
1 f

2"rr/c

By virtue of inequalities (7), (8) and (9), we obtain

gl:l ajp2iIA, < exp [32apP21 1..3 3-- ) D3/2,

and

(11) JAil--<_ exp D3/2./=1
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With

Ao=exp(2h) 87"/’3/93
3393/2,

and

using

exp (Ao)- 1
mo

z -< z0=> exp (z)- 1 -<z

we obtain, from (1O) and (11),

exp(zo)- 1

ZO

2r/
/93 3exp (_1/2f12) exp (flZh) 3D3/2 fl dfl

(12) 3rrD/Z(1 h)2D3/2 1 -exp c c-
ul4  D.

Further, we have

(13) It exp (-2zr2a2D) da
1/2- (2/c)

x/27rD

Therefore, (4), (12) and (13) imply

I 4-- (1 +2 +

where [01 < 1, and ultimately,

(14) I.=exp(o-b)fi (l+exp(-cra/))- 1+20 -(P ++i=1

Some words should be said about numerical usability of the formula (14). It is
easy to see that the required tr can be easily found from (3) by means of any appropriate
technique; for instance, one may use bisection. Then there is no problem in computing
D, and thus the main term of the formula, since we need to compute only the product
of n terms in it. As far as the remainder term is concerned, there are three terms in
it. (x) is a tabulated function with known values. Given tr, the computation of u
requires O(n) operations, for we need only D, h and p3. The only difficulty is with
term v. In [3], there is an approach to computing v by means of a e-net with an
estimated efficiency. However, as pointed out above, the share of (1) with large v can
be neglected (see [4]). So, for practical purposes, we may assume that v is sufficiently
small. Therefore, formula (14) can be readily used in practical problems.
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FAREY SERIES AND MAXIMAL OUTERPLANAR GRAPHS*

CHARLES J. COLBOURN"

Abstract. Certain graphs representing Farey series of irreducible fractions are shown to be maximal
outerplanar. For a suitable generalization of Farey series, the class of graphs obtained is exactly the class
of maximal outerplanar graphs. Using a representation of maximal outerplanar graphs as series of irreducible
fractions, efficient algorithms for deciding isomorphism of maximal outerplanar graphs and for deciding
whether one maximal outerplanar graph is a subgraph of another are described.

1. Introduction. Recently, Matula and Kornerup [6] introduced Farey fraction
graphs, a graph representation of the Farey series from classical number theory. They
demonstrated that Farey fraction graphs are uniquely and minimally 3-colorable,
uniquely Hamiltonian and perfect.

In this paper we show that Farey fraction graphs are, in fact, maximal outerplanar
graphs; from this observation, Matula and Kornerup’s results follow immediately. We
then introduce a natural generalization which we call Farey graphs and demonstrate
that the class of Farey graphs is exactly the class of maximal outerplanar graphs. The
proof that all maximal outerplanar graphs are Farey graphs yields a remarkable
canonical form for maximal outerplanar graphs. Applications of this canonical form
to deciding isomorphism of maximal outerplanar graphs and to deciding whether one
maximal outerplanar graph is a subgraph of another in O(n 2) time are given.

2. Definitions. Number-theoretic definitions can be found in [5], graph-theoretic
ones in [2], [4]. The Farey series Fn is the series of all irreducible fractions between
0/1 and 1/1 with denominator not exceeding n. For example, F5=0/1, 1/5, 1/4,
1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1. A punctured Farey series is a series obtained
from a Farey series by any number of the following puncturing operations" select
three fractions h’/k’, h/k, h"/k" which are adjacent in the series and for which k > k’
and k > k"; then delete h/k from the series. For example, 0/1, 1/3, 1/2, 1/1 is a
punctured Farey series, whereas 0/1, 1/3, 2/3, 1/1 is not. A Farey graph is a graph
whose vertices are the fractions in a punctured Farey series. Two vertices h/k and
h’/k’ are adjacent if and only if Ihk’-h’kl 1.

An outerplanar graph is a graph which can be embedded in the plane so that no
two edges cross ("planar") and every vertex lies on the exterior face ("outer"). A
maximal outerplanar graph is an outerplanar graph to which no edge can be added
without destroying outerplanarity.

A result of Tang [9] has as a corollary that maximal outerplanar graphs are
uniquely Hamiltonian. A result of Read [7] demonstrates that the chromatic poly-

2nomial of any n-vertex maximal outerplanar graph M is P(M, A) A (A 1)(A 2)
and hence they are 3-chromatic. It is straightforward to verify that maximal outerplanar
graphs are perfect and uniquely 3-colorable.

3. Farey graphs and maximal outerplanar graphs. In this section we prove that
the class of Farey graphs is precisely the class of maximal outerplanar graphs.

THEOREM 1. Farey graphs are maximal outerplanar. Further, the unique Hamilton
cycle involves all edges connecting pairs of neighboring elements in the punctured Farey
series.

* Received by the editors August 28, 1979, and ir final form August 17, 1981.
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Proof. Suppose we are given a punctured Farey series F and its Farey graph
G(F). Let F’ be obtained from F by one puncture; let G(F’) be its Farey graph.

We will prove the theorem by induction on the number of terms in the punctured
Farey series. If iF[-<_ 3, the result is trivial. We therefore suppose that all Farey graphs
with IF[-1 vertices are maximal outerplanar. By induction, then, G(F’) is maximal
outerplanar. Let h/k be the element in F-F’; let h’/k’ and h"/k" be its neighboring
elements in the series F. Elementary number-theoretic considerations [5] demon-
strate that h/k, h’/k’ and h"/k" induce a triangle in G(F). We will next prove that
h/k has no adjacencies in G(F) other than h’/k’ and h"/k". It follows from [5, Thm. 29]
that h- h’+ h" and k- k’/ k". Suppose the vertex y/z is connected to h/k. Then
I(h’+ h")z -(k’+ k")yl 1, so Ih’z k’y[ +lh"z k"y] 1. Since Ih’z k’yl- 0 only if
h’/k’- y/z, we conclude that y/z is one of h’/k’ or h"/k".

By induction, the edge connecting h’/k’ and h"/k" is on the unique Hamilton
cycle of G(F’). Hence, G(F) is maximal outerplanar and (h’/k’, h/k) and (h/k, h"/k")
lie on the unique Hamilton cycle of G(F). [3

THEOREM 2. Maximal outerplanar graphs are Farey graphs.
Proof. Given a maximal outerplanar graph M, we show how to find a punctured

Farey series whose Farey graph is M. We do this by labeling the vertices of M with
irreducible fractions, in the following manner.

Select an arbitrary exterior edge and label its endpoints 0/1 and 1/1. Let all
edges be untagged. Now until all vertices are labeled, select an untagged edge with
both endpoints v and w labeled h/k and h’/k’. If there is no unlabeled vertex adjacent
to both v and w, tag the edge and return to select another. Otherwise, observe that
there is a unique unlabeled vertex z adjacent to both v and w. We label z with
h / h’/k / k’, tag the edge and return to select another.

It is immediate [5] that the fractions assigned form a punctured Farey series; this
series depends only on the selection of vertices to be labeled 0/1 and 1/1. 1

Theorems 1 and 2, together with the current knowledge concerning maximal
outerplanar graphs, supply simpler proofs of Matula and Kornerup’s observations
about Farey graphs.

4. Applications to isomorphism. A labeling assigned by the method in the proof
of Theorem 2 is called a Farey labeling; it is interesting to note that knowing just the
set of Farey labels (called the graph’s Farey form) determines the graph uniquely. An
n-vertex maximal outerplanar graph can have potentially O(n) different Farey forms.

A canonical representation for a maximal outerplanar graph can be found by
finding its lexicographically smallest Farey form; this is the graph’s Farey code. Two
maximal outerplanar graphs are isomorphic if and only if they have the same Farey
code. This gives an O(n 2) algorithm for deciding isomorphism--O(n) ways of selecting
vertices to be labeled 0/1 and 1/1 and, after this choice, O(n) time to compute the
remainder of the Farey labeling. This method is not as efficient as the known algorithms
for deciding isomorphism of maximal outerplanar graphs [1], [3], [8], but is interesting
nonetheless in that it is a fundamentally different approach.

The primary advantage of the Farey scheme is that it generalizes immediately to
the problem of determining whether one maximal outerplanar graph is a subgraph of
another. We will elaborate on this here. We define a portion of a maximal outerplanar
graph to be the result of selecting two vertices v and w connected by an interior edge,
then deleting all vertices strictly between v and w on one of the two sections of the
unique Hamilton cycle from v to w. The vertices v and w are labeled "start" and
"finish", respectively.
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A maximal outerplanar graph with n vertices has only O(n) interior edges; thus,
it has only O(n) portions.

THEOREM 3. A maximal outerplanar graph M is a subgraph of a maximal
outerplanar graph N if and only if either

(1) the Farey code ofM is a subset of some Farey form ofN, or
(2) the Farey code ofM is a subset of the Farey form of some portion ofN in which

"start" is given label O/1 and "finish" label 1/1.
Proof. The conditions are clearly sufficient: we will show that they are also

necessary. Let the vertices v and w be the vertices labeled 0/1 and 1/1 in the Farey
code of M. Suppose M is a subgraph of N, and let f: V(M)- V(N) be an embedding
of M into N. If (f(v), f(w)) is an exterior edge of N, there is a Farey form of N in
which f(v) is labeled 0/1 and f(w) is labeled 1/1. This Farey form contains the Farey
code of M, and thus, condition (1) is satisfied. Otherwise, (f(v), f(w)) is an interior
edge of N. In this case, M is a subgraph of one of the two portions of N determined
by the edge (f(v), f(w)). Then there is a Farey form ot one of these portions having
f(v) labeled 0/1 and f(w) labeled 1/1 which has the Farey code of M as a subset;
hence, condition (2) is satisfied.

COROLLARY 4. There is an O(n 2) algorithm to decide whether a maximal outer-
planar graph is a subgraph of an n-vertex maximal outerplanar graph.

Proof. Our earlier remarks show that condition (1) can be checked in O(n 2) time.
Further, since there are only O(n) portions and the Farey labeling for each can be
completed in O(n) time, condition (2) can also be checked in O(n 2) time.

One remark is in order. The Farey labels assigned in computing Farey forms
might have as many as O(n) bits, thus, requiring O(n 2) bit operations to examine a
Farey form. In the complexity statements in this work we ignore this issue and assume
that our model of computation can manipulate integers with O(n) bits in a single step.

5. ConelusiolaS. Perhaps the most interesting aspect of this work is that Farey
series, a natural classical concept in number theory, correspond to maximal outerplanar
graphs, a natural concept in graph theory. We expect that graph-theoretic investiga-
tions of other number-theoretic concepts will reveal many such natural correspon-
dences.
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SCHEDULING TO MAXIMIZE THE MINIMUM PROCESSOR
FINISH TIME IN A MULTIPROCESSOR SYSTEM*

BRYAN L. DEUERMEYER,t DONALD K. FRIESEN AND MICHAEL A. LANGSTON

Abstract. This investigation considers the problem of nonpreemptively assigning a set of independent
tasks to a system of identical processors to maximize the earliest processor finishing time. While this goal
is a nonstandard scheduling criterion, it does have natural applications in certain maintenance scheduling
and deterministic fleet sizing problems. The problem is NP-hard, justifying an analysis of heuristics such
as the well-known LPT algorithm in an effort to guarantee near-optimal results. It is proved that the
worst-case performance of the LPT algorithm has an asymptotically tight bound of times the optimal.

1. Introduction. Consider M identical processors and a set of N independent
tasks T {tl,’’’, tr} each having a processing time given by l(ti), where l:T--> R/.
The central problem we address is the nonpreemptive scheduling of the tasks in an
effort to fully occupy each processor for as long as possible. This objective is quite
distinct from the usual performance measure of minimizing the makespan (final task
completion time). Herein we concentrate on keeping the processors busy by maximiz-
ing the minimum processor completion time CALG, where the finish time of the jth
processor is the time at which the last task to be executed by processor j is completed.

This problem was initially motivated by investigations into the sequencing of
maintenance actions for modular gas turbine aircraft engines. In the simplest example
of this problem, suppose a fleet of M identical machines (engines) must be kept
operational for as long as possible, and each machine requires the same life-limited
part. Further suppose that N spares (with potentially different field-lives) of this part
are initially available. Then the problem of sequencing the replacements to maximize
the total time the fleet is operational is identical to the scheduling problem stated
above. This maintenance problem has been studied by two of the authors in [3]. It is
important to note here that this maintenance scheduling problem is unlike other
maintenance problems currently found in the literature--which in part leads to the
unusual performance criterion employed.

The scheduling problem stated above bears similarity to at least two common
scheduling problems previously studied in the literature. The objective of our problem
is somewhat related to minimizing the maximum earliness, a "nonregular" measure
of performance identified in [2], but the absence of task deadlines changes the problem
substantially. The fleet sizing problem [6] shares our motivation but differs in that its
representation as a scheduling problem would necessitate deterministic demands,
unit-time tasks and a uniform processor system (i.e., processors of different speeds).

Maximizing the minimum processor finish time, like a host of other scheduling
and related combinatorial problems (in particular, the makespan problem), is NP-hard.
To see this it is necessary to reduce, in polynomial time, some other problem known
to be NP-complete to a version of this problem. Specifically, it is not difficult to reduce
the partition problem to a "yes-no" version of this problem on two processors. It is
generally considered unlikely that an NP-complete or harder problem will permit an
efficient (i.e., polynomial-time) solution procedure. Therefore, it is common to solve

* Received by the editors April 21, 1981.
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these problems by efficient heuristic methods in hopes of finding "good" solutions
rather than attempting to find optimal solutions. In this paper we analyze the LPT
(longest processing time first) algorithm, since it is known to work well on the makespan
problem.

An important aspect in the analysis of a heuristic procedure is to determine the
quality of its performance relative to optimal solutions. Worst-case analysis yields a
relatively simple measure of performance of a heuristic algorithm. The focus of this
article is to characterize the worst-case behavior of the LPT algorithm applied to the
problem introduced above. The LPT procedure sorts the task set T into a nonincreasing
sequence and then serially assigns each task to the next available processor with ties
broken arbitrarily. For the makespan problem on M processors, Graham [5] proved
that LPT guarantees a tight worst-case performance of (34-- 1/3M) times the optimal
value. We expected LPT to perform in a similar way on our problem, and in fact, we
prove that 3

4- is an asymptotically tight worst-case bound. However, our analysis is
quite unlike Graham’s. In particular, we must explicitly deal with tasks having "small"
processing times, a consideration easily avoided in his proof.

At first glance it may appear that our problem is a "dual" to the makespan
problem, since one would expect heuristics to balance the work load over all processors;
the objectives differ in that one is a maximization and the other is a minimization
problem. It seems reasonable to suggest that good algorithms for the makespan
problem should produce good solutions to the problem considered in this paper.
However, there are important differences in the worst-case behavior of algorithms
applied to these two problems. Consider, for example, the MULTIFIT algorithm of
Coffman, Garey and Johnson [1]. In the solution of the makespan problem using
MULTIFIT, it is easy to construct examples where one processor is never used. Such
a solution is tolerable for the makespan problem but is totally unacceptable for our
problem. Modifications of MULTIFIT can be devised which would be more suitable
for our problem, but we could find none which produces a better worst-case bound
than that of LPT. Consequently we have limited our analysis to a proof of the worst-case
bound for the LPT algorithm.

In what follows, an instance I refers to a particular choice of problem parameters,
! (N, M, T, l). Given any/, we use Pi, 1 <_- <-M, to represent both the ith processor
and its subschedule (those tasks assigned to processor i) in the LPT algorithm. Similarly,
P, 1-<] =<M, denotes an optimal subschedule for processor ]. For any T’_ T, the
length of T’ is given by

/(T’)= Y. l(x).
xT’

For a given problem instance,/, aLPT(I) and COPT(I) denote the minimum processor
finish time of the LPT and optimal schedules, respectively. The worst-case bound
QM(LTP) for the LPT algorithm on M processors is defined by

QM(LPT) sup {OtOPT(I)/OtLPT(I); I has M processors}.

The remainder of this paper is organized as follows. The next section shows by
means of an example that ) is an asymptotic lower bound on Q(LTP). In 3 we
assume the existence of a counterexample to the claim that is an upper bound on
Qu(LTP) and, hence, the existence of a "minimal" counterexample whose properties
we analyze. Section 4 contains our main resultwe establish a contradiction to the
presumed existence of a counterexample and, thus, prove that is a "tight" bound
for the worst-case performance of the LPT algorithm.
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2. Lower bound. In this section we demonstrate that the worst-case bound
derived in 4 is asymptotically tight. Example 2.1 below depicts a family of problem
instances for which OtOPT(I)/OtLPT(I) exceeds any real number smaller than . Figure
2.1 (with time the vertical axis and processors the horizontal axis) illustrates an LPT
schedule and an optimal schedule in the case where M is even. A slightly different
picture is required when M is odd.

Example 2.1. Define an instance I by choosing M >_-2, N 3M-1, l(t)=M,
i>2M and/(t) 2M-FLOOR ((i + 1)/2), i-1, 2,..., 2M. Then (see Fig. 2.1 for
even M)

4 2Ot(LPT) -> OPT(I)/aLPT(I) (4M 2)/(aM 1) -3(3M 1)"

M

M

2M-1

3M
M M+I M+I -1

2M-1 2M-2 2M-2

(a)
LPT schedule" tXLPT(/) 3M-

2

3M

2M-1
3M

M M M+I -2

M

3M

2

2M- 2M- 2 2M- 2 2M- 3
3M 3_M
2 2

(b)
optimal schedule" aOPT(I) 4M- 2

FIG. 2.1. Graphical representation o[ Example 2.1 ]’or even M.

3. Description of a minimal counterexample. We now assume the existence of
a counterexample to our claim that QM(LTP) -< 34-. Section 4 provides a proof that such
a counterexample cannot exist. Specifically, we assume the existence of an instance
I (N, M, T, l) such that

(i) CtOPT(ZC)/LTp(Ic) > ;
(ii) the instance is minimal in the sense that no fewer than M processors can be

used to generate a counterexample;
(iii) the instance is minimal in the sense that no fewer than N tasks can be used

to generate a counterexample on M processors.
Without loss of generality, we normalize the task lengths so that for an arbitrary

optimal subschedule I(P) >= 4, 1 <_- ] <_- M, and l(Pi) < 3 for at least one LPT sub-
schedule, Pi. We remark at this point that a simple "conservation of task length"
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argument shows that there must be an LPT subschedule Pk for this normalized instance
with (Pk) > 4.

DEFINITION 3.1. A subschedule Pi is dominated by a subschedule P (P and P
are typically generated by different algorithms) if there is a function " which maps
tasks assigned to Pi into disjoint subsets of the tasks in Pi such that for any x P,
x =/C(x)if xP and l(x <= (f(x )) otherwise.

The rest of this section will present a number of properties the LPT and optimal
schedules must have for the counterexample Ic.

LEMM, 3.1. Let P be any LPT subschedule on I with/(P)->3. Then no sub-
schedule o[ an optimal schedule on I will dominate P.

Proof. Suppose the lemma is false and there is an optimal subschedule P which
dominates P. Define a new instance of the problem I’= (N’, M’, Tc’, l), where
M’ M 1, T’ T P and N’ TC’]. We obtain a schedule for I’ from the optimal
schedule for 1 by filling each position formerly occupied by a task from Pi with that
task’s image under f and reassigning any remaining elements of P’ arbitrarily. The
instance I’ uses fewer processors than I, OLPT(Ic’) aLPT(Jrc and OOPT(Ic’) OOPT(IC),
contradicting the presumed minimality of I

LEMMA 3.2. Every task of T must have l(t) < 3.
Proof. Suppose on the contrary there is a task in T such that l(t)_-> 3. Let P

and Pf denote the subschedules containing task under the LPT and optimal schedules,
respectively. Since LPT can assign no additional tasks to any subschedule once its
length is at least 3 (otherwise OLPT(IC) 3, contradicting the assumption on I), it
must be true that IPI 1. It follows that P is dominated by P, which contradicts
Lemma 3.1.

LEMMA 3.3. No LPT subschedule can contain more than one task with l(t)>-_.
Proof. Suppose otherwise, and let Pi be the first processor to be assigned two

such tasks, say t and ta. Then P must be the first subschedule to receive two tasks
(of any length). Moreover, P contains exactly two tasks since l(t) + l(t) >= 2(3/2) 3.

Let T’ denote the set of the M + 1 longest tasks of T. P must contain the two
shortest tasks of T’. The optimal schedule must have assigned two elements of T’ to
the same processor, say P’. Therefore, P is dominated by P, which contradicts
Lemma 3.1.

LEMMA 3.4. In the LPT schedule for I, the length of each subschedule is at least
8/3 before any LPT subschedule length exceeds 4.

Proof. Assume the contrary. Let y denote the first task which LPT schedules to
finish after 4. Suppose P is the LPT subschedule containing y and let T’ be the set
{y} (3 {all tasks scheduled before y by LPT}.

Now, the existence of some subschedule whose length is less than 38- implies that
l(Pi {y }) < 38- so that for any t’ T’, l(t’) >= l(y) > 4 38- 34-. Therefore, IPil 2. In fact,
no LPT subschedule can contain more than two tasks of T’, since y was the first task
to finish after 4.

Let x represent the first task assigned to Pi. If z s T’ and z is placed in a singleton
subschedule in the LPT scheduling of T’, then l(z)>=l(x). Therefore the optimal
subschedule that contains z cannot contain another task of T’ since this subschedule
would dominate Pi, contradicting Lemma 3.1. Similarly, no optimal subschedule can
contain three tasks from T’ since the sum of the lengths of any two tasks in T’ must
exceed (x).

Therefore, over T’ we see that singleton subschedules for LPT and the optimal
schedule are identical, and neither schedule can have subschedules with three tasks.
We conclude that those tasks contained in two-task subschedules under LPT are also
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in two-task subschedules of an optimal schedule. In particular, an optimal sub-
schedule, say P, that contains x must contain another element of T’. This means
that P’ dominates Pi, which contradicts Lemma 3.1.

LEMMA 3.5. If a minimal counterexample I exists, then there is another minimal
counterexample I’ such that no task, t, in T’ satisfies 1/2<- l(t) < 1.

Proof. The proof is by construction. From Lemma 3.4 we see that the length of
each LPT subschedule must be at least 3

8- once all tasks whose lengths are longer than
1 have been assigned. Indeed, l(Pi)->_ 4 for some i; this occurs as the result of the
scheduling of a job with length greater than 1, at which point all the subschedules
must have length at least equal to . If for some t, 31-<-/(t)< 1, then will be in a
subschedule containing no other tasks having length less than 1. Suppose any such
is replaced by t’ with l(t’)= 1, and the LPT algorithm is rerun. Then t’ will be assigned
to the same subschedule which had contained t. Since could not have been in a
subschedule whose length is less than 3, the minimal subschedule length is not changed
by the replacement described above. Similarly, increasing a task length in this manner
cannot decrease the minimal subschedule length in the optimal schedule. Hence, the
new task set T’ obtained by this construction satisfies the conditions of the lemma.

We may now assume without loss of generality that in the minimal counterexample
I, l(t) < 1/2 or l(t) -> 1 for all T.

4. Proof of the main result. We are now prepared to prove that 010PT(I)/OtLPT(I) <=
for any problem instance. The proof will proceed by establishing that it is impossible

for the eounterexample I, described in the preceding section, to exist. The argument
we use requires a weighting function w" T-+ to relate and compare subsehedules
generated by the optimal schedule and the LPT algorithm. We also need to define
the set of "small" tasks contained in each subsehedule. We let

Si={t-ei;l(t)<1/2}, l<=i<_M

and define S similarly for the subschedules of the optimal schedule.
DEFINITION 4.1 (the weighting function). Let x be any task in T and Pi be the

LPT subschedule containing x. Then w(x)= 3
8- if either Pi- Si {x} or if Pi {x, y},

l(x) > l(y) > 1 and l(Pi) > 3. w (x) 34- if Pi {x, y, z } and Si , or if Pi Si {x, y} and
l(Pi Si) < 3, or if Pi {x, y}, l(y) > l(x) ->_ 1 and l(Pi) >= 3. w(x) 41(x)/31(Si) if x S
and l(Pi) => 3. Finally, w(x) 2l(x)/31(Si) if x Si and l(Pi) < 3.

The values of w(. are summarized in Table 4.1.

TABLE 4.1
A summary of the weighting function

w(x)

4/(x)
3/(Si)

2/(x)

Remarks

Pi-Si={x} or Pi ={x, y}, /(x) > /(y) ->_ 1, and/(Pi)->_ 3

xSi and w(x) cannot be

x Si and l(Pi) >- 3

x Si and l(Pi) < 3

We extend w to sets of tasks T’ by

w(T’)= Z w(x).
x T’
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LEMMA 4.1. Let x be a task in T. I[ (x >- 2, then w (x .
PROOF. Immediate from the definition of w. !-1
LEMMA 4.2. Let x be a task in T with l(x) < 1/2. Then w(x) > 2/(x).
PROOF. Suppose to the contrary. Let P be the LPT subschedule containing x.

If/(P)-> 3, then w(x)<=21(x) implies that 21(x)>-2l(x)/3l(S) or that l(S)>=. But this
in turn implies that I(P) >= + I(S,) and since l(P -{x}) < 3, l(x) >= 1/2, which contra-
dicts the hypothesis of the lemma.

If/(P) < 3, w(x)<-_21(x) implies that 21(x)/31(S)<-_21(x) or that l(S)>-1/2. Hence,
l(P) -> 38- + 1/2 3, another contradiction. ]

LEMMA 4.3. The weight o]’ any LPT subschedule is at most 4 and some LPT
osubschedule has weight at most -.

Proof. Let P be any LPT subschedule. If each of the tasks in P has a length at
least as large as 1, then either P contains three tasks each having weight ), P contains
a single task of weight 38- or P contains two tasks, one with a weight less than or equal
to and the other with a weight equal to 34-.

If P contains one or more tasks having length less than one, then their combined
weight is at most and the combined weight of the larger tasks in P cannot exceed .

Since there must be some subschedule whose length is less than three, its weight
is either 38- (if P has no task with length smaller than 1) or . [3

LEMMA 4.4. The weight o]’ any optimal subschedule is at least 4.
Proof’. Assume P’ is any optimal subschedule which violates the statement of

the lemma. It follows from Lemma 3.2 that IP?I> a. Also, P’ must contain one or
more tasks of length at least 1 or else w(P >2/(P)->2.4 8 by Lemma 4.2. Three
cases must be considered.

Case 1. Suppose P’ contains exactly one task x of length at least 1.
Since /(x)<3, w(S)>21(S)>2.1=2 and w(x)<2. But by Lemma 4.1 this

means l(x) < 2, l(S’ > 2 and w(P) > 4. Thus, the lemma holds for Case 1.
Case 2. Suppose P’ contains exactly two tasks x and y of length at least 1.
Each has a length smaller than 2, otherwise w(P) => 38- + 34- 4. Since >- 4,

S is nonempty. It follows that w (S’) <), l(S) < 32- and l(x) +/(y) >. Therefore,
the largest task in P’, say x, has a length larger than . From Lemma 3.3 we conclude
that x must have been the first task assigned to some LPT subschedule, and we let z
represent the second task of that subschedule. The weight of x cannot be 38-, so
l(x)+l(z)<3.

We choose any LPT subschedule whose length exceeds 4 (there must be at least
one such subschedule) and denote its shortest task as v. Lemma 3.4 and /(x)<2
indicate that z was scheduled before v and, thus, l(z)>--l(v).

Consider now any S. Suppose P, where l(P)< 3. The fact that v was not
placed in P implies l(v)>4-1(P-Sg)> 1 +l(S). Thus, 1 +l(Sg)+l(x)<l(v)+l(x)<=
l(z)+l(x)<3 and l(S)<2-1(x). This means that 21(S)<4-2l(x)<=4-1(x)-l(y)<=
I(S). Hence w(t) 21(t)/3l(S) > 41(t)/31(S).

Suppose Pi, where l(Pi) -> 3. [SI > 1, otherwise w(t)= , and the lemma holds.
Since the length of P was <3 before the last task was assigned, /(P)<3+ l(S)/2.
Now the fact that v was not placed on P implies l(v) > 4- l(P S) > 1 + l(S)/2. Thus,
using the same series of computations as performed above, we determine that l(S)<
l(S). Hence, w(t) =4l(t)/31(S) >41(t)/3l(S).

Therefore, regardless of where the LPT algorithm placed t, w(t)>4l(t)/31(S).
But

w(S)= w(t)>
41(t) 4 l(t)=

ts ts 31(S) 31(S}) ts,
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and w(P’)> 4. Thus the lemma holds for Case 2.
Case 3. Suppose P contains three or more tasks of length _-> 1.

Then w(P)>= 3. ] 4 and the lemma holds in any case.
TI-IZogv.M 4.1. For any set ofM identical processors, QM(LPT)-<_.
Proof. The proof follows directly from Lemmas 4.3 and 4.4. Indeed, we obtain

w(TC)<=4M- from Lemma 4.3 and w(TC)>=4M from Lemma 4.4. Therefore,

w(T) <=4M-<4M <= w(T),
which is impossible. Thus, the counterexample I cannot exist, and the theorem is
proved.
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NONNEGATIVE MATRICES A SUCH THAT Ax =b HAS
NONNEGATIVE BEST APPROXIMATE SOLUTION*

YOSHIMI EGAWA" AND S. K. JAIN

Abstract. In this paper the question of existence of nonnegative best approximate solutions (b.a.s.)
of the linear system Ax b is investigated. Firstly, a necessary condition that Ax b have a nonnegative
b.a.s, for all b => 0 with respect to a positive definite symmetric bilinear form S whose associated matrix is
nonnegative is obtained. It follows as a consequence that Ax b also has a nonnegative least squares
solution (1.s.s.). Among other results it is proved that if B is a nonnegative idempotent matrix such that
AB BA, rank (AB) rank A, then Ax b has a nonnegative 1.s.s. for all b R (B), b => 0, if and only if
for certain well-defined matrix Ao (called the coefficient matrix of A with respect to B) and certain
symmetric bilinear form S, Aox b has a nonnegative b.a.s, with respect to S. These results generalize the
well-known results concerning the question of the existence of a nonnegative 1.s.s. for the system Ax b.
Indeed, these investigations initiate a new approach to the question beyond the technique of inverse-
positivity. The importance of this question lies in its varied applications to problems in mathematical
economics, in probability theory, in operations research and in numerical algebra.

1. Notation and definitions.

"" the vector space of rn x 1 matrices over the reals

Ilxl12" the usual Euclidean norm of a vector x.
(X)" the ith column of a matrix X.
(X)" the ith row of a matrix X.
(x)i" the ith entry of a vector x.
Xi,j" the (i, j)th entry of a matrix X; thus, ((X)J)i Xi,j.

Xt" the transpose of a matrix X.
R (B)’ the range of an m x n matrix B, i.e., {y R"Iy Bx,

for some x
R (B)+/-s" the subspace of R" consisting of vectors x such that

$(x, b)= 0 for all b R (B), where S is a positive
definite symmetric bilinear form.

R (B)+/-" the subspace R (B)+/-s when S is the usual inner product on m.
(Y)" the subspace spanned by the subset Y of
ei" the vector in R" having all entries zero except the ith entry, which is 1.
0,,," the zero vector in R".
Let $(.,.) be a positive definite symmetric bilinear form over ". Then the

associated symmetric matrix with respect to the standard basis (el, e2,..., em), shall
also be denoted by S, i.e., S (x, y) x tSy, x, y

Let A be an m n matrix and let b ". Then Xo Rn is called a best approximate
solution of the system Ax=b with respect to (w.r.t.) S if S(Axo-b, Axo-b) is
minimum. If $ is the usual Euclidean norm, then the best approximate solution with
respect to S is commonly known as the least squares solution.

If A, X are respectively m n, n x m matrices such that AXA A and (AX)
AX, then X is called a {1, 3}-inverse of A and is denoted by A(1’3).

For simplicity, we shall not indicate the order of matrices if it is clear from the
context. Further, all matrices are real.

* Received by the editors March 1,1981, and in final revised form September 2, 1981.

" Department of Mathematics, Ohio State University, Columbus, Ohio 43210.
t Department of Mathematics, Ohio University, Athens, Ohio, 45701. The work of this author was

done while visiting Ohio State University during the Fall of 1980.
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2. Introduction. This paper addresses the question of characterizing nonnegative
matrices A such that the linear system Ax b, for certain nonnegative vectors b, has
a nonnegative best approximate solution. The importance of this question can hardly
be overemphasized in view of the fact that in many of the applications of nonnegative
matrices one is involved in finding nonnegative solutions or least squares solutions of
the system Ax b, where A -> 0, b _-> 0. For example, one finds numerous applications
in areas such as mathematical economics, probability theory, numerical algebra and
linear programming.

Since the nonnegativity of certain generalized inverses of A is related to the
existence of nonnegative least squares solution of the system Ax b, many authors
have previously considered this question from this viewpoint. For example, the
existence of a nonnegative {1, 3}-inverse of A is equivalent to the existence of a
nonnegative least squares solution of Ax b for all nonnegative vectors b. The
characterization of nonnegative matrices A having a certain nonnegative generalized
inverse has been extensively studied in the literature (see [1]-[3], [6]-[11]).

We begin by considering the nonnegative best approximate solutions of Ax b
with respect to an arbitrary positive definite symmetric bilinear form $ whose associ-
ated matrix is nonnegative, and show in Theorem 3.7 that A(1’3)-> 0ha well-known
result for the Euclidean norm. We then proceed to the main question addressed in
this paper, that of characterizing nonnegative matrices A such that Ax b has a
nonnegative least squares solution for all nonnegative vectors b in a given set. We
study this question in the case when b R (B), where B is a nonnegative idempotent
matrix such that AB BA, rank (AB)= rank A (Theorem 4.4). This is done by first
obtaining the characterization of nonnegative matrices A which commute with a given
nonnegative idempotent matrix B such that rank (AB)= rank A (Lemma 4.2). We
then introduce an intrinsic matrix Ao (coefficient matrix) of A. The problem of the
nonnegative least squares solution of Ax b, b R (B), b >-O, is then reduced to the
problem of obtaining a nonnegative best approximate solution of Aox b, for all
nonnegative vectors b, with respect to some suitably defined norm $ (Theorem 4.3).
The proof of Theorem 4.4 is then completed by applying Theorem 3.7 and Theorem
4.3. An example is given to show that the converse of Theorem 4.4 does not, in
general, hold.

We emphasize that Theorem 4.4 is an initial attempt to study the question stated
in the beginning of the introduction. That this theorem is also true under a certain
weaker hypothesis is explained in Remark 3 at the end of the paper. However, it is
desirable that the hypothesis in Theorem 4.4 be further weakened. This remains open.

We remark that Lemmas 3.1, 3.6 and 4.2 are also of independent interest.

3. Nonnegative best approximate solutions.
LEMMA 3.1. Let A be a nonnegative rn x n matrix of rank r. Suppose Ax b has

a nonnegative solution for every b >-O, which makes this equation consistent. Then there
exist permutation matrices P, O such that

(PA()i,i O, 1 <- <= r,

(PAQ)i,j 0, 1 <= < ] <- r.

Proof. We proceed by induction on r. Let 2 denote the set of ordered pairs (P, O)
of permutation matrices such that (PAQ), 1 <= <= r, are linearly independent, and
(PAQ)I.1 0. For each (P, O), we define q(P, Q) as follows:

q(P, Q) card {jll <--j <-- r, (PAQ)I.i # O}.
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Let

p =min {q(P, Q)I(P, Q) }.

We want to prove p 1. Suppose p-> 2. Let

= {(P, Q)Iq(P, Q)=p, (PAQ)I,2#O}.

Let

a min {(PAQ)I,/(PAQ)I,2[(P, Q) ;}.

Suppose (P, Q) is an element of which gives this minimum value a. Set F PAQ.
Let

L {j[ 1 <-- j <- r, Fl,i 0},

K {ill -< -< m, tF/,2 > F/,1, Fi,i 0 j L}.

Suppose K # and K. Then, if we replace the first row by the ith row, this
contradicts the minimality of a unless Fia 0 for somej L, 1 =</" =< r. In the latter case,
we get a contradiction to the minimality of p. Therefore K . This implies there
exist nonnegative numbers/3i’s, j L such that

b (F) a (F)2 + /(F) => 0.
]L

By our assumption the system Fx b has a nonnegative solution. Thus there exist
-> 0, 1 <- ] -<_ n, such that b Yq__ yi(F)( By the replacement theorem, we can choose
with ’k 0 such that

((F)I 1 --< 1 --< r) ((F)k, (F)I 1 -< f =< r, j 2).

Since (b) 0 and ’k # 0, we have Fl,k O. Hence, if we replace the second column
by the kth column, we get a contradiction to the minimality of p. Thus p 1. By
interchanging rows and columns suitably, we may assume that there exists _-> r such
that

A,i=0, 2<=j<=l, Aa#0, f=>l+landf=l,

and the submatrix A’ of A which consists of the columns 2 through of A is of rank
r-1. One can check that A’ satisfies the hypothesis of the lemma. Consider the
submatrix A consisting of all but the first row of A’. Since the first row of A’ is a
zero vector, we may assume by applying induction to A that

Ai,i=0, 2-<i<j-<r, Ai,i#0, 2-<i<_-r.

Since A 1,i 0, 2 -< j -< r, and A, # 0, the proof is complete.
In our next lemma, we shall need the following notation. Let u ’. We define

Z(u) {ill <- <- m, (u), # 0},

/I(U) {i Z(u)ll <_- <_- r}.

LEMMA 3.2. Let A be an rn x n nonnegative matrix of rank r. Suppose that for
every integer l, l<=lx<=n, and for every subset L of {1,2,...,n} with ZI((A)q)_
ZI(Yt,L (A)) we have the inclusion Z((A)q)Z(IL (A)I). (If L is empty, then by
Ytz. (A) we understand the zero vector.) Also suppose that Ax b has a nonnegative
solution for every b >= 0 which makes this equation consistent. Then there existpermutation
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matrices P, O such that

where P1 is a permutation matrix of order r and

(PAO), 0, 1 =< <= r,

(PAO)i,j=O, l<=i<=r, l<-]<=r, i#].

Proofi Let P’, O’ be permutation matrices which satisfy the conclusion of Lemma
3.1. Now, since (P’AO’)j,i 0 and (P’AO’)i,l 0 for ] < 1-5 r, we have

Z( (P’AO’)I)z((P’AO’)i), l<-]<-r.
/=]+1

Therefore,

(ao’)l) z((ao’)’), l <-j<-_r.
=j+l

But then by assumption

Z( (ao’)) Z((ao’)’),
/=j+l

and so by choosing ] r, r- 1,..., 1, we obtain

1 _-< card (Z((AQ’))) # card Z (AQ’)

" card (Zl( (AQ’)l))<-r.
/=1

Hence there exists a permutation matrix P satisfying the following property:

(.) (PAQ’).,O, l<-i<-r (PAQ’)g,=O, <-i</<-r,

where

P is a permutation matrix of order r. With the matrix P as obtained above, let

{O, a permutation matrixlPAO has the property (,)}.

By way of contradiction, suppose Lemma 3.2 is false. For each O e , let A (O) be
the positive integer defined as follows:

I (O) max {il2 --< _-< r such that ::1], 1 _-</" _-< 1, with (PAO). 0}.

Let

Let

q min {A (O)lO gd}, ={Oelx(O)=q}.

a=min{ X (PAO
l_-<j_-<q-1 (PAQ)i,

o
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Now let Q be an element of c which gives the minimum value a. Set F PAQ. We
know there exists o, 1 =<o =< q 1, such that Fq,io O. By the maximality of h (Q),

F,q 0, iq, l<=i<-r.

Therefore ZI((F)q)ZI((F)io). Since F satisfies the hypothesis of Lemma 3.2,
Z((F)q)

_
Z((F)i). Therefore, there exists/ > 0 such that (F)i -/ (F) -> 0. Let us set

(1) f (F)i -/3 (F).

Then Fx f must have a nonnegative solution. So we may write

(2) f Yi(F)i, Y1 => 0.
i=1

It follows from (2) that there exists ]1, 1 _-< h -<- n, such that

((F)/’)q
< (f)q(3) 3/i, # 0, ((F)i’)io # 0, ((F)i)io (f)io"

On the other hand, from (1) we have (f) < ((F)i)q and (f)io ((F)i)io, and so

(4) (f)q <
((F)i)q

(f) o
Again, by (1),

(5) (f) 0, 1<=i=<]0-1, q+l<=i<=r.

Thus by (2) and (5), and the fact that 3/il # 0, we obtain

(6) ((F)il)i 0, 1 -< =< ]o- 1, q + 1 -< =< r.

Therefore, if we replace (F)i by (F)il, we shall get a smaller value of c by (3), (4)
and (6) except when ((F)il)q 0 and Fqd O, 1 <=] <= q- 1, ] # ]o. In the latter case we
get a smaller value of q. Thus in each case we arrive at a contradiction. This completes
the proof.

SUBLEMMA 3.3. Let A be an rn x n matrix of rank r. Let S be a positive definite
symmetric bilinear form over R". Then there exists a subset A of cardinality r of
{1, 2,. , m} such that

Proof. Let

and

Then

and so

(ei[i A) R (A)+/-s 0

V/cA, :], l<-]<=n, A,i#O.

A {il 1 <- -< m, =1], 1 _-< ] =< n, such that Aid # 0}.

R (A) (eli e h)

dim (R (A)+/- (q (e, lie A)) (card A)- r.

By choosing A to be a maximal subset of A such that (eli A)f’IR(A)+/- 0, we get
the desired conclusion.
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We now state without proof some basic facts contained in the following two
sublemmas.

SUBLEMMA 3.4. Let A be an m x n matrix, and let b be a vector of size m. Let $
be a positive definite symmetric bilinear form over Rm. Let b bl +b2, bl R(A),
b2 R(A)+/-s. Then Xo is a best approximate solution of the system Ax b with respect
to S if and only ifAxo b l.

SUBLEMMA 3.5. Let A be an m n matrix, and b be a vector of size m. Let $ be
a positive definite symmetric bilinear form over ". Let P, Q be permutation matrices

of orders m, n respectively. Then Xo is a best approximate solution of the system Ax b
with respect to $ if and only if Q-xo is a best approximate solution of the system
(PAQ)x Pb with respect to PSP-.

LEMMA 3.6. Let A be an m n nonnegative matrix of rank r. Let S be a positive

definite symmetric bilinear form over ’. Suppose that Ax b has a nonnegative best
approximate solution with respect to S ]’or every b >-O.

Then there exist permutation matrices P, Q such that

(PAQ)i.i 0, 1 _-< _-< r,

(PAQ)i.j=O, l<=i<=r, l<=j<=r,

(eill <- <= r) f’l R (PAQ)1"’-1 O.

Proof. Let A be as in the conclusion of Sublemma 3.3. Without any loss of
generality, we may assume A {1, 2,. , r}. Clearly, for each k A, 1 -<_ k <= m, there
exists a unique vector qk Of R (A)+/- such that

1, =k,
(qk)g

O, # k,
r+l<_i<_m.

In order to prove our lemma, it suffices to prove that A satisfies the hypothesis of
Lemma 3.2. Let Z(u), Z(u) be as in Lemma 3.2. By way of contradiction, let (A)q

and a lt. (A) be such that

Z((A)q)ZI(a) but Z((A)’I)ff:Z(a).

We choose z R (A) such that qk + Z >= 0 for all k e {r + 1, , m}. Further, for each
vector u R", let

T(u)={klr+ 1 <-k <-m, k:Z(a), (U)k <0}.

Assume T(u) # . Let us set

p(u) min T(u).

Next we choose positive number a (u) such that

(u + a(u)(qp(u) + z))p(u)= O.

Now let u0 =-(A)q, and define vi, w, u inductively by

)i Oz(Ui-1)qt(u,_x), Wi Ol(Ui-1)Z, Ui Ui-1 dl- Di "It- Wi.
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We continue until T(ut)= for some positive integer t. For each 1, 2,..., t, we
have

T(ui)cT(ui-1),

(Ui)p(ui-1) O,

(Ui--1 "at" Wi)p(ui-1) < 0,

(Ui)k 20, 1 <-k <-r, kC:Z(a).

Let v =i= vi, w Uo+i= wi, and u ut. Let us also write p =p(ut-) for con-
venience. Then

u=v+w, veR(A)+/-s, wR(A),

(U)k 0 for all k Z(a), 1 _-< k _-< m,

(w) <0,

By the definition of Z(a), there exists />0 such that a+u>-O. Further, since
pe Z(a), (a + w)p (w)p < 0. This implies that Ax a + u does not have any non-
negative best approximate solution with respect to the norm S, a contradiction. Hence
A satisfies the hypothesis of Lemma 3.2, completing the proof.

THEOREM 3.7. Let A be an rn n matrix of rank r. Let $ be a positive definite
symmetric bilinear form over R satisfying

(**) S(ei, ek)>--O, l<--i<--m, l<_k<__m.

Suppose Ax b has a nonnegative best approximate solution with respect to S for
every b >-0. Then there exist permutation matrices P, Q such that

where

PAQ=
0

Z2

Z

zi is a positive vector of size Ai and D is some nonnegative matrix; or equivalently A
has a nonnegative {1, 3}-inverse. (The zero block row in the description of PAQ may
be absent.)

Proof. By Lemma 3.6 there exist permutation matrices P, Q such that

(PAQ)i,i # O, 1 <= <= r,

(PAQ)i,i=O, l<-i,]<-r, i#]

and that

(ei]l <= <-_ r) f’) R (PAQ)+/-’’-1 O.

For each r + 1 _-< k -<_ m, we define qk to be the unique vector in R(PAO)+/-’’- such that

(qk)k=l, (qk)i--O, i#k, r+l<-i<-m.

For each k {r + 1,. , m}, let

Pk card {ill <-- j <-- r, (PAQ)k,j # 0}.
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We have only to show that Pk <- 1, r + 1 <--k <= m. By way of contradiction, suppose
Pko => 2 for some ko. By (**), there exists io, 1 =< io <- r, such that

(qko)io ( O.

Clearly, there exist nonnegative numbers ai’s, r + 1 -< j =< m, j # ko, such that

(-(Pao)i+ . a,qj) >-0
r+l<=j<----m k
jko

for all k {r + 1,. ., m}, k ko. Since (qko)io < O, there exists ako < 0 such that

(-(PAQ)i+ , aq,) >-0
r+ <--j<--<-m k

for all k {r + 1, r + 2, , m} with k # ko and for k io. Since Pko >" 2, there exists ]o,
1 _-< ]o <-- r, ]o io such that (PAQ)kodo O. Then there exists > 0 such that

(-(PAQ)i+(PAQ)+ ., a,q) >-0
r+l<=j<----m k

for all k {r + 1, r + 2, , m} and for k io. Finally, there exist nonnegative numbers
yj’s, 1 =< j _-< r,/" io, such that

b=-(PAQ)i+fl(PAQ)]+ y](PAQ)] + ., a]qj>--O.
l<=]<_r r+l<_j<--m
jio

Since

b ., aq) -(PAO)io.io < 0,
r+ <=j<--m io

the equation PAQx b does not have any nonnegative best approximate solution
with respect to the bilinear form PSP-1. Hence, by Sublemma 3.5 the system Ax P-Ib
does not have any nonnegative best approximate solution with respect to S, a contradic-
tion. This gives us the desired structure of A. The last statement follows from the
theorem of Berman-Plemmons [3, Thm. 5].

We now proceed to give certain remarks about sufficiency conditions in order
that for all b, Ax b have a nonnegative best approximate solution.

Remark 3.8. Let A be a nonnegative rn x n matrix of the form

A=
0

where J and D are as in the statement of Theorem 3.7. Let $ be a positive definite
symmetric bilinear form satisfying $(ei, e) _-> 0, 1 N i, k N m. Then the following two
statements are equivalent:

(i) Ax b has a nonnegative best approximate solution w.r.t. S for all nonnega-
tive vectors b e N.

(ii) For each v eR(A), either there exists k ( I)+ 1 such that (v) <0 or

i=1

such that (V)k, 0,
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Proof. Straightforward.
Remark 3.9. Condition (ii) in the above remark is automatically satisfied if S is

diagonal. Thus, for such an $, the converse of Theorem 3.7 also holds.

4. Nonnegative least squares solution. The characterization of nonnegative idem-
potent matrices plays an important role in this section. We state this in the following
lemma due to Flor [4].

LEMMA 4.1. [4, Thm. 2]. Let B be a nonnegative idempotent matrix of rank s.
Then there exists a permutation matrix P such that

pBp
Jo JD 0 0

0 0 O,
CJD 0
0 0

where J is a direct sum of matrices xiy i, where xi, yi are positive vectors such that y ixi 1,
1 <-i <= s and C, D are nonnegative matrices of suitable sizes.

The lemma that follows characterizes all real matrices A which commute with a
nonnegative idempotent matrix B such that rank AB rank A.

LEMMA 4.2. Let B be an idempotent matrix of rank s of the form

Jo .ID 0 0
0 0 O,

CJD 0
0 0

where diagonal blocks are square matrices of orders a t, a2, a3, a4, J is a direct sum of
mi mi matrices xiy with y ixi 1 and xi, yi having no zero entry, 1 <-_ <- s. Let A be a
square matrix such that AB BA and rank AB rank A. Then

KD 0 0
0 0 O,

CKD 0
0 0

where the diagonal blocks are square matrices of orders at, a2, a3, a4 and K
1 <- i, ] <= s where Kij fliixiyi is an mi mi block matrix.

Furthermore, AB A BA.
Proof. Let xi,i and yi,j denote the ith entry of xi and yi respectively. Set

i-1

ni F. mi, 2 <= <= s, nl=0.
i=1

Then

(B)"’+tl Ytl.___2 (B)"’+t2, 1 -< =< s,
Yt2,i

1 <= 11, 12 <= mi.

Therefore,

(7) (AB)"’+q YI,__2 (AB)n’+h, 1 -< -< s,
Yl2,i

1 <- ll, 12 <= mi.
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Now, we have

(8) (B)l dk(B)k,
k=l

where

dk (k, l- a)-entry of D,
0,

It follows from (8) that

l<-al,
a+ l <--_l<--al+a2,
l>--a+a2+l.

(9) (AB)= E dkl(AB)k.
k=l

By (7) and (9), we obtain

(10) R (AB) ((AB)"’+I1 <-_ <- s).

Let r rank (AB). Since AB BA, (10) implies that we can choose r linearly indepen-
dent vectors among (BA)"’/1, 1 <-i-<_s. By simultaneous rearrangement of rows and
columns, we may assume that (BA)"’/, 1 -< -< r, are linearly independent. Then since
(BA) B(A), we get that (A)"’+, 1 <= <= r, are linearly independent and, hence, form
a basis of R (A). Therefore an arbitrary column (A) of A can be expressed as

(11) (A)/= Ol, li(A)"’+1.
i=1

Then

(12) (BA)I= Otli(BA)n’+
i=1

From (7) and (12),

Yll ,]
Olni+ll, Olni+12,i.

Y:,i

The above together with (11) yields

(13) (A)"’+tl Y1.____2 (A
yt,

Similarly,

(14) Xl,,](A),,+, (A),,+;.
Xl2,]

Set

(ng+ 1, ni + 1)-entry of A
XI,iYld
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This gives the desired structure for K. Now let >- al + 1. Then

(BA)= Y’. dk(BA)k (from (9))
k=l

Y’. dk ai(BA)"’+1 (from (12))
k=l i=1

i=1 k=l

Thus from (12)

Hence by (11)

(A)= dklOZk (A)"’*1= E d Cki(A)
i=1 k=l k=l i=1, dk(A)k (from (11)).
k=l

Let X be the submatrix of A consisting of its first a columns. Then by the above
equation, and by the definition of dkt, we obtain

A=[X XD 0 0].

A similar argument for rows yields

Hence A is of the desired form. The last statement is obvious. This completes the proof.
The s x s matrix (/3o) in the above lemma will be referred to as a coefficient matrix

of A with respect to B. More generally, let B be an arbitrary nonnegative idempotent
matrix, and let P be a permutation matrix such that PBP is as in Lemma 4.1. Let A
be a nonnegative matrix such that AB BA and rank (AB)= rank A. Then we can
define a coefficient matrix (/3ij) of PAP with respect to PBPt. We refer to this matrix
(/j) also as a coefficient matrix of A with respect to B. We remark that this definition
of coefficient matrix of A is unique up to similarity by a monomial matrix. For, if A,
B and P are as above and if we write

PBP’ p p,

where

X1

Up x2

Xs

Vp Y2

Y
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then the coefficient matrix defined above is the s s matrix Ap such that PAPt=
A i,rtt
eeve. Note that Up and Ve are not unique even if P is fixed, but that if P, Up,

Ve are all fixed, then Ap is uniquely determined. Now suppose that for some permuta-
tion matrix Q, QBQ’ r r, Iz’t

’-’OvO is also as in Lemma 4.1. Then the matrix Ao such
that QAQ’= U’oAoV’ is obtained as follows’

QAQt Op-1 ,tUpApVp(Op-1)
(QP-I U’PQ )(OoApO- )(OoV(Op-1)t),

where Q0 is the unique s x s monomial matrix such that QP-X U’pQ= U’o (or
equivalently, QP-I V’eQto Vb.) Thus,

Ao OoApO-.
This justifies our remark that the coefficient matrix is determined up to similarity by
a monomial matrix. Before proving our next main result, we fix the following notation.

Let B be a nonnegative idempotent matrix of rank s. We shall without any loss
of generality assume (by using Lemma 4.1) that B is of the form

Jo JD 0 0

oo!CJD 0
0 0

where J is a matrix as in Lemma 4.1. Let C=(co), 1-<i-<a3, l<=]<-a. Let xi.j, Yi.j,

rni, nj be as in proof of Lemma 4.2. Set

g]k E (C],nk+iXi,k), 1 <-- ] <-- a3, 1 <-_ k <- s,
i=1

hkl gjkgfl, 1 <-- k, <= s.
j=l

Let $ be an s x s symmetric matrix given by

Sk, hkl +

Then
2

z’Sz (llx, ll,.z,)= + g,kZk Z e Rs,
j=l /=I k

and therefore the symmetric bilinear form defined by $ is positive definite. We also
note that S is diagonal if and only if C 0.

THEOREM 4.3. Let B be the matrix as above, and let A be a nonnegative matrix
such thatAB BA and rank AB rank A. LetAo (3ii), 1 <- i, j <- s, be the coefficient
matrix ofA with respect to B described in Lernrna 4.2.

Then Ax b has a nonnegative least squares solution for all nonnegative vectors
b R (B) if and only ifAox b has a nonnegative best approximate solution with respect
to S ]’or all nonnegative vectors b , where S is the symmetric bilinear form defined
above.
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Proof. As stated above, we assume

Jo JD 0 0
0 0

B-
CJD 0

0 0

where C, J, D are as in Lemma 4.1.
Let

Ul

U2

Define u N’1, u, u Ral+a2+a3+a4 by

n + 1,(u)
0 otherwise,

i.e., u x [UlO.." 0 U20’" 0 Us0’" O]t,

l<__l<-_s,

where xi, 1-< i-<_ s, are the vectors appearing in the representation of the matrix B.
We note that u is an isomorphism from R onto R (B), and indeed, u maps nonnegative
vectors in Rs to nonnegative vectors in R (B).

Let

We define v " s, v ’ a/a2/a3/a as follows"

(v’)l=V,,,+l, l<=l<-s, v’=((X-ISX-X)v’),
where X is an s x s matrix such that Xk. 6klX,k. We claim

(15) (u) Xu, u

(16) ((u )*) X-1Su, u ,
(17) v-v’ R(B)’, v eR(B).

Since (u),,,/ x.Ul, 1 <= <-s, claim (15) tollows immediately. Further, since (v*)6
(X-aSX-I)v ’, claim (16) follows from claim (15). We now proceed to prove claim
(17). Since {(e)ll <= <=s} is clearly a basis ot R(B), and since the operation 0 is
linear, it suffices to prove the claim (17) for v (e). By definition of u, we have

t, nl + ], 1 <- j <- mr,

((el)")i=lgoJt’ otherwise.i=ax+a2+]’ l<--f<--a3’

1Xl

U
Cu,

LU,X,l 0a4
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By (16),

(((et)),),
(hk, + klllxkll), n + 1, 1 <= k <= s

otherwise.

By actual computations we obtain

(((et))g’)t(ek) hk/ kllxll-- E gtgk + kl (Xi,k)2--" ((el)v)t(ek) v.
j=l i=1

Therefore

((e) ((e))*)(e) O, 1 N l, k Ns.

Hence

(el)v- ((el)) R (n)+/-, 1 < < s.

This proves our claim (17).
Now assume Ax b has a nonnegative least squares solution for all nonnegative

vectors b R (B), and let c be an arbitrary nonnegative vector in Rs. Since c R (B),
Ax c has a nonnegative least squares solution, say

Then

al+aa3+a4(18) c fi(A) "+" Wl, W1 eR(A)+/-.
i=1

Further, since each (A) can be expressed as a nonnegative linear combination of
(A)nl+l, ., (A)n+l, we may assume in (18) that f 0, # n + 1, 1 <- <= s.

Next, we claim

(19)

To prove (19) let

Then

Therefore,

(A)n’+l=yl,l((Ao)l)" l<__l<-s.

(A)nl+1

(A)"’+ y.t((Ao)), l <=l <=s,
as desired.
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(20)

Set

Then, by (18), (19) and by the assertion following (18), we have

C [Calnl+lYl,l,,..oll. + W1.
/=1

(-),W2"-C

Zl ((Ao)l) (((A0)/)v)q,
Then by (17) w2, zing(B)

1 _R(A)1. Also, by (20),

l<_l<_s.

(21) (c")* f,+tyl,t(((Ao)t)")’ + w3,
/=1

where

and thus w3R(A)+/-. Set w’--(x-ls)-l(w3)4’. By (16) and (21),

(x-lS)c fnt+lYl,l((X-lS)(Ao)l)+(x-lS)w ’.
1=1

It then follows that

(22) c f.+xyx,/(Ao)+ w’.
/=1

Since w3R(A) we get from (19)

(23) (((Ao)))%3 0, 1 <_- -<_ s.

Also, by (21), (w3)i =0, # nl+ 1, 1 <--l --<S. Therefore, we may rewrite (23) as

(23’) (X(Ao)l)t(w3) 0

by using (15). Then by (23’), together with the definition of w’, we have

((Ao)l)tsw --0.

Hence, w’ R (A0)xs. Thus (22) gives us a nonnegative best approximate solution of
Aox c with respect to the norm S.

We can retrace the steps back to prove the "if" part of the theorem, completing
the proof.

Combining Theorems 3.7 and 4.3, we obtain the following main result.
THEOREM 4.4. Let B be a nonnegative idernpotent matrix. LetA be a nonnegative

matrix such that AB BA and rank (AB)= rank A. Let Ao be a coefficient matrix of
A with respect to B. Suppose that the equation Ax b has a nonnegative least squares
solution for all nonnegative vectors b R (B). Then there exist permutation matrices P,
(3 such that Ao can be expressed in the form
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where

are positive vectors and L is a nonnegative matrix, or equivalently, Ao has a
nonnegative {1, 3}-inverse.

We give an example to demonstrate that the converse of Theorem 4.4 is not
necessarily true.

Example 4.5. Let

1 0 0 0 1 1 0 0

B=
0 1 0 0 1
1 1 3 3 1

Then B B2, AB BA, rank (AB) rank A 2 and a coefficient matrix Ao of A is
given by

Although Ao has a nonnegative {1, 3}-inverse, we may verify that the system Ax b,
where

does not possess a nonnegative least squares solution. For, if we write b bl + b, where

5 -5

bl= _5114 R(A), b2 ! R(A)-L,

then by Sublemma 3.4 a least squares solution Xo must satisfy Axo bl. But then Xo
cannot be nonnegative.

Remarks 4.6. (1) Recall from Remark 3.9 that if the positive definite symmetric
bilinear form $ is diagonal, then the existence of a nonnegative {1, 3}-inverse of a
matrix A is equivalent to the existence of nonnegative best approximate solution of
Ax b for all nonnegative vectors b. Also recall that the symmetric bilinear form S
in Theorem 4.3 is diagonal if and only if the matrix C in Lemma 4.1 is zero. Therefore,
it follows that the converse of Theorem 4.4 holds if C 0.

(2) Example 4.5 shows that the converse of Theorem 4.4 does not hold. Neverthe-
less, we can show that if an m x m matrix A is as in the conclusion of Theorem 4.4,
then there exists a positive definite symmetric bilinear form $ over R such that
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Ax b has a nonnegative best approximate solution with respect to S for all nonnega-
tive vectors b R (B).

(3) Let B be an m x n (not necessarily square) nonnegative matrix of rank s such
that

(PoBQo)i,i O, 1 <- <- s, (PoBQo)id O, 1 <- i, j <- s, j

for suitable permutation matrices Po and Qo. Let A be an m x nonnegative matrix
such that R(A)_ R(B). Let A be the matrix consisting of the first s rows of PoAQo.
With A, B and A as above, arguments similar to the proof of Theorem 4.3 prove
the following"

If Ax b has a nonnegative least squares solution for all nonnegative
b R (B), then A’o has a nonnegative {1, 3}-inverse.

In case A and B are as in Theorem 4.4, we give below the relation between a coefficient
matrix Ao (fli) and the matrix A. It follows as a consequence that the existence of
a nonnegative {1, 3}-inverse of A implies that of Ao and vice versa. Let P be as in
Lemma 4.1. Also let the notation be as in the proof of Lemma 4.2 with B replaced
by PBPt. Further, let P be a permutation matrix which sends the (hi d-1)th row to
the ith row. Set Po PP and Qo pto. Then PoBQo is in the form stated at the
beginning of this remark. With this choice of P0 and Qo, we have

(A o)i,i
=, l<_i,j<_s.fli

XI,iYl,

Since every column of A can be written as a nonnegative linear combination of the
first s columns of A, the existence of a nonnegative {1, 3}-inverse of one of Ao or
A implies that of the other.

Acknowledgment. The authors express their sincere thanks to Professor D. K.
Ray-Chaudhuri, Chairman, Department of Mathematics, Ohio State University, for
providing them the opportunity of working together on this paper.
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DECOMPOSITION OF DIRECTED GRAPHS*

WILLIAM H. CUNNINGHAM

Abstract. A composition for directed graphs which generalizes the substitution (or X-join) composition
of graphs and digraphs, as well as the graph version of set-family composition, is described. It is proved
that a general decomposition theory can be applied to the resulting digraph decomposition. A consequence
is a theorem which asserts the uniqueness of a decomposition of any digraph, each member of the
decomposition being either indecomposable or "special". The special digraphs are completely characterized"
they are members of a few interesting classes. Efficient decomposition algorithms are also presented.

1. Introduction. Throughout this paper digraph or directed graph means "simple
finite directed graph"; that is, the vertex-set is a finite set V(G) and the edge-set
E(G) is a subset of {(u, v): u, v V(G), u v}. For the most part, our terminology
follows Bondy and Murty [1]. Let G1, G2 be directed graphs having vertex-sets
V1 LI {v }, V213 {v } respectively, where {V, V} is a partition of V and v V. We define
a digraph G G. G2, the composition of G with G, to have vertex-set V and
edge-set {(x, y): (x, y)sE(G)LJE(G2), x v y}Ll{(x, y): (x, v)E(GI) and (v, y)s
E(G2) or (x, v) E(G2) and (v, y)s E(G)}. This composition is illustrated in Fig. 1.
This paper presents a unique decomposition theory for this digraph composition based
on a general decomposition theory [6] and also efficient decomposition algorithms.

We begin by describing some interesting special cases of the composition. Clearly,
G is symmetric (satisfies (x, y) s E(G) if and only if (y, x) E(G) for all x, y s V(G))
if and only if G and G2 are, so one special case is a composition for undirected
graphs. Equivalently, this is a composition for families of sets (hypergraphs) each of
whose members has cardinality exactly 2. In this latter context, the undirected-graph
composition is also a special case of a set-family composition investigated previously
[6, 5]. We remark that this graph composition is powerful enough to encompass the
standard notion of graph separability. Specifically, with a single trivial exception,
any connected graph which is separable (has a cut vertex) can be expressed as a
.-composition of smaller graphs.

Another important special case occurs in a less transparent way. Suppose that
H,J are digraphs having disjoint vertex-sets and let v V(H). Then H[J; v], the
substitution composition or "X-join" of H with J, is the digraph having vertex-set
(V(H)U V(J))\{v} and edge-set {(x, y): (x, y) s E(H), x v # y} LIE(J) 13
{(x, y): (x, v)sE(H), y V(J) or (v, y)sE(H), x s V(J)}. Let us denote by vJ the

d

FIG.
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digraph having vertex-set V(J)U{v} and edge-set E(J)U{(x, v): x V(J)}U
{(v, x): x V(J)}. (A digraph such as vG is said to be pointed at v.) It is easy to see
that H[J; v]= H (vJ). We can obtain as a further special case the substitution [3]
or X-join [11] composition for undirected graphs, either by considering symmetric
digraphs in the digraph substitution, or by applying the pointing device to the un-
directed-graph composition above. Thus, the composition for digraphs generalizes
the ordinary graph substitution in two different directions. Other attractive special
classes of digraphs to which the digraph substitution can be applied include acyclic
digraphs or their transitive closures (partial orders).

There are a number of combinatorial optimization problems which can be solved
(more efficiently) on the composition graph by solving similar problem instances on
the smaller graphs. Examples of such problems are sequencing problems on acyclic
digraphs [12] and the optimal stable set problem for undirected graphs [3]. Both of
these applications concern compositions of the substitution type. Here we describe a
similar result for the more general composition, which generalizes Chvfital’s result.
Where G is an undirected graph, a set S c__ V(G) is stable if no two vertices in S are
adjacent in G. For a given real-valued weight vector (c," u V(G)), the optimal stable
set problem is to maximize Y (Cu: u S) over stable sets S of G. Suppose that G
G1 * G2, where G1 and G2 have the common vertex v. Let $1 be an optimal stable
set in Gx-v, and let S be an optimal stable set in G-({v}tAN(v)), where N(v) is
the set of vertices adjacent to v in G. Let $2 be an optimal stable set in G2, where
co is defined to be (cu’ u $1)- (Cu" u S’). Then S is an optimal stable set in G,
where $ S. IO S if v $2 and S ($2 t.J S1)\{v} otherwise. This observation applies
also to "iterated" decompositions. Because there exists an efficient algorithm to find
an expression for a given graph as a composition of smaller graphs (if possible), these
techniques can be used to enlarge the class of graphs for which the optimal stable set
problem can be solved in polynomial time. (As an example of an optimization problem
in which the most general digraph composition is useful, we mention the optimum
dominating set problem. A set D

_
V(G) is dominating if, for every v V(G)\D,

there exists u D with (u, v) E(G).)
In the next section we describe terminology from decomposition theory [6] and

state the main unique decomposition theorems. The first such theorem asserts the
uniqueness of a decomposition of a diconnected digraph into indecomposable and
certain highly decomposable digraphs. This result is improved by the complete charac-
terization of the highly decomposable digraphs. The rest of the section is concerned
with the application of these results to the special classes mentioned above. Section
3 presents the proofs of these uniqueness theorems. Two main steps are needed. The
first, which shows that the properties required to use the theory of [6] are satisfied,
is essentially easy. The second, proving the characterization of the highly decomposable
digraphs, is more difficult. The last section presents polynomial-time algorithms for
carrying out all decompositions discussed in the paper.

2. Unique decomposition theorems. If G G G2 as at the beginning of 1
and, in addition IVy[ => 2-< v2l, we say that {G1, G2} is a simple decomposition of G
and write G->{G, G2}. We call {V, V2} the split of G associated with the simple
decomposition and v the associated marker element. A (general) decomposition of a
digraph G is defined inductively to be either {G} or a set D’ of digraphs obtained
from a decomposition D of G by replacing a member G of D by the members of a
simple decomposition of G, where the marker of this simple decomposition is not a
vertex of any member of D. If D" is obtained from D by a (nonempty) sequence of
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operations of the kind described above, then D" is said to be a (strict) refinement of
D. If the sequence consists of exactly one operation, the refinement is simple.

We can associate a graph T with any decomposition D of a digraph G. The
vertices of T are the members of D and edges are the markers of D; each marker
joins in T the two members of D of which it is a vertex. It is clear that T is a tree.
This "decomposition tree" provides a useful way to visualize a decomposition.

Two decompositions D, D’ of G are equivalent if D’ can be obtained from D
by replacing some of the markers of D by markers of D’. All unique decomposition
theorems of this paper involve uniqueness "up to equivalence", but we will not include
this phrase in their statements. The decomposition D of G is minimal with some
property P if D has P and there does not exist a decomposition D’ of G also having
P such that D is a strict refinement of D’. A decomposition D is trivial if IDI- 1. A
digraph D is prime if it has no nontrivial decomposition.

If G is a digraph and A
_
V(G), we denote by 6(A) the set {(x, y): (x, y) E(G),

x A, y A}. A digraph G is diconnected (or strongly connected) if for all A,
V(G) we have 6(A) b. We state without proof some easy but useful results. (The
symbol 61 in Proposition 2 has the expected meaning.)

PROPOSrrION 1. { V1, V2} is a split of the digraph G if and only if, for 1 and
2, (a, b), (c, d) 6(V) implies (a, d) 6(Vi).

PROPOSITION 2. If G {G1, G2} with associated split { V1, V2} and marker v and
A
_

VI, then
(a) 6x(A) b/f and only if 6(A)
(b) (A t.J {v})= if and only if 6(A V1)= b.
COROLLARY 1. If G " {G1, G2}, then G is diconnected if and only if Ga, G2 are

diconnected.
Because of Proposition 2 and Corollary 1, we are justified in restricting the

digraph decomposition theory to dieonnected digraphs. We know that this class is
closed under composition and decomposition by Corollary 1. But Proposition 2 tells
us even more; roughly speaking, it says that G lacks diconnectivity in the same ways
that G1 and G2 do.

It is, perhaps, natural to hope that each diconnected digraph G would have a
unique decomposition consisting of prime digraphs, but this is not the case. Consider,
for example, the dicomplete digraphs: E(G) consists of every ordered pair of distinct
elements of V(G). A dicomplete digraph having four or more vertices has inequivalent
prime decompositions; any dicomplete digraph having six or more vertices has prime
decompositions having nonisomorphic decomposition trees. In fact, dicomplete
digraphs are examples of "brittle" digraphs. A digraph G is brittle if [V(G)[->4 and
every partition {Vx, V2} of V(G) satisfying VI >--2 <_-IVEl is a split of G. The brittle
digraphs comprise the first of two classes of highly decomposable digraphs which play
a special role in the decomposition theory. A digraph G is semibrittle if IV(G)[_->4
and there exists an ordering v0, va,.. ., v,-1 of V(G) such that the splits of G are
precisely the partitions {{v, vg+x,..., v+i-1}, {v+i,..., vg_}}, where O<-i<-n-1,
2 _-</" _-< n- 2 and subscripts are taken modulo n. An example of a semibrittle digraph
is a digraph consisting of a directed cycle of length at least 4. The digraph G of Fig.
1 is also semibrittle, and this particular example provides an even stronger illustration
of the lack of uniqueness of prime decompositions. The digraphs H1, H2 of Fig. 2
comprise a simple decomposition of G, and the members of {H1, H2} are not even
pairwise isomorphic to the members of the decomposition {G, G2} of Fig. 1.

In the next section, we apply the theory of [6] to prove the following unique
decomposition result.
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a b

U U

C

H2

FIG. 2

THEOREM 1. Each diconnected digraph has a unique minimal decomposition,
each of whose members is prime, brittle or semibrittle.

The main uniqueness result for digraph decomposition is obtained from Theorem
1 by characterizing the brittle and semibrittle digraphs. A distar is a digraph G such
that E(G)= {(u, v): v V(G)\{u}}U{(v, u): v V(G)\{u}} for some u V(G). (The
vertex u is called the center of the star.) It is not hard to see that distars are diconnected
and brittle. A transitive tournament is a digraph G such that for some ordering vl,

vz,"’, v,_ of V(G) we have E(G)= {(vi, vj): 1 <-i<] <= n- 1}. Clearly, a transitive
tournament is not diconnected (unless n 2); however, some interesting diconnected
digraphs are constructed from transitive tournaments. A circle of transitive tournaments
(CTT) is a digraph obtained from a sequence T1, T2, ’, Tk of transitive tournaments,
where IV(T)I_->2 for each i, by identifying the last vertex of T with the first vertex
of T+x for 1 <-i-< k- 1 and identifying the last vertex of Tk with the first vertex of
Tx. More formally, G is a CTT if, for some ordering v0, va,..., v,_x of V(G) and
integers 0 pl < pz <" <p <p+x n, we have E(G) {(vi, vj): Pl <- < ] <= Pl+I for
some l, 1 --< --< k}, where v, means v0. (Note, however, that (Vo, Vo) E(G).) The vertices
vpl, vp2,’" ’, vk are called the hinges of the CTT. We say that the CTT is of type
(p.-px, P3-P2, pt,+ pt,). There is a CTT on n vertices for each ordered partition
of the integer n into positive integers, up to a cyclic permutation of the partition. The
seven distinct (up to isomorphism) CTT’s on 5 vertices are illustrated in Fig. 3.

The CTT’s are diconnected and semibrittle. Their appearance enriches the digraph
decomposition theory considerably. First, the CTT’s for k > 1 are new; they do not
appear in the more restricted theories which we have mentioned as special cases of
the present theory. Second, they are numerous; up to isomorphism there is just one
dicomplete and one distar having n vertices, but the number of CTT’s grows exponen-
tially with n. We can now state the main unique decomposition theorem for digraphs.

THEOREM 2. Each diconnected digraph has a unique minimal decomposition,
each of whose members is prime, dicomplete, a distar or a circle of transitive tournaments.

Theorems 1 and 2 will be proved in 3. We devote the remainder of this section
to an investigation of their applications to the less general situations mentioned earlier.
A decomposition theorem for undirected graphs is obtained by restricting attention
to symmetric digraphs in Theorem 2. (We observe that G G2 is symmetric if and
only if G1 and Gz are symmetric.) The assumption of diconnectivity for digraphs
reduces to connectivity for undirected graphs. Dicomplete digraphs and distars are
symmetric, but no CTT is symmetric. Complete graphs and stars are undirected graphs
defined as expected. The resulting theorem first appeared in [5, (625)] and is a special
case of [6, Thm. 11].
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(1,1,1,1,1) (2,1,1,1)

(2,2,1) (3,1,1) (3,2)

FIG. 3

THEOREM 3. Each connected graph has a unique minimal decomposition, each
of whose members is prime, complete or a star.

Now let us consider a decomposition theory for the substitution-type digraph
composition. Since a substitution composition is not determined by the two digraphs
G1, G2 being composed and their order (the special vertex of G1 is also needed), it
is convenient (as in [6]) to consider the objects being decomposed as pairs (G, v),
where v is an element not in V(G). We say that {(G, v), (G2, w)} is a simple
factorization of (G, v) if G G[G.; w]. The vertex w is called the marker associated
with the factorization. A (general) factorization of (G, v) is defined inductively to be
either {(G, v)} or a set D’ obtained from a factorization D of (G, v) by replacing a
member (G, v) of D by the members of a simple factorization of (G1, v) such that
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the marker of this simple factorization is neither a vertex of G nor an element v’ such
that (G’, v’)D for some G’. We define (simple) refinement, marker (of a factoriz-
ation), equivalent, trivial and minimal just as for decompositions. A component of a
factorization D is a digraph H such that (H, w)D for some w. A digraph G is
irreducible if (G, v) has no nontrivial factorization.

Given a factorization D of (G, v) we can form a directed graph T as follows.
The vertices of T are the components of D and the edges are its markers. The marker
w is directed from G1 to G2, where G1 is the component of D such that (Gt, w)D
and G2 is the component of D of which w is a vertex. It is easy to see that T is a
tree having the property that every vertex but one has exactly one edge directed away
from it; the exceptional vertex is the component G’ of D such that (G’, v)D. This
component G’ is sometimes called the quotient of D.

Recall the definition of the digraph vJ from 1 and the fact that H[J; vl=
H (vJ). An equivalent statement is that {(H, w), (J, v)} is a simple factorization of
(G, w) if and only if {H, vJ} is a simple decomposition of G. This result is easily
generalized to arbitrary decompositions and factorizations by making use of their
inductive definitions.

PROPOSITION 3. Let G be a digraph and v V(G). Then D is a ]actorization of
(G, v) if and only i]D {v’G’: (G’, v’)D} is a decomposition of vG.

We can observe that vG is diconnected for any digraph G, so Proposition 3 allows
us to obtain a theory for the substitution decomposition which applies to all digraphs.
Clearly vG is prime if and only if G is irreducible. It is also easy to see which digraphs
G have the property that vG is dicomplete, a distar or a CTT. They are dicomplete
digraphs, edgeless digraphs and transitive tournaments, arising, respectively, from
dicomplete digraphs, distars and CTT’s of type (IV(G)I). The resulting unique
decomposition theorem for digraph substitution can now be stated.

THEOREM 4. Let G be a digraph and v V(G). Then (G, v) has a unique minimal
]’actorization, each of whose components is irreducible, dicomplete, edgeless or a transitive
tournament.

Theorems 3 and 4 are specializations of Theorem 2. On the other hand the next
result, on substitution decomposition of undirected graphs, is a specialization of both
Theorem 3 and Theorem 4. We can obtain it from Theorem 4 by considering only
symmetric digraphs, or we can obtain it from Theorem 3 in the same way that Theorem
4 was obtained from Theorem 2. This result appears in [5, (733)] and in [6, 7].

THEOREM 5. Let G be a graph and let v: V(G). Then (G, v) has a unique minimal
]actorization, each of whose components is irreducible, complete or edgeless.

Another special class to which the substitution decomposition theory can be
applied is the class of acyclic digraphs, which is closed under substitution composition
and decomposition. Using Theorem 4 and the fact that dicomplete digraphs are not
acyclic, we obtain the following result.

THEOREM 6. Let G be an acyclic digraph and let v_ V(G). Then (G, v) has a
unique minimal factorization, each of whose components is an acyclic digraph which
is irreducible, edgeless or a transitive tournament.

One can also consider the class of transitive acyclic digraphs. Theorem 6 remains
true with "acyclic" replaced by "transitive acyclic". It is interesting to notice the
connection with partially ordered sets, which are equivalent to transitive acyclic
digraphs. Of course, the sets C

_
V(G) such that {C, (V(G)\C){v}} is a split of vG

play an important role in the theory. These are called "job modules" in [12], where
the partial order is that imposed by a precedence relation among jobs in a sequencing
problem. Moreover, the partially ordered sets associated with transitive tournaments
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and edgeless digraphs are, appropriately, chains (totally ordered sets) and antichains
(totally unordered sets). (The familiar class of series-parallel posets consists of posets
having a factorization whose components are chains and antichains.)

Finally, we remark that a weaker type of unique decomposition theorem can be
proved for prime decompositions in many of the applications. The idea is that any
prime decompositionD of a digraph G is a refinement of the "standard" decomposition
D’ whose uniqueness is asserted in Theorem 2. Therefore, D is obtained by replacing
each brittle or semibrittle member of D’ by a prime decomposition of that member.
Dicomplete digraphs, distars and CTT’s of type (n) all have the property that any
decomposition of one of them consists of digraphs of the same type. That is, any
decomposition of a distar consists of distars and so on. Thus, for example, any prime
decomposition of a distar having at least three vertices consists of distars having three
vertices. We can apply this observation to any of Theorems 3, 4, 5, 6 to obtain
theorems on the uniqueness up to isomorphism of prime decompositions; as an
illustration the resulting corollary to Theorem 4 is stated below as Theorem 7.
However, the same approach cannot be applied to the most general uniqueness result,
Theorem 2. This can be seen from the example of Figs. 1 and 2.

THEOREM 7. LetG be a digraph andv V(G). The components ofanyfactorization
of (G, v), each of whose components is irreducible, are unique up to isomorphism.

We observe that the same argument allows us to conclude that the quotient in
Theorem 7 is unique up to isomorphism. It follows that all factorizations of (G, v)
having irreducible quotients, have isomorphic quotients. This result, for a restricted
class of factorizations is due to Maurer [9], [10].

3. Proofs. In order to prove Theorem 1, we use the general theory developed
in [6]. Let @ be the class of diconnected digraphs. For each G f, V(G) (of course)
denotes the vertex-set of G, and , as defined in 2, is a relation associating elements
G of c with two-element subsets {G1, G2} of (#. A triple such as (c, V, ) is defined
in [6] to be a decomposition frame if four axioms are satisfied. These are F1-F4 of
Theorem 8 below; in other words, the content of Theorem 8 is that (ca, V, ) is a
decomposition frame.

THEOREM 8. (f, V, ) satisfies F1-F4:
F1. I]’G fand G {GI, G2}, then]:orsome v_ V(G) andsomepartition {V, V2}

of V(G) with vii-> 2_-< Ivzl, we have V(G1) V1 t3 {v}, V(G2) Vz {v}.
F2. Fora split { Vx V2} ofG fand v t: V G), there is exactly one simple decomposi-

tion {Gx, Gz} of G with marker v corresponding to {V1, V2}. (In the situation
described in F2, we denote by G(V; v) the digraph G, i= 1 and 2.)

F3. Let {V1, V2} be a splitofG f, letA V and v_ V(G). Then {A, V(G)\A}
is a split of G i]’and only i]’ {A, (Vx t_J{v})\A} is a split of G(V; v).

F4. Let {Vx, V2}, {V3, V4} be splits ofG @such that V3 V and let v, w_ V(G),
v # w. Then G(Vx; v)(V3; w)=G(V3; w), and G(V; v)((V\V3)t_J{v}; w)=
G(V4; w)((V4\ V2) U{w};

Proof. Clearly, F1 holds. For F2, it is easy to see that we must have E(G(V; v))
{(x, y): x, y V, (x, y)E(G)}t.J{(x, v): x V, there exists y V2 with (x, y)
E(G)}I_J{(v, y): y V, there exists x V. with (x, y)E(G)}, and similarly for
G( V.; v).

Now consider F3. We abbreviate G(V; v) to G for 1 and 2. Suppose that
{A,(VI\A)t.J{v}} is a split of G and let (a,b), (c,d)8(A); we must show that
(a, d)E(G). Either (a, b) or (a, v) is an edge of G and either (c, d) or (c, v) is an
edge of G1. Thus either (a, d) or (a, v) is an edge of G.
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In the former case (a, d) is an edge of G, and in the latter case (v, d) is an edge
of G2, so (a, d) is an edge of G. The proof for the case (a, b), (c, d) 8(V(G)\A) is
similar. Now suppose that {A, V(G)\A} is a split of G with A
81(A). Then (a, b)E(G), or b v and (a, b’)E(G) for some b’ V2. Similarly,
(c, d) E(G), or d v and (c, d’) E(G) for some d’ V2. Thus (a, d) E(G), or d v
and (a, d’)E(G) for some d’ V2. In either case (a, d)E(G), as required. The
proof for the case (a, b), (c, d) 8((V(G)\A){v}) is similar.

Finally, we consider F4. Let G G(V; v) and let G3- G(V3; w).
E(GI(V3; w)) {(x, y)E(G): x, y V3} {(x, w): x
(V\Va){v}, (x, y)E(G1)}U{(w, y): y V3 and, for some x (V\V3){v}, (x, y)
E(G)}=E(G3). Now let H=G(VI;v)((V\V3){v};w), and let J=G(V4;w)
(Va\V2){w}; v). Then (v, w)E(H) if and only if there exists (x, y)E(G) with
x V2 and y V3, and this is also the condition for (v, w) to be an element of E(J).
Similarly, (w, v)E(H) if and only if (w, v)E(J). Finally, it is straightforward to
check that the set of remaining edges of H or J is {(x, y)E(G): x, y VI\ V3}U
{(x, v): x V\V3 and, for somey V2,(x, y)E(G)}{(v, y): y V\V3 and, for some
xV2, (x,y)E(G)}U{(x,w):xV\V3 and, for some yV3, (x,y)E(G)}U
{w, y): y VI\ V3 and, for some x V3, (x, y) E(G)}. Thus H J, and the proof is
complete.

The next result shows that the decomposition frame (c, V, ) has the intersection
property; this property plays an important role in the theory presented in [6]. It is
interesting to note that this result is not generally true for digraphs which are not
diconnected.

THEOREM 9. Let { Vx, V2}, { V3, V4} be splits of G f such that V fq V31 2 and
Vx V3 V(G). Then {Vx f) V3, V2 t.J V4 is a split of G.

Proof. Let (a, b), (c, d) 6(VI f) V3). If (a, b), (c, d) 6(V1), or if (a, b), (c, d)
6(V2), we are done, so we may assume that b Vx V4, d V2f’)V3. Since G is
diconnected, there exists an edge (p, q) 8(Vx U V3). In fact, we can choose (p, q) so
that p Vx f) V3. For suppose that p V\ V3. (The case p V3\ V1 is similar.) Then
(p,q), (c, d) 6( Vx), so (c,q)E(G), and we can replace p by c. Now (p,q), (a,b)
6(V3), so (a,q)E(G). Finally, (a,q), (c,d)6(V), so (a,d)E(G), as required. A
similar argument can be repeated for pairs (a, b), (c, d) 6(V2

[6, Thm. 4] states that any "object" of a decomposition frame having the
intersection property has a unique minimal decomposition consisting of prime, brittle
and semibrittle objects. Thus, the present Theorem 1 follows immediately from that
result and Theorems 8 and 9. Proving Theorem 1 amounts to characterizing the brittle
and semibrittle diconnected digraphs. As might be expected from the simplicity of
the result, the characterization of the brittle digraphs is the easier to prove.

THEOREM 10. Let G be a diconnected digraph with IV(G)I_->4. Then G is brittle
if and only if G is dicomplete or a distar.

Proof. It is easy to check, as we have already claimed, that dicomplete digraphs
and distars are indeed brittle. Now suppose that G is brittle but not dicomplete. In
order to prove that G is a distar, it will be enough to prove that it has no directed
path of length 3. This is true because a diconnected digraph having at least 4 vertices
and having a directed cycle of length more than 2 has a directed path of length more
than 2, a diconnected digraph having no directed cycle of length more than 2 must
be symmetric, and any symmetric digraph having no directed path of length more
than 2 must be a distar.

The following observation will be very useful in what follows. Let Vo, Vl, v2, v3
be a directed path of length 3. Then we can find a split { Vx, V2} of G such that (Vo, v),
(/.)2, /-)3) 6(V1). It follows that (Vo, v3), (/32, /31) E(G).
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Now let us show that the vertex-set of any directed path of length 3 is contained
in a dicomplete subgraph of G. By the above remark, if the path is Vo, Vl, v2, v3, we
have (Vo, v3), (v2, vl)E(G). There is an edge (v3, b) for some b V(G). If b # vl,

then we can use (v3, b) together with (Vo, v) or (v2, Vl) and an appropriate split to
conclude that (v3, v) E(G). Similarly, there is an edge (c, Vo) and we can use it to
obtain (v2, Vo) E(G). We can now use (v, v2), (Vo, v3) to conclude (v, v3), (Vo, v2)
E(G), we can use (v3, vl), (v2, Vo) to conclude (v3, Vo) E(G), and we can use (v3, Vo)
and (v, v2) to conclude (Vl, Vo), (v3, v2)E(G). Therefore we have the required
dicomplete subgraph.

We have seen that the existence of a directed path of length 3 implies the existence
of a dicomplete subgraph H having at least 4 vertices. Choose such an H with V(H)I
as large as possible. By assumption H G and so we can choose (a, b)8(V(H)).
Now b is in a directed path of length 3 with every vertex of H, so (b, c), (c, b) E(G)
for every c V(H), contradicting the choice of H. Hence, if G is not dicomplete,
then G has no directed path of length 3 and so G is a distar, as required. [3

THEOREM 11. Let G be a diconnected digraph with IV(G)[ _->4. Then G is semi-
brittle if and only if G is a circle of transitive tournaments.

Proof. (Throughout this proof, we abbreviate {W, V(G)\ W} to {W, -}.) First, we
must show that every CTT is semibrittle. Let G be a CTT with V(G)=
{Vo, vx,. , v,_} as in the definition. It is easy to see that the partitions required to
be splits for G to be semibrittle are indeed splits. Now suppose that {V, Va} is an
additional split. Choose v, vi V1 such that /)k V2 for all k, < k < j. We can easily
check the case IV(G)[=4 separately, and otherwise, either V={v,vi} or
{{vi, vi/,’", vi},-} is a split. Applying the intersection property in the latter case,
we conclude that {{vi, vi},-} is a split. Then, using the edges (vi, vi+), (vi, Vi+l),
we conclude that (v, v/), (v, vi/)E(G). This contradicts the assumption that G
is a CTT.

The proof of the "only if" part is broken into a sequence of smaller results. We
assume for convenience that V(G) {1, 2,. ., n} where 1, 2,. ., n is the semibrittle
sequence and any arithmetic is modulo n (except that we use n rather than 0). Also
we use the symbols <, <= in a slightly nonstandard way, in order to indicate properties
of betweenness. Thus, since we have in mind a circular order, i-</" imposes no
restriction on and, whereas < simply means j. However, <- <= k <- means that
(]- i) mod n -< (k- i) mod n. (The last -< is used in the ordinary sense.)

CLAIM 1. For each i, either (i, + 1), (i + 1, + 2) E(G), or (i + 1, i), (i + 2,
i+I)E(G).

Proof of Claim 1. {{i, + 2},-} is not a split. Therefore, we assume that there
exist (i,b), (i+2, c),({i,i+2}) such that not both of (i,c), (b,i+2)E(G). (The
other case is similar.) Suppose + 1 {b, c}. (This implies V(G)I->_ 5.) Then {{i, + 1, +
2},-} is a split and (i,c), (i+2, b)8({i,i+l,i+2}) but not both of (i,b), (i+2, c)
E(G), a contradiction.

Therefore, we may assume that + 1 e {b, c}. We assume that + 1 b. (The other
case is similar.) We wish to prove that (i + 1, + 2) E(G). There is an edge (d, + 2)
E(G). If d + 1, we are done. Otherwise, if d # i, then because {{i + 1, + 2},-} is
a split, we have (i, + 2)E(G). Therefore, we may assume that d i. There is an
edge (i + 1, e)E(G). We may assume that e i, because otherwise the split {{i, +
1}, -} gives (i + 1, + 2) E(G). Now (i + 1, i), (i + 2, c) E(G) imply (i + 1, c) E(G).
Finally, (i, + 2), (i + 1, c) imply (i + 1, + 2) E(G). The proof of Claim 1 is complete.

CLAIM 2. We can assume that (i, + 1) E(G) for each i.
Proof of Claim 2. Choose a longest directed path P of the form i, + 1,.. , k.

By Claim 1, reversing the semibrittle ordering if necessary, we have k => 2. If Claim
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2 is not true, then by Claim 1 and the choice of P, we have that (k + 1, k), (k, k- 1),
(i + 1, i) and (i, 1) E(G). Now we can conclude that k => 3, because otherwise
k + 1, k, i, i-1 is a longer directed path (with respect to the reversed semibrittle
ordering). Now using the split {{i + 1,. ., k 1}, -} and the edges (i, + 1), (k, k- 1)
we conclude that (k, + 1) E(G). We can conclude from Claim 1 that (k + 2, k + 1)
E(G), for otherwise (k + 1, k + 2), (k, k + 1) E(G), contradicting the maximality of
P. Now using the split {{k, k + 1}, -} and the edges (k 1, k), (k + 2, k + 1), we obtain
(k 1, k + 1) E(G). Finally, we use the split {{k 1, k}, -} and the edges (k 1, k + 1),
(k, + 1) to obtain (k, k + 1) E(G). This contradicts the choice of P, and Claim 2 is
proved.

CLAIM 3. I (i, ) E(G), then (k, l) E(G) whenever <= k < <- .
Proof o] Claim 3. If k, , the result is clearly true. If k, <, then the

case + 1 is clear and otherwise we can use the split {{i,..., l-1},-} and the
edges (i,/’), (l-1, l) to obtain (i, l)E(G). Similarly, we can handle the case k > i,

I. Finally, if i<k <l <, we can use the edges (i, l), (k,/’) and the split {{i, i+
1,..., k},-} to obtain (k, l) E(G). This completes the proof of Claim 3.

CLAIM 4. G has no dicomplete subgraph on 3 vertices.
Proof o] Claim 4. Let H be a maximal dicomplete subgraph of G, and suppose

that V(H) {il, i2," , it} such that il < i2 <’ < it < i and => 3. Since G is not
brittle, we can choose p V(G)\ V(H), and we may assume it < p < i. Applying Claim
3 to the edge (it, i1-1), we conclude that (p, ik)E(G) whenever 1-<k <l. Because
1>-3, we can use the split {{p, p+ 1,..., i},-} and the edges (p, i2) and (il, il) to
obtain that (p, it) E(G). A similar argument shows that (ik, p) E(G) for 1 --< k -< l,
and so the maximality of H is contradicted. Claim 4 is proved.

An edge (i, ])E(G) is said to be extreme if there does not exist (k, l)E(G)
with k -< < [ -< I.

CLAIM 5. Let (i, ), (i’, ’) be distinct extreme edges of G. The following are not
possible"

(a) i<=i’<]<-]’<i;
(b) i<i’<]’<]<i;
(c) i<]’<i’<]<i.
Proof of Claim 5. In case (a), suppose first that all 4 vertices are distinct. Then

the edges (i,/’), (i’, ’) and the split {{i, i+ 1,..., i’},-} imply that (i, f’)E(G). But
this contradicts the fact that (i, ]) is extreme. Now suppose that i’ (so/" /"); then
(i, ]’)E(G), contradicting the extremeness of (i, ). Similarly, if ] =/", then (i, ’)
E(G), contradicting the extremeness of (i’, ]’). Therefore (a) is impossible.

In case (b), it is clear that the extremeness of (i’,/") is contradicted, so (b) is
impossible.

In case (c), using (i,/’) in Claim 3, we conclude that (i, i’), (i’,) E(G). Applying
Claim 3 to (i’,/"), we conclude that (i’, i), (, i), (, ]’)E(G). Now using the edges
(],]’) and (i, i’) and the split {{,+ 1,..., i},-}, we conclude that (], i’)E(G).
Therefore there is a dicomplete subgraph on vertices i,/’, i’, contradicting Claim 4.
Hence (c) is impossible, and Claim 5 is proved.

It follows from Claim 5 that pairs (i, ]), (i’, ]’) of distinct extreme edges can be
of at most two kinds"

normal" < j <= i’ < j’ <- i;
special" ] < j’ < i’ < ] (or ]’ < i’ j < < ]’).
If all pairs of distinct extreme edges are normal, it is easy to see that G is a CTT

(of type other than (n)). (Notice that there must exist at least two extreme edges.)
Thus, the following result will complete the proof of Theorem 11.
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CLAIM 6. ff G has a special pair of extreme edges, then G is a CTT o[ type (n).
Proof of Claim 6. If + 1 i’, then (i + 1, i) E(G). If + 1 i’, then we can apply

Claim 3 to the edge (i,j) to conclude that (i+I,j)E(G). Now the split {{i+
1,. ., i’}, -} and the edges (i + 1, j) and (i’, i) (i’, j’) imply that (i + 1, i) E(G).
Thus, (i + 1, i) E(G) in either case. A similar argument shows that (i, i- 1) E(G).
Applying Claim 3 to these two edges implies E(G) {(k,/): <_- k < _-< i}. Therefore,
G has a CTT of type (n) as a subdigraph. But adding any edge to such a CTT creates
a dicomplete subgraph on 3 vertices. Therefore, by Claim 4, G is a CTT of type (n)
and Claim 6 is proved. The proof of Theorem 11 is complete. 1

4. Algorithms. In this section we describe polynomial-time algorithms for testing
a diconnected digraph for primeness and for the apparently harder problem of
constructing its standard decomposition. Such algorithms have been discovered for
the case of the substitution decomposition for undirected graphs [2], [4], [8], and for
digraphs [10]. Transitive acyclic digraphs can also be treated as a special case of
undirected graphs (see [2]). To my knowledge these are the only cases which have
been previously solved.

We summarize the properties of the algorithms of this section in the following
results. In their statements, and throughout the section, we let n denote V(G)I and
m denote

THEOREM 12. Suppose that G is diconnected. There is an algorithm requiring
O(n4) time and O(m) space to do any o]’ the ]ollowing:

(a) Determine whether or not G is prime;
(b) Compute a prime decomposition of G;
(c) Compute the standard decomposition ol G.

Moreover, if G is either pointed or symmetric, there is an algorithm requiring O(n 3) time
to do any of (a), (b), (c).

COROLLARY 2. IfG is any digraph, there is an algorithm to compute the factoriza-
tion o[ Theorem 5, and hence test Gfor irreducibility, in O(n 3) time and O(n + rn space.

Thus the decomposition algorithms corresponding to the classes of digraphs in
Theorems 3 through 6 are all O(n3); it is only for the most general decomposition
of Theorem 2 that an O(na) algorithm is required. In the cases in which algorithms
have already been known (substitution decomposition) these results improve the bound
[10] for digraphs and match those for special classes [2], [8].

We are ready to begin describing the algorithms. The basic problem to be solved
is to find, if possible, a split of a given diconnected digraph G. It is convenient to
attack first the following more restricted problems.

Problem 1. Given edges (x l, y 1), (x2, y2) of G, find, if there is one, a split { V1,
of G such that xl, y2 V and X2, Yl V2.

Problem 2. Given edges (xl, yl), (x2, Y2) of G and a set S
_
V(G) satisfying

y2 S, X2, Y 1 S and IS1_->2, find, if there is one, a split {V1, V2} of G such that
x2, Yl VIES.

It is easy to see that an efficient algorithm for Froblem I will yield an efficient
algorithm for the fundamental problem of finding a split of G. We will describe an
efficient algorithm for Froblem 2, and show that this algorithm can be used to solve
Froblem I. The algorithm for Problem 2 is based on Froposition 4 below, which
provides a more economical way to recognize splits. We will make use of some
terminology. If (x, y)E(G) and p, q V(G), we say that P(x, y, p, q) holds if the
following condition fails"

(p, q) E(G) if and only if (p, y), (x, q) E(G).
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PROPOSITION 4. Let G be a diconnected digraph, let $
_
V(G) such that Isl 2 <-

Iv(o)\sl and let (x,, yl)e 8(S), (x2, y)e 8(V(G)\S). Then {S, V(G)\S} is a split of
G if and only if them does not exist p e S, q e V(G)\S such that P(Xl, yl, p, q) or
P(X2, Y2, q, P).

Proof. The "only if" part is obvious. For the "if" part, suppose that {S, V(G)\S}
is not a split. By symmetry, we may assume that there exist (a, b), (c, d) 6(S) such
that (a, d): E(G). If neither P(Xl, yl, a, b) nor P(xl, y, c, d) holds, then (a, yx), (x, b),
(c, ya), (Xl, d) E(G). If P(xl, yl, a, d) holds, then at least one of (xx, d), (a, yl) is not
an edge of G, a contradiction. 1

If we are attempting to solve Problem 2, and we discover p S, q V(G)\S such
that P(xl, yx, p, q) or P(x2, y2, q, P), then any solution {V1, V2} must satisfy q Va,
and so it is equivalent to solve Problem 2 with S replaced by S {q}. On the other
hand, if no such p, q exist then {S, V(G)\S} is a split (provided only that IV(G)\S] >- 2).
These remarks lead naturally to an algorithm to solve Problem 2.

ALGORITHM 1. (Input is as described in Problem 2.)
begin

T’ =S;
while T # do

Select p T; T: T\{p};
for q V(G) do

if q S and [P(xa, y, p, q) or P(x2, ya, q, P)] then
S:=SU{q); T:= T{q);

endif
endfor

endwhile
end

THEOREM 13. Suppose that Algorithm 1 is applied to a diconnected digraph G.
ff the algorithm terminates with one of x2, Yl S or with Isl n 1, then there is no split
of the kind required in Problem 2, and otherwise {S, V(G)\S} is such a split. Moreover,
Algorithm 1 can be implemented in O(n 2) time and O(m) space.

Proof. By Proposition 4 and the remark following it, any algorithm which adds
to S successively elements q of V(G)\S such that, for some p S, P(xx, yx, p, q) or
P(x2, y2, q, p) will have the termination property stated in the theorem. For the sake
of efficiency, Algorithm 1 performs these operations in a special order. Namely, it
checks for a given p e S and every q currently in V(G)\S whether q should be added
to S, and then never uses p in this way again. The set T is used to make sure that
every legal choice for p is eventually used. This proves the validity of Algorithm 1,
as claimed in the statement of the theorem.

Now we consider the efficiency of the algorithm. To meet the desired O(m) space
bound, we represent the digraph by keeping, for each v V(G), two lists, the "out-list"
consisting of all w such that (v, w)sE(G) and the "in-list" consisting of all u such
that (u, v) E(G). (Certainly this representation of G can be constructed within O(n 2)
time from any of the usual input representations of G.) We keep the set T as a list
and the set S as a characteristic vector. Thus we can perform in constant time each
of the individual operations on S and T required by the algorithm. If we have
characteristic vectors for the out-list of each of x, x and p and for the in-list of each
of y l, y2 and p, then it is easy to see that each application of the i| statement requires
only constant time. Therefore, each execution of the Ior statement can be done in
O(n) time. We create the characteristic vectors for the in-list and out-list of p when



226 WILLIAM H. CUNNINGHAM

p is selected from T and discard these vectors when we return to select a new p.
Therefore, using these vectors does not affect the O(m) space bound. Moreover, the
total work to construct these vectors is O(n) for each p. Since there are O(n) choices
for p, the desired O(n 2) time bound for Algorithm 1 is established.

It is quite easy to use Algorithm 1 to solve Problem 1. If x y2, we can begin
Algorithm 1 with S {x, Y2}. If x y2, but X2 # Yl, we can interchange the roles of
(Xl, Y 1), (X2, Y2) and proceed as above. The remaining case, in which X Y2 and x2 y
is a little more difficult. We choose a vertex z different from x and y and run
Algorithm 1 twice. The first time $ is initialized to be {x, z}, and the second time
(x, y) and (x2, Y2) are interchanged and $ is initialized to be {y,z}. The first
application of Algorithm 1 tests for a solution { Vx, V2} of Problem 1 such that z V1,
and the second tests for { V, V2} with z V2. Therefore, in all cases we have an O(n 2)
algorithm for Problem 1.

2To test a diconnected digraph for primeness, we can clearly solve Problem 1 rn
times, giving an O(nEm2) algorithm. However, this bound can be considerably
improved. We choose a vertex r V(G) and construct a spanning out-tree T of G
rooted at r, and a spanning in-tree T2 of G rooted at r. Since G is diconnected, both
T and T2 must exist, and they can be constructed in O(m) time. Now, given a split
{ VI, V2} of G, we may assume that r V, and hence 8(V) contains at least one edge
from T1 and 8(V2) contains at least one edge from T2. Therefore, we can test G for
primeness by solving Problem 1 repeatedly, where (x, y) runs through E(T) and
(x2, y2) runs through E(T2). This requires O(n 2) instances of Problem 1, and thus we
have an algorithm for finding a split or proving primeness which requires O(n4) time
and O(rn) space.

In the two important special cases of the digraph decomposition, the above
approach simplifies and becomes more efficient. Suppose that G has the property that
the spanning trees T, T can be chosen so as to satisfy E(T2)={(x, y): (y, x)E(T)}.
Then for any split { V, V2} with r V1, 8(V) contains at least one element (x, y) of
E(T), and then (y, x) 8 (V2) fq E(T2). Therefore, it will be sufficient in this case to
solve Problem 1 n- 1 times, with (Xl, yx) running through E(T1) and (x2, y2) always
equal to (y, x). It follows that, when T, T2 can be chosen in this special way, the
time bound for prime-testing becomes O(n3). Of course, if G is symmetric, we can
find such T, T2; namely, they arise from any spanning tree of the undirected graph
corresponding to G. Similarly, if the digraph G is pointed, then the edges incident
with the point provide such T1, T2. It follows that we have an O(n 3) algorithm to test
a digraph for irreducibility.

We have proved the parts of Theorem 12 that concern prime recognition. Next
we explain how an algorithm for constructing a prime decomposition of G leads to
an algorithm for constructing the standard decomposition of G. Clearly, it will be
enough to be able to recognize whether a decomposition D consisting of primes,
brittles and semibrittles is minimal with this property; if it is not, we will construct
another such decomposition D’ of which D is a strict refinement. We need to recognize
whether two members Gx, G2 of D, sharing a marker v, comprise a simple decomposi-
tion of a brittle or semibrittle digraph. This can be done with the aid of the following
result. We omit its (straightforward) proof. We also leave to the reader the task of
verifying that the additional work required to use Proposition 5 to construct the
standard decomposition from a prime decomposition does not violate the time and
space bounds of Theorem 12.

PROPOSITION 5. Let Ga, G2 be diconnected digraphs such that V(Gx) f3 V(G2)=
{v} and IV(G)I>-3<-IV(Gz)I. Then G=G Gz is brittle or semibrittle if and only if
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one of the following is true:
(a) Gx, (72 are both dicomplete
(b) G, (72 are both distars and v is the center of exactly one of them;
(c) Gx, G2 are both CTT’s and v is a hinge o1 both of them.
Finally, we explain how the algorithms for finding a split lead to equally efficient

algorithms for constructing prime decompositions. (Similar ideas are used in a different
application [7] to show that algorithms for prime-testing and constructing prime
decompositions have the same complexity.) Let r be a vertex of the dieonnected
digraph G, and let T be a spanning out-tree rooted at r. Every split {V, V2} of G
with r V1 satisfies (V1) f’) E(T) # . For each edge (x, y) E(T) we can test in time
O(n 3) for the existence of a split {V, V2} of G with x, r e V and y V2. Suppose
that we find such a split and construct the resulting simple decomposition {Gt, G2} of
G with marker v. In searching for splits in G and G2, it is possible to take advantage
of work already expended on G. In order to do this, we use spanning trees in G1 and
G2 which are constructed directly from T.

Let (a, b) be an edge of T such that a Vt, b V2 and (a, b) is the first such
edge of a directed path in T from r to a vertex in V2. We define spanning out-trees
T of G1 rooted at r and T2 of G2 rooted at v, as follows: E(Tx)=
{(a, v)}Ll{(x, y): (x, y)E(T) and x, y V}LI{(v, y): y V1 and for some x V2,
(x, y)E(T)}; E(T2)={(x, y): (x, y)E(T) and x, y V2}t.J{(v, y): y V. and for
some x Vx, (x, y) E(T)}. It is not difficult to see that T, T2 are indeed spanning
directed out-trees of Gx, G2 and that there is a one-to-one correspondence between
the elements of the sets E(T)t3E(T2) and E(T){(a, b)}.

The algorithm for constructing a prime decomposition maintains a decomposition
D {Gi:i I} of G and a spanning out-tree T of Gi for each L When a split of
some Gi is found, a simple decomposition is formed, new spanning trees are defined
as above, and D is refined. If an edge (p, q) of some T is found not to yield a split
of Gi (that is, there is no split { V3, V4} of G having p V3, q V4), then it follows
from F3 and this construction that (p, q) will be an edge of some T. in every subsequent
decomposition. Moreover, (p, q) can never yield a split of G. so it need never be
tested again. Any decomposition D of G consists of at most n- 2 digraphs, and any
collection consisting of a spanning tree of each of the members of D has a total of
at most 2n-4 edges. Therefore, the total number of times that edges are tested for
yielding a split is O(n). (Of course, many of these tests will be done on digraphs
smaller than G.) Therefore, the running time for the entire algorithm is O(n4). In the
two special cases mentioned in Theorem 12, each edge can be tested in O(n 2) leading
to a running time of O(n3). The proof of Theorem 12 is complete.
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ON THE PROBLEM OF PARTITIONING PLANAR GRAPHS*

HRISTO NICOLOV DJIDJEV

Abstract. The results in this paper are closely related to the effective use of the divide-and-conquer
strategy for solving problems on planar graphs. It is shown that every planar graph can be partitioned into
two or more components of roughly equal size by deleting only O(n) vertices, and such a partitioning
can be found in O(n) time. Some of the theorems proved in the paper are improvements on the previously
known theorems while others are of more general form. An upper bound for the minimum size of the
partitioning set is found.

1. Introduction. Many kinds of combinatorial problems can be solved efficiently
using the method "divide-and-conquer" [1]. In this method the original problem is
divided into two or more smaller problems, each of the subproblems is solved by
applying the same method recursively, and the solutions to the subproblems are finally
combined to give the solution to the original problem. In [3] the next three conditions
are shown to be necessary for the success and efficiency of divide-and-conquer: (i)
the subproblems must be of the same type as the original and independent of each
other (in a suitable sense); (ii) the cost of combining the subproblem solutions into a
solution to the original problem must be small; and (iii) the subproblems must be
substantially smaller than the original problem.

For problems defined on graphs we offer more general conditions under which
the divide-and-conquer approach is useful. Let S be a class of graphs closed under
the subgraph relation (i.e., if G1 S and G2 is a subgraph of G, then G2 S). In [3]
an f(n)-separator theorem for S is defined as a theorem of the following form:

THEOREM A. There exist constants a < 1, //>0 such that if G is any n-vertex
graph in S, then the vertices of G can be partitioned into three sets A, B, C such that
no edge ioins a vertex in A with a vertex in B, Igl <- an, IBI <-- cn., ICI--</3f(n).

If G is the graph in $ on which the problem is defined, then the subgraphs
induced by the sets of vertices A and B define subproblems, which are relatively
independent of each other. The cost of combining the solutions to the subproblems
into a solution to the original problem depends on the number of vertices in C (and
thus on f(n)). So if there exists a fast algorithm for finding the appropriate vertex
partition A, B, C and f(n)=o(n), then Theorem A makes possible the use of
divide-and-conquer for solving different problems defined on graphs in $.

Lipton and Tarjan [3] proved that a x/-separator theorem holds for the class
of all planar graphs. In this paper some improvements are made on their results. The
most important result in [3] is a x/-separator theorem with c = and//= 2x/. In
2 of this paper a similar theorem is proved with ce and//= x/. In 3 it is shown

that no x/-separator theorem holds for the class of all planar graphs for a and
/3 < x//3/3. In 4 we prove theorems of different form from that offered above,
and a planar separator theorem for a 1/2 and/3 (3 + ,,/-/2) + 3x//(/g- 1).

2. We shall make use of the next statement, proved in [3]:
LEMMA 1. Let G be any n-vertex connected planar graph. Suppose that the vertices

of G are partitioned into levels according to their distance from some vertex v, and that
L(1) denotes the number of vertices on level I. Given any two levels 11 and 12 such that
the number of vertices on levels 0 through Ii- 1 does not exceed 2n/3 and the number

* Received by the editors November 10, 1980.
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of vertices on levels 12 + 1 and above does not exceed 2n/3, it is possible to find a
partition A, B, C of the vertices of G such that no edge loins a vertex in A with a vertex
in B, ]A[ <_- 2n/3, IB[ <-- 2n/3, ICI <- L(ll) + L(12) + max {0, 2(12- II 1)}.

THEOREM 1. Let G be any n-vertex planar graph. The vertices of G can be
partitioned into three sets A, B, C such that no edge loins a vertex in A with a vertex
in B, [AI <- 2n/3, [BI <- 2n/3, IC[ <--

Proo[. Assume G is connected. Partition the vertices into levels according to
their distance from some vertex v. Let L(1) be the number of vertices on level l. If r
is the maximum distance of any vertex from v, define additional levels -1 and r + 1
containing no vertices.

For each a (0, 1) let l denote a level such that

l L(1) < an, L(I) >- ten.
/=0 /=0

Case 1. There exists a level such that ll/3 <= <-12/3 and L(1)<=.,/-n. Let A be
the set of vertices on levels 0 through l- 1; let B be the set of vertices on levels + 1
through r, and let C be the set of vertices on level I. Then the theorem is true.

12/3
l-’-ll/2Case 2. For each I[I1/3, /2/3], L l)>4-n. Let a:3" (Y: L(1))/n. Since

’/1/3-1 r[l\ > 2,,, 3n, then a/ L(1) Z.,l=O’/ L(l)-/..,l=O , 3--3n > Furthermore1":’-11/3

12/3 12/3
an E L(1) > X 4n= (12/3-l/3+ 1)4n.

Ix Ix

Thus

12/3- I/3 + 1 < -’
Let be a nonnegative integer such that

12/3+-1 12+]X L(l)<-n, L(1)>--n.
l=ll/3--j+l 1=1/3--]

Subcase 2.1. There exists such that 0 -< =< ] and L(l/3 i) + L(12/3 + i) <- .,/-n.
Then let C be the set of the vertices on levels I/3-i and 12/3 + i, let A be the set of
the vertices on levels I/3 + 1 through 12/3 + 1, and let B bc the set of the remaining
vertices. Then the theorem is true.

Subcase 2.2. For each i, 1-<_ i-<_ ] we have

L(I1/3 i) + L(12/3 + i) > /-n.

Let/3 (,/3/i L(l))/n. Then/3 >32-. Furthermore1=11/3--]

12/3+] ll/3-- 12/3 12/3+]
fin= E L(I)= E L(1)+EL(I)+ Y: L(1)

11/3-] 11/3--] ll/3 /2/3+1

=an +
i=1

Thus (/3-a)n >]n and

(2) j </3-a x/.

2Let m z.a/=0vq/3-i-1L(1). Then t--t/3+j+: L(1) n m -Bn.
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Using the same idea as in the proof of [3, Theorem 4], it is easy to show that
there exist levels l’ and l" such that

l’ <- 11/3- 1 < 12/3 + ] + 1 <- l",

(3) L(l’) + 2(I/3 -] 1 l’) <-

(4) L(I") + 2(l"-(12/3 +] + 1)) _-< 2x/n m -fin.
Add the inequalities (3) and (4) to give

(5) L(I’)+L(I")+2(I"-I’-l-(12/3-1/3+2j+ 1))<-2.,/-+2x/n-m-13n.
Then multiply the inequality (1) by 2, the inequality (2) by 4 and add them

together. The result is

2a 4( a) / 4/3 2a /.(6) 2(/a/3 I/3 + 2] + 1) <-/+ 4----- 4-----
Finally add (5) and (6):

4/3 2a /.(7) L(l’)+L(l")+2(l"-l’-l)<2(m+4n-m-13n)+ ,,/---

However, 4n+4-m n<= /(n n)/2 + /(n n)/2 /41 -/34, whence

L(l’) + L(l") + 2(/"- l’- 1) < (2441 -/3 + (4/3

Since a -> 1/2 then
(4x- ])/4c, x [], 1]. Then

(4fl-2o)/,f<-_(4-)/4c. Let f(x)= 2/41-x+

/ 4 441 x-2/
:’(x)

4a-x 4g 494 -x
4

Then f is a decreasing function and f(x) <- f(-]), x >- -. Since/3 ->_ ] then f(/3) -< f(]). Thus"
2

2441 /3+
4/3-

2
4 4.-_ 4 2

Then L(I’) + L(t") + 2(/"- l’- 1) < /n and by Lemma 1 the theorem is true in
this subcase. This completes the proof for connected graphs.

The proof in the case when G is not connected is the same as in Theorem 4 in
[3].

3. Now we shall find a lower bound for the smallest constant which can replace
/g in Theorem 1.

We shall use without a proof the next geometrical statement.
LEMMA 2. From all the curves upon a given sphere which divide it into two parts,

the ratio of the areas of which parts is equal to a given positive constant, the circumference
has a minimum length.

Further, the area of surface A and the length of a line L will be denoted by $(A)
and l(L) respectively.

LEMMA 3. Let Ex be a sphere with radius 1 and letL be a curve upon Ex, dividing
it into two parts A and B, such that S(A)<-_flS(Ex), S(B)<-flS(Ex), where/3 [1/2, 1].
Then l(L) >- 4zrx/fl 0 2.
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Proof. Suppose without loss of generality that S(A)<=S(B) and let a

S(A)/S(B).
Let kl be a circumference, which divides E1 into two parts A’ and B’ such that

S(A’)/S(B’) a. Then by Lemma 2

(8) l(k)<-l(L).

Obviously S(A’) S(A) and S(B’) S(B), whence S(A’) _-< S(B’) _-</3S(E). Let
k2 be a circumference, which divides the sphere into two parts A" and B" such that
S(A") (1-B)S(E), S(B")= flS(E). Then apparently

(9) l(k2)<=l(kl).

Let us calculate/(k2).
Present A" as a result of the rotation of the curve y /1-x2, where x [z, 1]

(z unknown), round the axis Ox. Then

2’ ds 2’41-x 4i-x
and hence

4,r(1-13)= S(A")= 2zr I y ds 2r lz dx 2,r(1-z),

whence z 2B- 1. Then

(10) l(k2) 2zr41- (2B- 1)2 4zr4fl-fl 2.
By (8), (9) and (10) it follows that l(L)>=4zr/B-B 2. ]
With each polygon P and a number a > 0 will be associated a graph V(P) in

the described manner:
Bring in the plane of the polygon three systems of parallel straight lines, which

divide it into equilateral triangles with sides a (Fig. 1).

FIG. 1

To the resulting nest add the contour of the polygon. Finally, for vertices of V(P)
define the nodes of the net, and for edges, the segments of the net connecting the nodes.

LEMMA 4. The number of the vertices of V (P) which are adjacent to vertices of
the contour ofP is 0(-).

Proof. Let a be one of the sides of the polygon. Then the number of the points
of intersection of a with each of the systems is at most l(a)/(ax/-/2)+ 1, and at
most 3[1(a)/(.,//2)+ 1] with the whole ne.st. Each of these points is adjacent to
no more than 8 vertices of V (P). Therefore the number of vertices of V(P) which
are adjacent to vertices of a, and thus to vertices of the whole contour of P is
O(a-).
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Let n be the number of the vertices of V (P).
LEMMA 5.

lim n. az= (2//-)S(P).
0

Proof. Let r be the number of the vertices of V,,(P), which are adjacent to
vertices of the contour of P. Then by Lemma 4 r, O(a-1).

Circumscribe a rhomb with side a around each of the vertices of V (P) as shown
in Fig. 2. These rhombs cover the polygon P.

FIG. 2

(11)

The area of each rhomb is equal to G//2)a 2. Hence
(no r,)4a2 -< S(P)<= no" 401. 2,

2 2 2 2n a -a, a <=--;=S(P)<=no a
43

Since rL, O(a-) then

(2)

By (11) and (12) it follows that

2 2 2O<=n,, a ---7=$(P)<=,, a
43

2lim ro a 0.
ce-+0

2 2
(13) lim n,, .a S(P) U

0 -THEOREM 2. The smallest constant which can replace /- in Theorem 1 must be
no smaller than (44rV3-)/3 1.555.

Proof. Let E1 be a sphere with radius 1 and center the point O, and let M,
M2," ’, Mn," be a sequence of convex polyhedrons such that

(14) r(M.,E)

where r(., denotes the Hausdorff distance in R3. To each side of these polyhedrons,
treated as a polygon, and each a > 0 corresponds a graph (as described above). Thus
to each polyhedron M. and each a > 0 corresponds a planar graph V(M.) (or briefly

Let A,,.., Bo.., Co.. be a partition of the vertices of V.. such that no edge joins
a vertex in A.. with a vertex in B,,.., and each of Ao.. and B.. contains no more
than 2n/3 vertices, where n,, is the number of vertices in V,...
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Let Ca.. be the set o the edges in V.., both endpoints of which belong to

t.. divides M into two regions ... and/., with contour .n, containing the
vertices of A.. and B,. respectively. By Lemma 5,

(15) S(fi..n)<=S(M)+el(n, a),

(16) S(l.)<=S(M.)+e(n, a),

where e(n, a) -.o O.

Let o .R3\O-E such that for x R3\O, 0(x) belongs to the ray Ox. By (14),
(15) and (16)

(17) S(t# (A,,,.)) <_- S(E) + e2(n, a),

(18) $(q(..))<-_S(E,)+ e2(n, a),

where e2(n, ct) ; O. By (17), (18) and Lemma 3 it follows that q(t.) contains

a curve L,,.. such that

4x/zr
(L..)>-_ +g(n,a),

3

where g(n, a) 0, since 4r4fl-2]o=2/3=44"rr/3. By (14)

l(L,.,,)>-+e(n,a),
3

where e(n, a) O, L,,, c ,,,,, o(L,.,,)= L,,,. Since S(Ex)= 4r then

I(L ,) > + e(n, a) > " e(n, a)
3 3

l +e(n,a)=.,/n,.ot +(n,a),

where (n, a) 0. Therefore
O0,t--0

+ a ).
3

Since L.. c Ca,. and the length of each of the segments of Ca.. is at most a, then
contains at least

,/E+ 4E+ o(4E)
3 3

vertices. Thus the theorem is true.

4. In this section theorems are proved of different form from that in the Introduc-
tion. Let S be a class of graphs closed under the subgraph relation. We shall extend
the definition of an f(n )-separator theorem for S to theorems of the following form:

THEOREM B. Let k be an integer greater than one. There exist constants a < 1,
a2 < 1,.. , ak < 1 and > 0 such that if G is any n-vertex graph in S then the vertices
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o[ G can be partitioned into k + 1 sets A 1, A2, Ak+l such that no edge ]oins a vertex
in Ai with a vertex in Aj for 1<=i < j <= k, IAil <-_ an ]’or l <= <- k and

Here we shall prove two theorems of the form of Theorem B. These theorems
are useful for some of the applications of the divide-and-conquer strategy. As an
example of their use, at the end of this section I prove a theorem of the form of
Theorem A with a 1/2, which is an improvement of a similar theorem proved in [3].

DEFINITION. Let G (V, E) be an n-vertex graph and 0 _-< y _-< 1. The sets A, B,
C and D are a regular y-partition of V if A, B, C and D partition V, no edge joins
a vertex in A with a vertex in B, a vertex in B with a vertex in C or a vertex in C
with a vertex in A, IAI <-- (1 T)n, IB] <= (1 T)n and ]C[ <_- yn.

LEMMA 6. Let G (V, E) be any n-vertex planar graph and 1/2<= 3’ <= 1. Suppose
G has a spanning tree of radius r. Then there exists a regular y-paron of V into four
sets A, B, C, D such thatD contains no more than 3r + 1 vertices, one the root of the tree.

Proof. Embed G in the plane. Add a suitable number of additional edges until
each face becomes a triangle. Any nontree edge (including the new one) forms a
simple cycle with some of the tree edges. The length of this cycle is at most 2r + 1 if
it contains the root of the tree, and at most 2r-1 otherwise. The cycle divides the
graph into two parts, the inside and the outside of the cycle.

Let 6 1- y. Let (x, z) be the nontree edge whose cycle contains (in either its
inside or outside region) the minimum (for all cycles and all regions) number of vertices
greater than 6n. Break ties by choosing the nontree edge whose cycle has the smallest
number of faces on the side, where the extremal property occurs. If ties remain,
choose arbitrarily.

Suppose without loss of generality that the graph is embedded so that the region
with the extremal property is the inside of the (x, z) cycle. Then the outside of the
(x, z) cycle contains no more than yn vertices.

Consider the face which has (x, z) as a boundary edge and lies inside the cycle.
This face is a triangle and let y be its third vertex. As in [3] determine which of the
following cases applies. Figure 3 illustrates the cases.

Case (1). Both (x, y) and (y, z) lie on the cycle. Then the cycle is (x, y, z) and it
does not contain any vertices, which is impossible.

Case (2). One of (x, y) and (y, z) (say (x, y)) lies on the cycle. Then (y, z) is a
nontree edge and it defines a cycle which contains within it the same vertices as the
(x, z) cycle but one face fewer. Then (y, z) would have been chosen in place of (x, z).

Case (3). Neither (x, y) nor (y, z) lies on the cycle.
(3a). Both (x, y) and (y, z) are tree edges. This is impossible since the tree contains

no cycles.
(3b). One of (x, y) and (y, z) (say (x, y)) is a tree edge. Then (y, z) is a nontree

edge defining a cycle, which contains one vertex (namely y) fewer within it than the
(x, z) cycle. Then the inside of the (y, z) cycle contains no more than 6n vertices;
otherwise (y, z) would have been chosen in place of (x, z). Furthermore, the outside
of the (y, z) cycle contains the same vertices as the outside of the (x, z) cycle, which
are no more than yn. Let A be the set of vertices inside the (y, z) cycle, let B
let C be the set of vertices outside the (y, z) cycle and let D be the set of vertices
upon (y, z) cycle. Then the lemma is true.

(3c). Neither (x, y) nor (y, z) is a tree edge. Then each of (x, y) and (y, z) defines
a cycle, and each of these cycles contains at least one face fewer within it than the
(x, z) cycle. Thus the number of the vertices inside each of the (x, y) and the (y, z)
cycles is not greater than 6n. Let A be the set of vertices inside the (x, y) cycle, let
B be the set of vertices inside the (y, z) cycle, let C be the set of vertices outside the
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(1) (2)

(3a)

(3c)

FIG. 3. Cases for proof ofLemma 6. Solid edges are tree edges; dotted edges are nontree edges

(x, z) cycle, and let D be the set of vertices upon these cycles. The number of the
vertices in D is at most 3r + 1 if D contains the root of the tree, and at most 3r-2
otherwise. [3

L.MMA 7. Let G (V,E) be any no-vertex graph and <-yo <- 1. Let G*=
(V*, E*) be some connected component of G containing n* >= (1-yo)no vertices. If
there exists a constant k (depending upon G*) such that for each y [1/2, 1] there exists
a regular y-partition of V* into four sets A*, B*, C*, D* such that ID*I <- k, then there
exists a regular yo-partition of V into four sets A, B, C, D such that IDI -< k.

Proof. Denote nl (1- yo)no, n2 n*-nl, y* (max {nl, n2}/n*), V’= V\ V*,
n’=no-n*=lV’l.

Obviously y*e [, 1]. Let A*, B*, C*, D* be a regular y*-partition of V* and
ID*I-<-k. Determine the greater number between n and n2.

If n.>-n letA =A*,B =B*, C C*LJ V’ and D =D*. Then

y*n*=max{nx, nzI=nz.
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Thus

max {IA[, IB[}_-< (1- v*)n* n*-n= nl (1 yo)no,

IcI- Ic*l / v’l--< r’n* + n’= n2 +(no-n*)= no-n1 rono.
If n > n2 let A A*, B C*, C B* [.J V’ and D D*. Then

r’n* max {nl, n2} nl (1- yo)no.

Thus

IAi<-(1-y*)n*<-y*n*=(1-yo)no since y*>-1/2,

IB <= "y*n * (1- yo)no,

[CI IB*I +lV’l <= (1 y*)n * + n’= n* + n’- y*n * no-(1 yo)no yono.

Then the lemma is true.
THEOREM 3. Let G (V, E) be any n-vertex planar graph and 1/2<= , <-1. Then

there exists a regular y-partition of V into four sets A, B, C, D such that
Proof. Assume G is connected. Partition the vertices of G into levels according

to their distance from some vertex v, and let L(l) denote the number of vertices on
level I. If r is the maximum distance of any vertex from v, define additional levels -1
and r + 1 containing no vertices.

Let 11 be the level for which

l-I 11, L(i)<=(1-y)n and ., L(i)>(1-y)n.
i--0 =0

Let k =Y’.i=oll L(i). There exist levels lo<ll= and 12 >=11+ 1 such that L(lo)+
3(/1 lo) <-- 34 and L(12) + 3(/2- ll 1) _-< 3/n k.

’/2-1If 2i=/o+1/2-1 L(i) < (1 y)n then apparently the theorem is true. Let Z.,i=/o+I L(i)>
(1-y)n. Delete vertices on levels lo and 12 from G and let G’= (V’,E’) be the
resulting graph. By Lemma 6 for the subgraph G*= (V*, E*) of G’ induced by the
set of vertices on levels lo + 1 through 12-1 in G, and for any y*s [, 1] there exists
a regular y*-partition of V* into four sets A*, B*, C*, D* such that [D*l <= 3(/2- lo 1).

By Lemma 7 there exists a regular y-partition of V’ into four sets A’, B’, C’,
D’ such that [D’I <--3(/2-lo-1). Thus there exists a regular y-partition of V into four
sets A, B, C, D such that [Dl<-L(lo)+L(t2)+3(12-1o-1)<-3(4-+Jn-k) <

Now suppose G is not connected. Let G1, G2," ", Gk be the connected com-
ponents of G with vertex sets V1, V2, ’, Vk respectively. If no connected component
contains more than (1- y)n vertices, let ] be the minimum index such that
(1 -y)n. Let a 12 -11 V, B V., C [.J --,+1 V,-, D .

If there exists i, 1 -< =< k such that > (1- then by Lemma 7 there exists
a regular y-partition of V into four sets A, B, C, D such that
3//. This completes the proof.

In the special case when y =_, using the idea of the proof of Theorem 1, it is
possible to reduce the constant 342 4.243 in Theorem 3 to (3 + /)/2 3.791.

THEOREM 4. Let G (V, E) be any n-vertex planar graph. Then there exists a
regular -partttton of V into four sets A, B, C, D such that IDI <-k,/-;, where k
(3 + 4)/2.



238 HRISTO NICOLOV DJIDJEV

Proof. Assume G is connected. As in Theorem 3, partition the vertices into levels
according to their distance from some vertex v and denote with L(1) the number of
vertices on level I.

Let 11 be the minimum index such that Y.IL0 L(l) > n/2 and let ] be the minimum
index such that/-l-ll-j L(l) > n/2.

Case 1. There exists i, 0 -<_ -</" such that L(ll i) + L(ll + i) <= k/-. Then the
theorem is true.

11+iCase 2. For each i, O<-i<-/, L(ll-i)+L(ll+i)>kn/-. Let =(,ll-iL(l))/n.
Then/3 > 1/2. Furthermore

ll+j

fin E L(l) > (f + 1/21k4-.
1=11-i

Thus

(19)

Let l’ and l" be levels such that

(20)

I’ _-< 11-j- 1 < 11 +] + 1 <_- I",

L(l’) + 3(/1-j 1 l’) <-

L(l") + 3(/"- (/1 +j + 1)) -<_ 3n/n rn -/n,

vll--t L(l). Add together the inequality (19) multiplied by 6, the inequalitywhere rn z 0

(20) and the inequality (21). The result is

L(l’) + L(I") + 3(I"- l’- 1) -< 34+ 34n rn Bn + 6.-.
Since /-+ 4n rn Bn <-- 4-4 IJ 4-, then

L(l’) + L(l")+ 3(/"-l’- 1)=< (344i L/3 +6)/.
Let f(x) 3/4c- x+ 6x/k, x e [1/2, 1]. Then

3 6 3
+-= (2x/ x/1 x- k)f’(x)

k 4- 41 x k

3

=4 .4i x. k

Then f(B) -< f(1/2) and hence

(2-k)<0 for x el1/2,1).

Thus L(I’) + L(l") + 3(/"- 1’- 1) _-< kx/.
From this point the proof is the same as in Theorem 3.
Using both Theorem 3 and Theorem 4 we can now prove the following theorem.

6 15 + 34-i- 3 + 4i-- 33 + ,i- 3 + 4i- 2
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THEOREM 5. Let G V, E) be any n-vertex planar graph. The vertices of G can
be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex
in B,

( 3x/-x/- wherek
3+

Proof. We shall define sequences of sets of vertices {Ai}, {Bi}, {Ci}, {Di} such that
(i) Ai, Bi, Ci, Di partition V.
(ii) No edge joins Ai with Bi, Bi with Di or Di with Ai.
(iii) IA,I IBi[ n/2.
(iv) ID, [D,_11/3.
Let A*, B*, C*, D* be a vertex satisfying Theorem 4. Without loss of generality

suppose IA*I IB*I Ic*i. Let Ao B*, Bo C*, Co D*, Do A*. Then (i), (ii)
and (iii) hold. Furthermore IDol n/3 and ICol

Let Ai-l, Bi-, C_ and D-I be defined and D_ . Then ]A_[ [Bi-x[ rilE.
Let n ]Di-l and y (n/E-IAi-l)/n. Then

(1 y)n n -IA,- (ID,-I + IAi-xl)-

Then

n
(22) (1-y)n-<- [Bi-ll.

Furthermore n/2- IB,-I --< n/2- IAi-l yn. Thus

(23) (1 y)n -< yn.

Let G*= (V* E*) be the subgraph of G induced by D_, and let A*, B* C*
D* be a regular y-partition of V* satisfying Theorem 3. Then [D*l=<3x/2x/n.
Without loss of generality (making use of (23)) suppose that Ia*l--< IB*I -< Ic*l.

Let Ai be the set among Ai- CJ C* and Bi- U B* with fewer vertices, let B be
the other set, let Ci Ci- 1,3 D*, and let Di A*. Since

Iai_. 1,3 C* Ia,-l + Ic*l--< IAi-l + yn -,
nIB,- t.J B*I IB,-I + IB*I--< IB,-I + (1 3,’)n =<

iDil lA,l <n IDi-l
=3- 3

(by (22)),

then (i)-(iv) hold for Ai, Bi, Ci and D.
Let k be the greatest index for which Ak, Bk, Ck and Dk are defined. Then

Ok . Let A Ak, B Bk, C Ck. By (i), (ii) and (iii) A and B satisfy the require-
ments of the theorem. By (iv)

()i/z( x/(1
3.x/..’ (3x/)x/3r-)j /-

1 . 34 x/ k + 4= k + /,/.Icl--<k’/X+ i=0
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A similar theorem is proved in [3] with a constant 2x//(1-x/) 15.413 in the
place of (3 + x/-)/2 + 34-/(4--)9.587.

For all the theorems proved in this paper one can easily construct algorithms
finding the appropriate vertex partitions in O(n) time, by modifying the algorithm
described in [3].

For some applications of the planar separator theorems see [2].
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COLORING STEINER TRIPLE SYSTEMS*

MARCIA DE BRANDES,f KEVIN T. PHELPSt AND VOJTECH RDL

Abstract. In this paper, several results on the chromatic number of Steiner triple systems are established.
A Steiner triple system is a simple 3-uniform hypergraph in which every pair of vertices is connected by
exactly one 3-edge. Among other things, we prove that for any k ->-3 there exists an nk such that for all
admissible v >= nk there exists a k-chromatic Steiner triple systems of order v. In addition we prove that
for all v => 49 there exists a 4-chromatic Steiner triple system of order v. An estimate of nk is also established,
namely, Clk2 log k > nk > C2k2.

1. Introduction. A Steiner triple system of order v (briefly STS (v)) is a pair
(S, B), where $ is a v-set and B is a collection of 3-subsets of S called triples, such
that every 2-subset of S is contained in exactly one triple of B. Such a triple system
can also be considered as a special 3-uniform hypergraph; in this light questions
involving chromatic number and colorings may appear more natural. The definitions
are the same as for hypergraphs: a (proper) k-coloring of a Steiner triple system (S, B)
is a partition of S into k color classes such that no triple in B is monochromatic (that
is, is properly contained in any color class). If an STS can be k-colored but not
(k- 1)-colored, then it is said to be k-chromatic.

The chromatic number of Steiner triple systems has previously been investigated
by Rosa [11], [12]. Among other things he established that there exists a 3-chromatic
STS of all admissible orders (excluding the trivial systems on 1 and 3 elements,
respectively). He also gave some constructions for 4-chromatic STSs. In this paper
we will show that there exists a 4-chromatic STS (v) for all v -> 25, v 1 or 3 (mod 6),
except possibly for v 39, 43 and 45. As a part of the proof of this, we introduce
two color preserving recursive constructions that work for STSs with arbitrary chro-
matic number k => 4.

A partial triple system differs from a (complete) Steiner triple system in that any
2-subset is contained in at most one triple of the system. It is not difficult to see that
a 3-uniform hypergraph without short cycles is in fact a partial triple system. It has
been shown that for any k there exists such a hypergraph which is k-chromatic [6],
[7]. It is then immediate [12] that the previous result--in conjunction with a result
by Treash [15] that every partial triple system can be embedded in a (complete)
STSmshows that STS can have arbitrarily large chromatic number. Unfortunately,
there is no known embedding that will necessarily preserve the chromatic number of
the partial triple system (in a sense, none could: a partial triple system can be
2-chromatic whereas a (nontrivial) STS must be at least 3-chromatic). In the next
section of this paper, we get around this difficulty and manage to prove that for any
k-> 3 there exists an nk such that for all admissible orders v, v => nk, there exists a
k-chromatic STS (v).

2. k-chromatic triple systems. As stated already, there exists a k-chromatic partial
triple system on Uk elements (see [6], [7]). In both [6] and [7], a more general question
is studied and the proofs of the above result do not give a reasonable upper bound
for uk (e.g., [7, Thm. 1] gives uk < ck4). For this reason we present the following.
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LEMMA 2.1.

clk2 log k > Uk > c2k 2.
The lower bound follows immediately from [7, Thm. 2] (with the value c2---).

We will prove the upper bound by the probabilistic method. First we need to introduce
some notions. If f is a probability space and A1, A2,’’’, An events, denote by F a
graph with vertex set {1, 2,. ., n}, where {i,/’} F if and only if Ai andAj are mutually
independent. The key to our proof is the following theorem of Spencer [14], which
in turn is a consequence of a theorem of Lovisz (cf. [7], [14]).

THEOREM 2.1 [14]. Let A1, A2,"" ,An be events in the probability space with
dependence graph F. If there exist positive y l, y2, ’, yn with yiP(A)< 1 such that

logyi> yjP(Aj),
(i,j}F

then P(/Ai) > O.
This theorem is used in [14] to give a simple proof of the lower bound for the

Ramsey number R(3, t)>-ct2/log2t (cf. [5]). As the method we will use here is a
modification of the above proof, we will preserve the same notation as in [14].

k 2Proof ofLemma 2.1 (upper bound) Let V be a set with rn cl log k elements.
Consider a random 3-uniform hypergraph G with vertex V where the triples are
chosen independently, each with probability p c/m. If L is a set of 4 vertices, let
AL be the event that IG [L]31 2. If K is a set of m/k vertices, let BK be the event
that G f’)[g]3= . Clearly, if

K[V]rn/k

then Uk m. Let f be a space with events AL, BK, L IV]4, K [V]/k’, thus two
vertices of F corresponding to events AL, Br will be joined if [L KI--> 3. Similarly,
vertices corresponding to AL, AL, (or Br, Br,) will be joined if ILf’) L’I--> 3(IK f’) K’I--> 3,
respectively). As in Spencer [14], one can define NAA, NAB, NBA, Nns to be the
number of vertices, Nxg, in F of type Y adjacent to a vertex of type X. We also
associate with each event AL(Br) some YL Y (Zr Z). Then it suffices to prove that
there exist y, z such that

yP(AL) < 1, zP(BK) > 1,

log y > yP(AL)NAA + zP(BK)NAB,

log z > yP(AL)NnA + zP(Br)Nnn.

Set mk. Clearly

P(AL) < ()p2 6c2
rn

P(BK) (1-p)(;).exp (- 6Pt),
NAB <()((-) (m t/2

NAA <= 4(m 4) < 4m,

NnB < m t/2,

NnA<()(m--t)+(t4) <--t3m
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Set y 1 + 1/t, z exp (m 1/21og3/2 m). Then (*) becomes

(1 + 1/t)6c 2 cd3/2

2 <1 sc-<0,
m 6

Cl
where d (1 + 0(1)),

( ) (1+1/t)24c2 (( cd3/2 /)log 1+ > +exp --- m1/210g3/2
rn 15

rn

-6 +-- m m.

It follows by elementary calculations that the above conditions are satisfied for k
sufficiently large if

4-d cd3/2

(**) -I --<0, c2d3/2-<0.
2 6

We want to find minimum t, and hence d, such that (**) is satisfied. It follows from
elementary analysis that the corresponding values are d=72(1+o(1)) and c=
1/12(1 + o(1)) s= 18(1 + o(1)), and thus

Uk <= 144(1 + o(1))k 2 log k.

Lindner [9] has given a small and simple embedding of partial triple systems.
Again, the embedding will not necessarily preserve the chromatic number of the
partial system. However, by using Lindner’s approach we can construct k-chromatic
STS for all sufficiently large v, v--1 or 3 (mod 6). First we need to present two
constructions for STSs, one due to Bose [2], the other originally due to Skolem [13].
The presentation of these constructions is taken from the excellent survey article [9].

Bose’s construction. Let (Q, o) be an indempotent commutative quasigroup of
order 2u + 1, i.e., a quasigroup satisfying the identities x x x, and x y y x. Let
Q {1, 2, 3, , 2u + 1} and S Q x {1, 2, 3}. Define a collection of triples of $ as
follows:

(1) {(x, 1), (x, 2), (x, 3)} for every x e Q;
(2) if x # y, then {(x, 1), (y, 1), (xo y, 2)}, {(x, 2), (y, 2), (x y, 3)} and

{(x, 3), (y, 3), (xo y, 1)} t.
It is a routine matter to see that (S, t) is an STS (6u + 3).

Skolem’s construction. A quasigroup (Q, o) with Q {1, 2, 3,..., 2v} satisfying

x if x =< v,
X X

x-v ifx>v

is called a halfidempotent quasigroup [9]. If the quasigroup is both halfidempotent
and commutative, then its order must be even. Now let (Q, o) be a halfidempotent
commutative quasigroup of order 2v and set S Q {1, 2, 3} LI {c}. Define a collection
of triples of $ as follows:

(1) {(x, 1), (x, 2), (x, 3)} for every x <= v, x Q;
(2) for each x >v, the three triples {c, (x, 1), (x-v, 2)}{c, (x, 2), (x-v, 3)} and

(oo, (x, 3), (x-v, 1)} t;
(3) if x # y, then {(x, 1), (y, 1), (xo y, 2)}, {(x, 2), (y, 2), (xo y, 3)} and

((x, 3), (y, 3), (xo y, 1)} t.
Again (S, t) is an STS (6v + 1).

Let us remark that in Bose’s construction subquasigroups will always produce
subsystems in the resulting STS. A similar thing holds for Skolem’s construction as well.
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As is well known, one can construct a (partial) idempotent commutative
quasigroup (Q, o) from a (partial) triple system: define x x x and x y =y x z
if and only if the third point of the triple containing the pair {x, y} is z. If the pair
{x, y} is not contained in any triple of the partial triple system then the operation
is not defined for that product. Next we state two results which establish that a partial
idempotent commutative quasigroup can be embedded in both idempotent and half-
idempotent commutative quasigroups.

LEMMA 2.2 (A. Cruse [3]). A partial idempotent commutative quasigroup of order
n can be embedded in an idempotent commutative quasigroup o] order ]:or every odd

>-_ 2n + 1 and in a commutative quasigroup o] order for every >-_ 2n.
LEMMA 2.3 (C. C. Lindner [9]). A partial idempotent commutative quasigroup ol

order n can be embedded in a halfidempotent commutative quasigroup of order 2t ]or
all >- n.

Now for the main theorem of this section.
THEOREM 2.2. For all k >- 3 there exists an nk such thatfor every v =- 1 or 3 mod 6,

v >-nk, there exists a k-chromatic STS (v).
Proof. By Lemma 2.1 we know that there exists a k-chromatic partial triple

system of order Uk. From this partial triple system one can construct a partial idem-
potent quasigroup and then embed it in an idempotent (or halfidempotent) commuta-
tive quasigroup of order 2t + 1 (or 2t, respectively) for every t-> uk. Apply Bose’s
construction to this idempotent commutative quasigroup and Skolem’s construction
to this halfidempotent commutative quasigroup, as the case may be. This gives us
Steiner triple systems of orders 6t + 3 and 6t + 1 for all >= Uk. It is immediate from
these constructions that the resulting STSs are 3-chromatic. Moreover, for every triple
{x, y, z} in the original partial triple system we have a subsystem of order 9 on the
set {x, y, z } {1, 2, 3} in the resulting STS. Steiner triple systems have the replacement
property, i.e., one can remove or "unplug" the triples of any subsystem and replace
them with the triples of any other subsystem defined on the same subset. The resulting
collection of triples is still an STS. In particular, for each triple b in the original partial
triple system we can replace the subsystem on b x {1, 2, 3} with a system of order 9
which contains the following blocks (among others): for each x b, {(x, 1), (x, 2), (x, 3)}
is in the subsystem and b {1} is also in this subsystem. This gives us a new collection
of triples. We can repeat this procedure for each of the original triples giving a
sequence of STSs; the final STS in this sequence contains a copy of the original partial
triple system embedded in it and, hence, must have chromatic number at least k. We
claim that a single replacement of a subsystem of order 9 as described above increases
the chromatic number by at most one, and hence, one of the Steiner triple systems
in this sequence must be k-chromatic.

Suppose the current STS in our sequence is/-chromatic. Suppose we construct
the next triple system in this sequence and consider any (proper) /-coloring of the
previous triple system. It may still be a proper coloring of the new triple system.
However, if it is not then the only monochromatic triples must be contained in the
new subsystem of order 9. An STS (9) is 3-chromatic, and it is a trivial exercise to
show that in any 3-coloring of it no color class can have more than 4 elements. Again
it is trivial to see that one can choose one element from each monochromatic triple
(there are at most 3) so that the resulting set contains no triple of the subsystem of
order 9 (and, hence, can contain no triple of the system either). Assigning (i + 1)st
color to this set obviously gives a proper (i+ l -coloring. Hence the new triple system
has chromatic number or + 1. This completes the proof of Theorem 2.4.
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3. 4-chromatic Steiner triple systems. In 2 we established the existence of a
k-chromatic STS (v) for all sufficiently large orders v. To facilitate further discussion,
let us introduce some notation: nk will denote the smallest admissible integer such
that there exists a k-chromatic STS (v) for all admissible v _->nk. The results of the
previous section give an upper bound on n<=ck21ogk, where c=864(1+o(1)). It
was shown previously [12] that n3 7. It seems that the only other value of k for
which it remains practical to determine n--at least at present--is k 4. In this section
we show that n4--< 49 (although we believe that in fact//4 25).

LEMMA 3.1. There exists a 4-chromatic STS (v) for v 25, 27, 33 and 37.
Proof. The triple systems below have integers 1, 2,..., v as elements and are

all cyclic; i.e., they have as an automorphism the map i-> + l(mod v). For each v
the base triples of the STS along with a 4-coloring are given. A computer was used
to establish that no 3-coloring exists for any of these systems.

v =25:

v =27:

v =33:

v=37:

Base triples: {1, 2, 4}, {1, 5, 24}, {1, 6, 12}, {1, 8, 18}.

4-coloring: {1, 2, 3, 6, 7, 8, 11}

{5, 9, 10, 13, 14, 15, 19}

{12, 16, 17, 18, 21, 22}

{4, 20, 23, 24, 25}.

Base triples: {1, 2, 4}, {1, 5, 12}, {1, 6, 18}, {1, 7, 15},

{1, 10, 19}.

4-coloring: {1, 2, 3, 6, 7, 8, 11, 12, 22, 25}

{10, 13, 14, 15, 18, 19, 20, 23, 24}

{4, 5, 9, 17, 26}

{16,21,27}.

Base triples: {1, 2, 4}, {1, 5, 15}, {1, 6, 14}, {1, 7, 19},

{1, 8, 17}, {1, 12, 23}.

4-coloring: {1, 2, 3, 6, 7, 8, 12, 13, 30}

{14, 15, 16, 19, 20, 21, 24, 25, 26, 31}

{4, 5, 11, 27, 28, 29, 32, 33}

{9, 10, 17, 18, 22, 23}.

Base triples: {1, 2, 4}, {1, 5, 15}, {1, 6, 14}, {1, 7, 22},

{1, 8, 20}, {1, 10, 21}.

4-coloring: {1, 2, 3, 6, 7, 8, 11, 12, 13, 18, 32}

{14, 15, 16, 19, 20, 21, 24, 25, 26, 37}

{4, 9, 23, 29, 30, 31, 34, 35, 36}

{5, 10, 17, 22, 27, 28, 33}.
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It is our feeling that we have examples of 4-chromatic Steiner triple systems of
orders 39,43 and 45 as well.However, to prove that our systems are not 3-chromatic
is currently beyond our resources--computer and otherwise.

Next we present two simple recursive constructions (Lemmas 3.2-3.4) preserving
the chromatic number of STSs. Although in this paper we do not make use of the
second construction, we would like to point out that Lemmas 3.2-3.4 could be used
for an alternative proof of Theorem 2.2 (say, if Skolem’s construction were not
available). We also feel that besides being of interest on their own these constructions
may prove useful when considering STSs with chromatic number k => 5.

In what follows let (S,B) be an STS (v), where S ={al, a2,"’, ao}. (To avoid
trivial cases, assume v >= 7.) Whenever C is a k-coloring of (S, B) with k => 4, there
must be some k -2 colors such that at least (v + 1)/2 elements of $ have these colors.
We will always assume these k- 2 colors to be all colors except black and white and
assume that these (at least) (v + 1)/2 elements that are colored other than black or
white are a l, a2, ,

If one can find k-2 colors such that at least (v + 3)/2 elements of S have these
colors (in which case we will again assume these colors to be all colors except black
and white and the corresponding (at least) (v + 3)/2 elements that are colored other
than black or white to be a, a2,. ., av+3/2), then the coloring will be called biased.
Observe that when k >-5, every k-coloring is biased. However, there exist STSs with
an unbiased 4-coloring. On the other hand, we do not know an example of a
4-chromatic STS without a biased 4-coloring.

LEMMA 3.2. If there exists a k-chromatic STS (v), then there exists a k-chromatic
STS (2v + 1).

Proof. The lemma is obviously true for k 3, so we may assume k => 4. Let (S, B)
be a k-chromatic STS (v), where S ={al, a2,’’ ’, av}, and let C be a k-coloring of
(S, B). Put v + 1 2n, and let T be a set such that ITI 2n, S f) T . Let T T1 I,.J Ta
be any partition of T with ITI T _I- n. Distinguish now two cases"

Case 1. n ----0 (mod 2). Let (T, F) be any OF(K2n) having sub-OF(Kn) of index
2(Ti, Fi), where F {F1, F2, ’, F2-}, F {F, F, Fi,_l }, 1, 2, and let F.
F I..JF for 1, 2,..., n- 1.

Case 2. n---1 (mod 2). In this case let (T, F) be an OF(K2,) with the following
properties’F={F1, F,..., F2,_I},F. F} F t.J{xj, a(xj)}forj= 1, 2,..., n, where
(T,F), i= 1,2, Fi={F,F, ,Fin}, is a near-OF(K,), Tl={Xl, X2, ,xn} and
o" T1 T2 is any bijection. Such OF(K2,) is well known to exist (see, e.g., [1]).

In either case, put S* S T and B* B t_J D, where

D={{a,x, y}[(x, y}Fi, 1, 2,’’’, 2n- 1}.

Then (S*, B*) is an STS (2v + 1) (cf. [10]). Moreover, (S*, B*) is k-chromatic: color
the elements of T black, those of T2 white, and let the elements of S have the same
color as in the coloring C. There are no monochromatic triples" this is obviously true
for triples of B. If {ai, x, y} is a triple of D with {1, 2,. , n }, then ag is colored by
one of the k- 2 colors other than black or white while x, y ( T) can be only black
or white. If {n + 1, n + 2,.. , 2n 1} then one of x, y is black and the other is white.

LEMMA 3.3. Let v 1 or 9 (mod 12). If there exists a k-chromatic STS (v), then
there exists a k-chromatic STS (2v + 7).

Proof. We may again assume k _->4, and let (S, B) be a k-chromatic STS (v) with
S ={al, a2,’’ ’, av}, with C a k-coloring of (S, B). Put v + 7 2m; then m is even
since v 1 or 9 (mod 12). Let X {x, x2,’ , x,}, Y {y, y2," , y,}, X
T X LI Y, T f’) S . Let (X, F), F {F, F2," ", F,_I} be an OF(K,) containing
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two 1-factors (let these be, w.l.o.g., F,-2 and F,-I) whose union is a Hamiltonian
circuit (let, again w.l.o.g., this Hamiltonian circuit be F,,-2 (.J F,-I (xl x2’" x,, x 1)).
Such an OF(K,) is well known to exist (cf., e.g., [10]).

Let

C {{yi, xi+3, xi+4}, {yi, yi+l, xi+z}li 1, 2,"’, m},

D {{ai, x,, x,}, {ai, y,, y,}l{x,, x,} Fi, 1, 2,..., m 3},

E={{a,,_z+,xi, Y/+}I/= 1, 2,. ., m; k =0, 1,..., m-5}

(the subscripts of x’s and y’s reduced modulo m to the range {1, 2,. ., m} whenever
necessary).

Put S* $ (.J T, B* B (_J C (.J D (.J E. It is easily verified that (S*, B*) is an
STS (2v + 7). To show that (S*, B*) is k-chromatic, color the elements of X black,
those of Y white and those of S as in the coloring C. There are no monochromatic
triples in B*. This is obvious for triples of B and also those of C and E as the latter
two contain only triples with at least one black and at least one white element. On
the other hand, no element at with {1, 2,. , m 3} is colored black or white; thus
no triple of D can be monochromatic.

LEMMA 3.4. Let v 3 or 7 (mod 12). If there exists a k-chromatic STS (v) with
a biased k-coloring, then there exists a k-chromatic STS (2v + 7).

Proof. We may assume again k->_4. Let (S,B) be a k-chromatic STS (v) with
S {a, a2, , ao}, and let C be a biased k-coloring of C. Put v + 7 2m (then m 1
(mod2)). Let X={x,x2,...,x,,}, Y={y,y2,’",y,,}, Xf’) Y=, T=Xt.JY,
T f’) $ . Let (X, F) be a near-OF(K,),F= {F, F2," ", Fro} containing two near-l-
factors (let these be, w.l.o.g., F,,_I, F,,) whose union is a hamiltonian path (let, again
w.l.o.g., this hamiltonian path be F,_ (.J F,, (xx x2 x,)). Such a near-OF(K,) is
easily seen to exist: it can be obtained, e.g., from a 1-factorization GK,,/I (cf. [1],
[10]) by omitting any one vertex. Assume further w.l.o.g, that the edge {x, x,} belongs
to the factor F,-2.

Let now

C {{yi, xi+3, xi+4}, {yi, yi+l, xi+z}[i 1, 2,’’ ", m},

D {{ai, xp, xq}, {ai, y,, yq} {xo, xq} F/, 1, 2,. , m 3},

D’ {{a, xi), yi}] 1, 2,..., m -2, xi) the isolated vertex of },

D"= {{a_2, xp, xq}, {am-z, yp, yq}l{xe, x,}V-{xx, Xm}}

U {{am-z, X, YX}, {am-z, Xm, Ym}},

E={{a_2+,xi, Yi+}[j= 1, 2,’ ’, m; k 1, 2,..., m-5}

(the subscripts of x’s and y’s reduced modulo m to the range {1, 2,..., m} whenever
necessary).

Put $* S (.J T, B* B (.J C (.J D LI D’t.J E. It is again easily verified that (S*, B*)
is an STS (2v + 7). Moreover, (S*, B*) is k-chromatic: if one colors elements of X
black, those of Y white and those of $ as in the coloring of (S, B), then there are no
monochromatic triples of B*. This is obvious for triples of B, C, D’ and E. Since
m-2 =(v+3)/2 and the coloring C of (S,B) is biased, neither of the elements
al, a2," , a,,-2 is black or white; thus, no triple of D or D’ can be monochromatic,
either.
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Remark. Observe that whenever one applies Lemma 3.2, 3.3 or 3.4 the resulting
k-coloring of STS (u), where u 2v + 1 or u 2v + 7 and k -> 4, is automatically biased,
and so Lemma 3.4 can certainly be applied repeatedly even when k 4.

LEMMA 3.5. There exists a 4-chromatic STS (v) ]or v >-49.
Proofi We utilize the Bose and Skolem constructions of Steiner triple systems

which are presented in the previous section.
Case 1. v -= 1 mod 6. Then v 3 u + 1, where u 0 mod 2 and u >- 18. For each

of these values of u, there exists a halfidempotent commutative latin square of order
u which contains a halfidempotent commutative subsquare of order 8 [9]. Skolem’s
construction, as described in [9], applied to such a latin square produces a 3-chromatic
STS (3u + 1) with color classes of size u, u and u + 1. Moreover, such STS will possess
a 3-chromatic sub-STS (25) with color classes of size 8, 8, 9. Unplug this subsystem
o order 25, and replace it with a 4-chromatic STS (25) in such a way that 3 of the 4
color classes are subsets of the 3 existing color classes (of size 8, 8, 9). Clearly, the
result is a 4-chromatic STS (v) for v 3 u + 1.

Case 2. v =-3 mod 6. Then v =3u for u =-1 mod 2 and u >= 19. There exists a
commutative idempotent latin square of order u, u 1 mod 2, u => 19 which contains
a commutative idempotent subsquare of order 9. Using such a latin square in Bose’s
construction of an STS (3u) gives a 3-chromatic STS with a (3-chromatic) subsystem
of order 27. As before, we replace this subsystem with a 4-chromatic STS (27) so that
3 of its color classes are subsets of the original color classes. Obviously, the result is
a 4-chromatic STS (v) for v 3u, where v -> 57.

Case 3. v 49 or 51. For v 49 see [12]. For v 51 set v 2u + 1, where u 25.
Apply Lemma 3.2 to the 4-chromatic STS (25) presented in Lemma 3.1.

The main theorem of this section now follows from the previously established
lemmas.

THEOREM 3.6. There exists a 4-chromatic STS (v) ]or all v _->25, v 1 or 3
(mod 6), except possibly v 39, 43 or 45.

Thus, nn <- 49 as claimed at the beginning of this section. We conjecture, however,
that nn 25.

4. Conclusion and open problems. In our search for 4-chromatic Steiner triple
systems of small orders, we discovered a uniquely colorable 3-chromatic STS of order
33. A natural question arises: do there exist uniquely colorable k-chromatic Steiner
triple systems for all k ?

It was shown recently [5] that there exists a polynomial algorithm for deciding
whether a Steiner quadruple system is 2-chromatic. How difficult is it to decide whether
an STS is k-chromatic? Experience seems to indicate that it is difficult to decide even
whether an STS is 3-chromatic.

There are many further questions that can be asked; let us mention just one more
problem: Let C(v)= {k: there exists a k-chromatic STS (v)}. Is C(v) an interval? We
expect the answer to this to be "yes".
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ON THE LU FACTORIZATION OF M-MATRICES:
CARDINALITY OF THE SET (A)

R. S. VARGAf AND D.-Y. CAI

Abstract. An n x n M-matrix A is said to admit an LU factorization into n x n M-matrices if A can
be expressed as A LU where L is an n x n lower triangular M-matrix and where U is an upper triangular
M-matrix. Then, for any given n x n M-matrix A, let (A) denote the set of all n x n permutation
matrices P such that PAP" admits an LU factorization into M-matrices with nonsingular L. Our aim here
is to determine upper and lower bounds for I(A)I, the cardinality of the set (A). This is done in
Theorem 4, while in Theorem 2, I,(A)I is precisely determined for a special class of n x n M-matrices.

1. Introduction. If the spectrum, tr(B), of an n n complex matrix B is defined
as

(1.1) or(B) := {h C: det [hi-B]= 0},

then an n n real matrix A [ai.i] is said to be an M-matrix if

(1.2) a.i-<0 for all # /’, l<-_i,j<-n,

and if

(1.3) Re h _-> 0 for all h s or(A).

It may be somewhat surprising to learn that, despite such a simple definition, the
theory and applications of M-matrices form one of the rnaor building-blocks of
numerical linear algebra (cf. [1] and [6]). Moreover, the applications of M-matrices
extend beyond numerical linear algebra to Markov chains, input-output economic
models, dynamical systems, mathematical programming, and the compartmental analy-
sis of ecological systems (cf. [1] and [3]).

Such an application as above can give rise to a large sparse system of linear
equations whose associated coefficient matrix A is an n x n M-matrix. For direct
methods, comparable to the Gaussian elimination method for solving this system of
linear equations, it is of practical interest to know if the associated M-matrix A can
be factored as A -L. U, where L is an n x n lower triangular M-matrix, and where
U is an upper triangular M-matrix. More precisely, as in [7], an n x n M-matrix A
is said to admit an LUfactorization into n x n M-matrices, if A can be expressed as

(1.4) A=LU,

where L is an n n lower triangular M-matrix and where U is an n x n upper
triangular M-matrix. As shown in 1962 by Fiedler and Pt,Sk [2], any nonsingular
M-matrix admits such an LU factorization into M-matrices, with both L and U
nonsingular. In 1977, Kuo [5] extended this result by showing that any n x n irreducible
M-matrix (singular or not) admits an LU factorization (1.4) into M-matrices with,
say, L nonsingular. For the remaining set of M-matrices, it is easy to see that
not every singular and reducible n n M-matrix admits an LU factorization into
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M-matrices with L nonsingular, as the particular matrix

directly shows. However, if denotes the collection of all n x n permutation matrices,
Kuo [5] has shown that, for any n x n M-matrix A, the subset of , defined by

N(A) := {P e I,," PAPr admits an LU factorization into
(1.6)

M-matrices with nonsingular L},

is never empty. (Here, the superscript g" in (1.6) refers to good" permutations.)
If I(A)I denotes the cardinality of (A) (i.e., the exact number of its elements),
then the fact that i(A) is not empty implies (since N contains n! elements) that

(1.7) 1 < Ig (A) < n’

for every n x n M-matrix A. From the above results, we remark that equality must
evidently hold on the right in (1.7) for any nonsingular or irreducible n x n M-matrix
A. From Funderlic and Plemmons [3], the same is true in (1.7) for any symmetric
M-matrix A and for any M-matrix A for whicy y rA _-> 0 for some y > 0. Later (cf.
(2.15)), we shall see that the first inequality in (1.7) is sharp for every n _-> 1.

Our aim in this note is to determine upper and lower bounds for I(A)I, for
any n n M-matrix A. The outline of this note is as follows. We conclude this section
with some needed notation, and in 2, after giving some definitions, state our main
results and give some applications of these results. The proofs of our main results are
then given in 3.

We assume, without loss of generality, that the n x n M-matrix A is in normal
reduced form (cf. [7]), i.e.,

A1,2 Al,l

where each diagonal submatrix A. is irreducible (1 _-< ] -<_ l). (As in [7], it is convenient
to define all 1 x 1 null matrices here to be irreducible.) Of course, if A is irreducible,
then 1 in (1.8). For large matrices, we remark that good software exists, for
permuting the rows and columns of A to bring A into the form (1.8). For this, see
George and Gustavson [4].

Next, if we define Ra as follows

(1.9) RA := {] with 1 <_- ] _-< l" Aj.j is a singular and irreducible M-matrix},

then RA if and only if A is a singular M-matrix. Continuing, we define the x
upper triangular matrix IA := [bi,j], derived from A in (1.8) by means of

1 ifi]andifAiiff,
(1 10) bij :=

0 otherwise.

Its directed graph GI(A) on vertices V1, V2,’ ’, V, is called the block-directed
graph for the matrix A of (1.8). (As in [6] or [7], a path in G(A) from vertex V/to
vertex Vs is a sequence {bkr,kr+l}r=l with ] _-> 1, bk.kr+ 7 O, and with kl and kj+l s.)
For additional notation, with (m) := {1, 2,..., m}, let a {al, a2,’" ’, ak} be a non-
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empty subset of (n), and let A[a denote the induced principal submatrix of the n n
matrix A [ai.j], determined by c, i.e.,

(1.11) A[ot]=[aid], where i,/" a.

As in [7], we shall say that a is a proper subset of (n) if # a (n).
If RA of (1.9) is nonempty, then for each/" RA, we define the set

(1.12) $ := {k # : there is a path in GI(A) from vertex Vk to vertex V.}.
Because of the triangular form of (1.8), we note that $ can contain only integers k
satisfying 1 -< k </’, so that $1, for example, is empty by definition. It is also convenient
to say that

(1.13) S is full iff S (]- 1).

2. Main results and applications. To state our first result, let A be an n n
singular M-matrix in normal reduced form (1.8) so that RA , and suppose that Sj
is not empty for some f s RA. Then, set

(2.1) IX := max {] RA: Sj # },

and assume that S, is full. Note, from (1.13), that the assumption that S, is full implies
that Ix > 1. With this value of Ix, we define the following two principal submatrices of
A, which are evidently M-matrices:

Ia 1,

(2.2) B :=
0 A

This brings us to the statement of our first result, whose proof will be given in 3.
THEOREM 1. (reduction algorithm). LetA be an n x n M-matrix in normal reduced

form (1.8). IfRA , or ifna and if S for each ] RA (cf. (1.12)), then

(2.3) I(A)I n!.

Otherwise, let tx be defined as in (2.1), and assume that S, is full. If the matrix C of
(2.2) is s x s and if A,., is m x m, then

(2.4) [g(a)[ n !. ml(c)l
sl(s+m)

We remark that since the order of the matrix C of (2.2) is necessarily less than
that of A, we can view Theorem 1 as a reduction algorithm which precisely relates
I(a)l for A to Ig(C)l for the smaller matrix C. Of course, if C is nonsingular (so
that its associated set Rc of (1.9) is empty), or if C is singular and its associated sets

Si of (1.12) are empty for all ] Rc (as is the case when C is irreducible), then
[g(C) s l, and the reduction algorithm necessarily terminates. Otherwise, the reduc-
tion algorithm can be continued if C satisfies the hypotheses of Theorem 1. Assuming
that RA # QS, a sufficient condition that this reduction algorithm can be continued to
termination is that

(2.5) for every ] RA, either Si or Sj (]- 1).

Now, if RA # , we further set

(2.6) R, := {] RA" Si (]- 1)},
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and if R # , we list (for convenience) its elements in decreasing order, i.e.,

(2.7) R := {/z 1,/-/,2, /-/,k}, where n _->/z >/z. >. >/Zk -> 2.

For each/zj R, let tj be defined as the order of the matrix B of (2.2) with
and let sj be similarly defined as the order of the matrix C of (2.2) with/z -i. If mj

is the order of the matrix A,j,,, we note that ti s + mi, [ 1, 2,. , k.
With this notation, we state our next result, an extension of Theorem 1, whose

proof will also be given in 3.
THEOREM 2. Let A be an n n M-matrix, in normal reduced form (1.8) which

satisfies (2.5) if RA (,. If RA-" , or ifRA with R (cf. (2.6)), then

(2.8) I(A)I n!.

Otherwise, with the above notation,

(2.9) H=I ti

where Rt {tz 1, i2, tZk}.
We next consider applications of Theorem 2. As our first application, consider

the n x n singular reducible M-matrix (in normal reduced form)

(2.10) D [D1,1 D1,2]
0 Dz,2J’

where D1,1 is an n n nonsingular irreducible M-matrix, where D2,2 is an n2 n2
singular irreducible M-matrix (with nl + n2--n), and where D1,2 . In this example,
Ro {2} and $2 {1}, so that the hypotheses of (2.5) are satisfied. Thus, R {2}, so
that/xl 2, tl n, and ml hE. Applying (2.9) of Theorem 2 gives

(2.11) I.(D)I n.. (n 1)!,

the result of [7, Thm. 4]. Thus, Theorem 2 here generalizes [7, Thm. 4].
As a second application of Theorem 2, consider the following 12 12 singular

reducible M-matrix (in normal reduced form)

(2.12) E

2 -1
-1 2

-1 0
2 -1

1
-1
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In this case, (2.5) is satisfied, andR {2, 4, 5}, andR {2, 4}, so that/z 4,//,2 2,
tl 8, t2 4, and m2 m4 2. Applying (2.9) yields

(2 x3) a2---!’
8

As our final application of Theorem 2, consider the particular upper triangular
n x n singular M-matrix, defined by

(2.14) H, :=

0 -1 -1 1

={n,n-1 2},In this case, (2.5) is again satisfied, and Rn, {1, 2,..., n}, Rn,
and mj 1 for each 1 <-] ---n 1. Applying (2.9) of Theorem 2 gives that

(2.15) 1,

This example constructively shows that the first inequality in (1.7) is sharp for every
n_->l.

While Theorem 2 precisely determines I,g (A)I for those n n singular reducible
M-matrices A satisfying (2.5), we next seek upper and lower bounds for I,g (A)I for
singular reducible M-matrices which do not satisfy (2.5).

Consider two n n M-matrices A and B which are in normal reduced form

B1,2 Bl,ml
I

where the diagonal submatrices Aj, and Bi, are irreducible. We say that A and B are
graph-compatible if (cf. (2.16))

(2.17)
(i) m;
(ii) the order of Ai, is equal to the order of Bi, for each/" with 1-< j-< l;
(iii) RA=RB (el. (1.9)).

With $(A) and $i(B) denoting the sets of (1.12) associated with A and B when
RA 7 RB, we come to:

PROPOSITION 3. LetA andB be two n n M-matrices which are graph-compatible
(cf. (2.17)). IfRA and i[

(2.18) Si(A)
_

Si(B) for each ] e Ra,

then

(2.19) [N(A)I => I(B)I,
with strict inequality homing in (2.19)/f Si(A) Si(B) for some ] e RA.

We now use Proposition 3 as follows. Consider any n n M-matrix A which
is in normal reduced form (1.8). We shall construct two n x n singular reducible
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M-matrices, _A and A, which are graph-compatible with A. Specifically, with

A1,2 _At,1] 1,2 /1,/],1

/-A2’2 -A..2’1 A :=

we set

(2.21)

A_ i.i Ai.i Ai,

A_ id Aid Aid

A_ i,i Ai, Ai,i

for each 1 _-< _-< 1;

for each j RA, and all 1 <_- <- 1;

for each ] s RA such that either Si(A)

or Sj(A) (j- 1), and all 1 <= =< l.

Of course, if RA or if RA and A satisfies (2.5), then _A and A are fully defined,
with _A A A. Otherwise, suppose there is a j RA for which # Sj(A) (]- 1).
For such ]’s, we change zero blocks Ai, of A to nonzero blocks _Ai.i in the upper
triangular part of the ]th column of A in such a way that

(2.22) Si(_A) (]- 1) for those ] RA for which ; Si(A) (]- 1).

Similarly, we change all nonzero blocks Aid, in the upper triangular part of the ]th
column of A, to be identically zero, thereby defining Aid for all 1 =< < ], so that

(2.23) Si(A) ; for those ] RA for which # Si(A) (]- 1).

Clearly, the matrices _A and A are, by construction, M-matrices which are both
graph-compatible with A. Moreover, if RA , the matrices _A and A are such that
(2.5) is satisfied for each of these matrices, and also such that

(2.24) Si(A)
_
Si(A) Sj(A_ for each ] e RA.

Now, Ig,,(A)[ and [g(_A) can be exactly computed from Theorem 2, so that from
(2.19) of Proposition 3, we immediately have

THEOREM 4. Let A be an n x n M-matrix in normal reduced form (1.8). With the
n x n M-matrices A_ and A of (2.21)-(2.23), then either RA fZ or RA and A
satisfies (2.5), so that A_ A A and

(2.25)

or RA # and A does not satisfy (2.5), so that

(2.26)

where I g (_A)l and Ig, (A)] can be exactly determined from (2.9) o Theorem 2.
As an illustration of Theorem 4, consider the particular singular reducible M-

matrix

(2.27) J

1 -1 -1 -1
0 0 0 -1
0 0 0 -110 0 0
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For this matrix, its associated graph-compatible matrices _J and J can be taken to be

1 -1 -1 -1- 1 -1 0 -1

! 0 -I -! and ]= 0 0 0 -!0 0 0 0 0
0 0 0 0 0

(2.28) _J

Here, the inequality of (2.26) of Theorem 4 can be computed to give

(2.29) 4 < I,.. (J)l < 12.

By direct computation, we find, on the other hand, that [(J)[ 8.
As a final remark, suppose that an n x n M-matrix A is the direct sum of k

M-matrices, i.e., in block-diagonal form,

(2.30) A diag [A x,, Am2,. ",A,],
where each A, is an m x m M-matrix. It is easy to see that

,,[(A)l=n" I-I,L I, (A,,,)I(2.31) =1 (mi])
where n

i=
mi.

The point of this remark is that if (2.30) is valid, then Theorems 2 and 4 should be
applied only to the matrices A., 1 k.

To illustrate this last remark, consider the following matrix

(2.32) A
A,x 6

A2,2

where , 0 denote respectively nonsingular and singular irreducible M-matrices,
where blank blocks are identically zero, and where x’s denote nonzero blocks. In
this example, R {2, 3, 4}, $2 {1}, Sz , and $4 {3}; moreover, as R # and
as (2.5) is not satisfied by A, Theorem 2 does not apply to A. However, A of (2.32)
is the direct sum of the two matrices A, and A2,2. As Theorem 2 can be applied to
A,I and A2,2, then (2.31) can be applied, and [(A)] can be precisely determined.

3. Proofs o results. For the convenience of the reader, we state below two results
from [7] which will be used below.

THEOREM A. LetA be an n x n M-matrix. Then, the following are equivalent:
(i) A admits an LU[actorization into M-matrices with nonsingular L;
(ii) [or every proper subset a ={al, a2," ag} o[ (n) [or which A[a] is singular

and irreducible, there is no path in the directed graph G, (A ofA from vertex
vt to vertex vm [or any >a and any 1 k.

THEOREM B. Let A =[aa] be an n x n M-matrix. Then, the [ollowing are
equivalent"

(i) there exists an x > 0 such that x rA 0;
(ii) I g (A)] n"

(iii) [or every proper subset a {, a2, a} of (n) [or which A[a] is singular
and irreducible, then at, 0 [or all and all p .

Proo[ o[ Theorem 1. As (2.3) is immediate if RA , assume first that RA #
and that the set S of (1.12) is empty for every RA. This implies that, for each

RA, A, for each 1 with /. Since each singular and irreducible submatrix
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of A of (1.8) must be some diagonal submatrix Aj.j of A with/" s RA, it follows that
(iii) of Theorem B above is valid; whence, from (ii) of Theorem B, I(A)[ n !. This
gives (2.3).

Next, assume that Sj for some/" s RA. With defined as in (1.13), we further
assume that S, is full. The idea of the proof now is to use the equivalence of (i) and
(ii) in Theorem A, in two stages, to deduce the desired result (2.4) of Theorem 1. We
remark that if the directed graph G,(A) of the n x n M-matrix A [ai.j] is associated
with the n vertices Vl, v2,"’, v,, if tr is any permutation (1-1 transformation) on
(n), and if its associated permutation matrix P is defined by P [6i.,)], then the
directed graph G.(P,ApT) for P,ApT is simply obtained by relabeling the vertices
of G. (A) from vi to v,i), while keeping all arcs intact. This observation will allow us
to determine which rearrangements (permutations) of (n) are such that (ii) of Theorem
A, applied to these rearrangements, is valid.

If the matrix B of (2.2) is t, we first wish to establish that

n!
(3.1) [g,(a) [tg(B)[ --..
Of course, if n, then A B and (3.1) trivially holds. Thus, we may assume that
< n. Consider any rearrangements of the first positive integers, say {ul, u2, , ut},

and consider any rearrangement {’1, r2,’’’, "r,-t} of the remaining positive integers
{t + 1, +2,..., n}. We then intersperse the integers of {’1,..., ’,-t} among the
integers of {Ul, , ut}, thereby forming {Wl, w2, ’, to,}, a rearrangement of the first
n integers, in such a way that {Wl,’’’, w,}\{’l, , ’,-t} {u, , ut} and such that
{w,. , to,}\{,l, , ut} {z, ., "r,,-t}. We claim that the number of ways of inter-
spersing {-, ., z,-t} with {ul,..., u,} is

(3.2) K --.

To see this, each distinct method of interspersing {-,.. , z,-t} among the integers
of {ul,’’’, ut} applies equally well to each rearrangement {u,..., t,} of the first
positive integers. Thus, there are exactly the same number, say K, of ways of inter-
spersing the integers of {’1,’ ’, r,-t} among the integers of each rearrangement of
the first integers. Clearly, the totality of arrangements of {to,. ., to,} which can be
obtained is, on one hand, K. t!, while on the other hand, it is necessarily n !, which
gives (3.2).

Next, we make the observation that if the rearrangement {ul, ., ut} corresponds
to an element of b(B):= (n )\gt (B ), then it is easily seen that every interspersing
of the integers of any rearrangement {-,..., -,_} by definition corresponds to an
element of b(A)., Thus, to obtain a rearrangement {toa,. to,} in (A), it is
necessary to begin with a rearrangement {ux,..., u} which is in tg(B), followed by
any interspersing of any {-, .., z,_}. (The reason that this is valid is that the n-
integers {’1, , ’,-} necessarily correspond to vertices in the directed graph G, (A)
of A which, by construction, have no path to the singular irreducible submatrix A,.,,
and hence play no role in applying (ii) of Theorem A to A,.,.) Thus, using (3.2),
Ig(A)l is given by

n!
(3.3) Ig(A)l Itg(B)l.

We now relate, in the second part of the proof, the quantities [(B)I and [g(c)[,
where B and C are defined in (2.2). Since S, is full by hypothesis, then S, (/z- 1).
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By definition, the matrices A,,,, C and B (cf. (2.2)) are respectively of orders m, s
and t, with m + s. In analogy to the first part of the proof, we consider any
rearrangement {-,..., } of the first s positive integers, and any rearrangement
{r/l,’’’, ?m} Of the integers {s + 1,..., t}, and we intersperse {r/,..., r/,,} among
the integers of {1, ’, }, thereby forming {1, 2," ’, t}. As before, to obtain an
element in (B), itis necessary to begin with a rearrangement {z, , } which is
in (C). Moreover, because by hypothesis S, ( 1), we see from (ii) of Theorem
A that the final element t of {,..., t} in (B) must be from {, , }. For
each fixed {z,..., } in (C), it is easily seen that there are the same number,
namely m (t- 1)I/sI of such interspersings of {,. ., }, such that the last element
t is from {,. , }. Thus,

(3.4)
I  (c)l m. (t- 1)!.

sI

If we combine (3.4) with (3.3), we obtain (since s + m) the desired result (2.4).
Proof of Theorem 2. As (2.8) is immediate if ga , assume first that ea

and that R . But, R implies from (2.5) that S for each j RA, which
with (2.3) of Theorem 1 gives that [(A)I n in (2.8). Hence, we may assume that
R is not empty, so that from (2.7), R ={, 2,’ ’, k} where n >2>" >
k 2. Now, let Ci denote the matrix C of (2.2) when , f 1, 2,..., k. In
addition, we set

(3.5) C := A.

From the discussion preceding Theorem 2, s denotes the order of each Ci, so that
So := n. Similarly, mi denotes the order of the matrix A,,,. Then, applying (2.4) of
Theorem 1 to C yields

()) (si)m+[,+ (C(+))[
(3.6) ,,(C

(si+x)l(ti+x)
] O, 1,. ", k 1,

where ti := si + m. On multiplying the quantities of (3.6) for all ] O, 1,. ., k 1, we
obtain (since So := n)

(3.7) Ig(A)[ n = mi[(C()

But, since the irreducible diagonal submatrices of C are either nonsingular, or
singular with associated sets S empty, from (2 5) and (2.7), I (C)1 (s) and
(3.7) then reduces to the desired result (2.9).

Proof of Proposfio 3. With the hypotheses of Proposition 3, consider any
permutation P in (B). From the equivalence of (i) and (ii) in Theorem A, it is easy
to verify that the hypothesis of graph-compatibility and the inclusions of (2.18) imply
that P is also in (A), whence [(A)[[(B)[, the desired inequality of (2.19).

Next, suppose that there is a ] RA for which S(A) S(B), along with S(A)
S(B) for each k RA, and let

(3.8) s := max {k" k S(B)S(A)}, where s < ].

By definition, there is a path from vertex V to vertex %. in the block-directed graph
for the matrix B, but no such path in the block-directed graph for the matrix A. With
A in reduced normal form (2.16) and with := {s, s + 1,. ., }, set

(3.9) T := {t" s ] and there is a path from V to % for A} {s}.
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By definition,

(3.10) sTA and j{a\Ts}.

Then, as in the proof of Theorem 1, with each vertex V/, we associate rti positive
integers (where Ai.i and Bi, are ni x ni integers), numbered consecutively so that the
integers associated with V1 are {1, 2,..., nl}, those associated with V2 are {n+
1,..., n +n2}, etc. Now, alter (n) (thereby forming a rearrangement of (n)) by
simply removing the consecutive integers, corresponding in sequence to the vertices
Vt in TsA, and placing them (without changing their relative positions) immediately
after the last integer associated with the last vertex of V.. Using (3.10), Theorem A,
and the fact that there is a path from vertex Vs to vertex V. for the matrix B, this
new rearrangement of (n) can be seen to be in the set g(A), but not in the set
g(B). Thus, I(a)l>lg(B)[, which gives strict inequality in (2.19). [3

Proof of Theorem 4. The proof of Theorem 4 follows easily from Proposition 3.
First, if RA or if RA and A satisfies (2.5), the construction of _A and A is
such that _A A A in this case, from which (2.25) follows. Otherwise, assume RA :
and that A does not satisfy (2.5). Hence, there exists a f RA for which
Sj(A) (f- 1). For this f, the construction of _A and A from (2.22)-(2.23) shows that

(3.11) Sj(A) S(A) S(A_ (j- 1),

as well as

(3.12) Sk (A)
_
Sk (A)

_
S (_A) for which k RA.

Thus, strict inequality holds in (2.19) of Proposition 3, i.e.,

(3.13) I(_A)] < Ig (A)I <1(A) 1,
which gives the desired result (2.26) of Theorem 4.
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ISOMORPHISM TESTING IN HOOKUP CLASSES*

M. M. KLAWEt, D. G. CORNEIL, AND A. PROSKUROWSKI

Abstract. Hookup classes are classes of graphs with a certain type of recursive definition, which can be
viewed as a generalization of k-trees. We show that many hookup classes of graphs are isomorphism
complete, and give polynomial isomorphism algorithms for the others. Other results in this paper include
the development of a structural decomposition for hookup graphs and similar isomorphism results for
generalizations of hookup classes, including a polynomial isomorphism testing algorithm for chordal graphs
with bounded maximum clique size.

1. Introduction. The objective of this paper is to study the computational com-
plexity of isomorphism testing in classes of "hookup" graphs, which are classes of
graphs with a particular type of recursive definition. For two graphs A and G, we
define the hookup class of A and G, denoted by [A, G], as follows. A graph H belongs
to [A, G] if either H is isomorphic to A or there exists a vertex z of H such that the
subgraph of H induced by the neighborhood of z is isomorphic to G and the graph
H\{z} belongs to [A, G]. Another way of describing the graphs in [A, G] is that they
are the graphs that can be obtained by starting with a copy of A and adjoining vertices
one by one in such a way that whenever a vertex is adjoined it is made adjacent to
every vertex of (or "hooked up" to) a copy of G in the preceding graph. We call A
the initial graph, and G the hooking graph, of the hookup class [A, G]. Some
well-known examples of hookup classes are [Kk, Kk] for k _-> 1, since this is simply the
class of k-trees (see [14], [15], [17]); in particular, for k= 1 this hookup class is simply
the family of trees.

The general problem of determining whether two graphs are isomorphic has
become one of the most tantalizing open problems in the field of computational
complexity. Despite considerable effort, the problem has neither been shown to be
polynomial nor shown to be NP-complete. The many practical applications of graph
isomorphism merely add to the interest of this problem.

Recent results in this area can be split into two groups: those which provide a
polynomial or subexponential isomorphism testing algorithm for some particular class
of graphs and those which show that a particular class of graphs is isomorphism
complete, i.e., if there is a polynomial algorithm for isomorphism testing in this
particular class, then there is a polynomial algorithm for isomorphism testing of all
graphs. For example, polynomial algorithms for isomorphism testing are known for
trees and, more generally, k-trees for fixed k [8]; planar graphs and, more generally,
graphs of bounded genus [5], [9], [10], [12]; and, most recently, graphs of bounded
valence [11]. On the other hand, classes of graphs which are known to be isomorphism
complete include regular graphs, chordal graphs, minimally 2-connected graphs, line
graphs and self-complementary graphs (see [1] for a recent review of isomorphism
complete problems).

The major result of this paper is to show that for any graphs A and G, the hookup
class [A, G] is either isomorphism complete or has a polynomial isomorphism testing
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algorithm. We also show that for any graph G which is not a complete graph there
is a graph A with Ial -< 31GI such that [a, G] is isomorphism complete. (Here, IAI
denotes the number of vertices in A.) Conversely, if G is a complete graph, then
isomorphism testing in [A, G] is polynomial for every graph A. In addition, we are
able to give a complete characterization of the graphs G such that [G, G] is isomor-
phism complete. These results depend on obtaining a structural decomposition of
hookup graphs which is (almost) invariant with respect to isomorphism.

In 2 the previously mentioned decomposition of hookup graphs is presented
along with a polynomial algorithm for obtaining it. The results showing that certain
hookup classes are isomorphism complete are given in 3, as well as the characteriz-
ation of graphs G such that [G, G] is isomorphism complete. Section 4 develops the
polynomial isomorphism algorithm for the remaining hookup classes, and concludes
by showing that the class of all k-trees is isomorphism complete which contrasts the
polynomial isomorphism algorithm for k-trees when k is fixed. The last section
considers generalizations of hookup classes. In particular we show that if vertices are
allowed to hook up to subgraphs which are only partially isomorphic to G then the
hookup class obtained is isomorphism complete whenever G is not a complete graph
and the class is not trivial. The paper concludes with a sketch of a polynomial
isomorphism algorithm for var-k-trees, which are a generalization of k-trees in which
vertices are allowed to hook up to any complete subgraph of size =<k. An alternate
characterization of var-k-trees is as the class of connected chordal graphs with
maximum clique size -<k + 1.

2. Preliminaries. This section is devoted to developing a structural decomposition
for hookup graphs, which will be used in obtaining polynomial algorithms for some
hookup classes. After defining this decomposition and proving some facts about it,
we give an algorithm for obtaining it which is linear in the size of the hookup graph.

For convenience, here and elsewhere in this paper we will confuse a graph with
its set of vertices. Thus H may refer either to the graph itself or merely to V(H).
We will denote the neighborhood of a vertex x in H by Fx or by Fx(H) when we wish
to specify which graph we mean. Thus F(H) denotes the set of vertices of H which
are adjacent to x in H. For two graphs F and H, we use F-H to denote that F is
isomorphic to H.

We recursively define a base of a hookup graph as follows. If H belongs to [A, G]
then a subgraph B of H is a base of H if B is isomorphic to A and either H B or
there exists a vertex z of H such that Fz G, H\{z} [A, G] and B is a base of H\{z}.
Intuitively, B is a base of H if B could have been used as the initial graph in a vertex
by vertex construction of H. It is easy to see that a hookup graph can have many
different bases but that every hookup graph must have at least one base. We let
[A, G]b denote the set of pairs (H, B) such that H [A, G] and B is a base of H. If
(H, B) and (H’, B’) belong to [A, G]b, then we say they are isomorphic if there exists
an isomorphism O:H H’ such that O(B) B’, and refer to as a base-preserving
isomorphism.

For (H, B) in [A, G]b, we define the B-decomposition of H to be the sequence
of sets B(0), B(1),... ,B(p), where B(0)= B, and B(i + 1) is recursively defined by

--j=o j=o

and p =max {k: B(k)# f}.
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If x B(k) for k >_- 1, we denote F f3 -Ui=o B(j) by G(x) and call this the support
of x in (H, B). Intuitively, the B-decomposition indicates the order in which vertices
could be "hooked-up" in a vertex by vertex construction of H with B as the initial
graph. All the vertices in B(i) must be hooked-up before any vertex in B(i + 1), and
within B(i) the vertices may be hooked-up in arbitrary order. In this interpretation
G(x) is the copy of G to which x hooks up.

The following lemma provides the basic facts which we will need about a B-
decomposition.

LEMMA 2.1. Let (H,B) belong to [A, G]b. Then the B-decomposition B(O),
B(1), B(p), ofH has the following properties:

(a) If ], then B(i)fqB(])= f.
(b) If x e B(i) for >- l, then G(x) G, i.e., F fq -U]=oB(j)-G.(c) If x B (i) for >= 2, then Fx fq -I,.J i=o B (j) G.
(d) H=Ut’ B(j)1---0
(e) If x, y e B(i) for >= 1 and x y, then x and y are not adjacent.
(f) If x B(i) for >- 1, then Fx Ui=oB(j)-G.
Proof. Properties (a), (b) and (c) follow directly from the definition of B-decompo-

sition, and (f) follows immediately from (b) and (e). Properties (d) and (e) are proved
by induction on IHI. If H B, then (d) and (e) are trivially satisfied, so we may assume
that H has a vertex z such that F- G and B is a base of H\{z}, and that the lemma
is true for the B-decomposition of/-{z}, which we denote by C(0), C(1),.. , C(q).
First notice that if z is not in =oB(]) then we must have B(])= C(]) for
each ], and p =q. But then, since H\{z} [-J=o C(]) by the inductive assumption,
we have that FzH\{z}=LJ=oB(]). Hence z must be in B(t) where t=
min {i" Fz LJ- B(])} <i= -p, a contradiction. Thus we may assume that z belongs to
B (t) for some > 1 Now, since F i=0 B(), it is clear that F f3 LI B (]), which shows that z does not belong to Fx for any x in t_J’=t B(]). Thus, for ]
we have B(])=C(]) and B(t)=C(t)LJ{z}. As H\{z}= LJi=0 C(j), obviously H=
Ll’=0 B(]). Moreover, for distinct x, y in B(i) for => 1, we either have both x and y
in C(i), and hence x is not adjacent to y by the inductive assumption or and
one of x or y is z, in which case x and y cannot be adjacent because, as noted above,
Fx f3B(t)= . [3

For (H, B) in [A, G]b, we will find it useful to define the level function with
respect to B, l(x), on the vertices of H, by /(x)= if x B(i). We now present an
algorithm which, taking a graph H and subgraph B as inputs, determines whether
(H, B) belongs to [A, G]b and, if so, obtains the B-decomposition and the sets G(x)
for each x in H\B. By using appropriate data structures, the algorithm can be
implemented so that its running time is linear in IHI, though the constant factor
depends factorially on Ial and

ALOORtTHM 2.2.
INPUT: A graph H and induced subgraph B.
The value of the logical variable FAIL is set to TRUE during the execution of

the algorithm as soon as it is determined that (H, B) is not in [A, G]b. During the
execution of the algorithm, for each x H\B its set of adjacent vertices is always
partitioned into two sets, B-ADJ (x) and its complement REST-ADJ (x).

The sets B(0), B(1),..., B(p) will be obtained iteratively beginning with B(0),
which is just B itself. At the time that B(i) is being formed, if a vertex x is not in
any B(j) for j < i, then B-ADJ (x) contains Fx f3 -LJ ]=0 B (j). If x B (j) for some j with
l_<-j <i, then B-ADJ (x) contains G(x). Thus, at the end of execution if FAIL=
FALSE, the sets B-ADJ (x) will be exactly the desired sets G(x).
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IF B is isomorphic to A THEN FAIL := FALSE;
ELSE FAIL := TRUE;

IF FAIL= FALSE THEN DO;
Initialize B(0) to be B and all other B(i) to be empty;
For each x H\B DO;

initialize B-ADJ (x) Fx f’) B;
initialize REST-ADJ (x) Fx\B-ADJ (x);
END;

I:=0;
END;

DO UNTIL (B (I) is empty or FAIL- TRUE);
I:=I+1;
For each x H\ t.Jj=o B(]) with IB-ADJ (x)[

IF B-ADJ (x)- G THEN add x to B (I);
ELSE FAIL := TRUE;

For each x B(I)
For each y REST-ADJ (x)

IF y B(I) THEN FAIL := TRUE;
ELSE move x from REST-ADJ (y) to B-ADJ (y);

END;
p:=I-1;
IF H\p

j--o B(]) is not empty THEN FAIL := TRUE;
SUCCESS := FAIL;
OUTPUT(SUCCESS);

To see that the algorithm performs correctly, it is easy to see from Lemma 2.1
that if (H, B) is in [A, G]b, the algorithm will indeed output TRUE. On the other
hand, it is straightforward to give a proof by induction on IHI that if the algorithm
outputs TRUE then (H, B) does belong to [A, G]b.

To be efficient, data structures for REST-ADJ (y) and B-ADJ (y) must allow x
to be moved from REST-ADJ (y) to B-ADJ (y) in constant time, which is easily
accomplished by the use of double pointers between the record for x in REST-ADJ (y)
and that for y in REST-ADJ (x). Also, to avoid searching H\U-1 B(]) each time to=0
find those vertices x such that IB-ADJ (x)l IGI, this set can be maintained by the
use of variables DEG-B (x) to count }B-ADJ (x)l and checking whether DEG-B (x)
IGI every time that DEG-B (x) is incremented. Finally, by adding variables L(x) which
record the level l(x) as soon as it is determined, it is possible to check whether y e B(I)
in constant time. Using this type of implementation, it is easy to check that the
algorithm is linear in IE(H)I, the number of edges of H, and hence in IHI, since clearly
IE(H)I--< IAl(lAI- 1)+ Or(till-

3. Isomorphism completeness of hookup classes. In this section we introduce
the notion of G-bolt which will be used to show that many hookup classes are
isomorphism complete. Let G and H be graphs. We say that H contains a G-bolt if
there exist vertices x and y of H and induced subgraphs X, Y and Z of H such that

(3.1.1)
(3.1.2)
(3.1.3)
(3.1.4)

x and y are not adjacent,
x,yZ,
x,Y,Z-G,
X f3 (Z\{x}) Fx fq Z and Y f’) (Z\{y}) Fy Z.

We denote the G-bolt by the 5-tuple (x, y, X, Y, Z).
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THEOREM 3.2. If them exists an H [A, G] containing a G-bolt, then the class
[A, G] is isomorphism complete.

Proof. We will show that for any graph F we can construct in polynomial time
a graph h(F) such that h(F) [A, G], Ih(r)[ O([FlZ), and moreover, for any graphs
F and F’, the graphs h (F) and h (F’) are isomorphic if and only if F and F’ are.

Let H [A, G] contain a G-bolt (x, y, X, Y, Z), and let n IH[ and m IFI. For
convenience we assume m _-> 2. The graph h(F) is constructed as follows. First form
a graph f(F) by adjoining to H two sets of vertices {x(v): vF} and {y(v)’ vF}
such that Fx(o X and Fy(o Y for all v F. Since X- G and Y -G, it is easy to
see that [(F) [A, G]. Now adjoin the set of vertices {w(v, i): v F, 1 _<- <_- 2m + n}
to f(F) to form a graph g(F), setting Fw(o,g) (Z\{x, y}) LI {x(v), y(v)} for v F, 1 -<_ -<_

2m + n. Note that Fw(, =Z for each v and i, since F(of3 (Z\{x})= X (Z\{x})=
Fx f3 Z and Fy(o)(3 (Z\{y}) Y (3 (Z\{y}) Fy (q Z by property (3.1.4) of G-bolts. Now
as Z-G we have Fw(o,-G, and hence it is easy to see that g(F) [A, G]. Finally,
form h(F) by adjoining the set of vertices {z(v, u, i)" u is adjacent to v in F, 1 _-<i _-<n}
to g(F), so that Fz(o,,.)- Z\{x, y})tA {x(v), y(u)} for 1-<_i_< n. Notice that when u and
v are adjacent in F both z(v, u, i) and z(u, v, i) are adjoined for each i. As before
Fz(.u.i)=G for all v, u, i, and, hence h(F)[A, G]. Moreover ]h(F)l=n +2m +
m (2m + n)+ 2ne, where e is the number of edges in F. Thus, clearly [h (F)[ O([FI2).

To see that this construction preserves isomorphism notice that F can be recon-
structed from h (F) as follows. The set of vertices {x (v), y (v)" v e F} can be identified
by their degree, since letting d be the maximum degree of f we have

(i) for z H\(X U Y t_J (Z\{x, y})), degree (z) < n;
(ii) for z XU Y\(Z\{x, y}), degree (z)<2m +n;
(iii) for z z(v, u, i) or z w(v, i), degree (z) IGI < n;
(iv) for z (Z\{x, y}), since m >-2 and e -> d

degree(z) -> m (2m + n) + 2en >- 4m + 2n + 2dn

(v) for z x(v)or y(v)

2m +n =<degree (z)-< 2m +n +[G[+dn <-2m +2n +dn.

For r and s, two vertices of h(F), let c(r, s) be the number of vertices of h(F) which
are adjacent to both r and s. Then it is easy to check that we have, for any distinct
u and v in F,

(vi) c(x(u), x(v)) c(y(u), y(v)) --IGI < n;
(vii) c(x(u), y(v))= IX 71 Y[, if u and v are not adjacent in F;
(viii) c(x(u), y(v))= n + IX (3 Y[ if u and v are adjacent in F;
(xi) c(x(v), y(v))= 2m + n + IX f’) Y].

Thus it is clear that F may be reconstructed by examining the function c on the set
of vertices {x (v), y (v): v e F}. Therefore h (F) h (F’) if and only if F F’, and hence,
a polynomial isomorphism testing algorithm for graphs in [A, G] would yield a
polynomial isomorphism testing algorithm for all graphs. [3

The fact that many hookup classes are isomorphism complete follows from the
next theorem.

THEOREM 3.3. II: G is not a complete graph, then there exists a graph A such that
[A, G] is isomorphism complete.

Proof. By Theorem 3.2 it suffices to construct a graph A which contains a G-bolt.
Since G is not complete, there exists a pair of nonadjacent vertices x, y in G. Let G1,
G2 and G3 be three disjoint copies of G, and let x, x2, x3 and yl, y2, y3 be the vertices
corresponding to x and y in these copies of G. Let A be the graph formed by first
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identifying x and its neighborhood in G1 with X2 and its neighborhood G2 and then
identifying yl and its neighborhood in G1 with y3 and its neighborhood in G3. If we
take Z, X and Y to be the subgraphs of A induced by the vertices from G1, G2 and
G3 respectively, then it is easy to see that (xl, yl, X, Y, Z) form a G-bolt in A. [3

Figure 1 shows A when G is the 5-cycle.

FIG.

We now attack the problem of characterizing the graphs G such that [G, G] has
a graph containing a G-bolt. We begin with some notation and an easy lemma.

For graphs H and F, let H F denote the graph consisting of the union of the
graphs H and F together with all possible edges joining vertices of H to vertices of
F. Note that F may be the empty graph, in which case, H =-F is simply H.

LEMMA 3.4. Let G be a graph such that [G, G] has a graph containing a G-bolt,
and let F be any graph. Then the class [G=-F, G=-F] has a graph containing a
(G =- F)-bolt.

Proof. It can easily be shown by induction on [HI that whenever H [G, G] we
have H F [G F, G F]. Moreover, if H contains a G-bolt (x, y, X, Y, Z) then
(x, y,X=-F, Y=-F,Z=-F) is a (G=-F)-bolt in H=-F. [3

The family of chordal graphs can be defined recursively by saying that a graph
C is chordal if either C is complete or there exists z C such that Fz- Kp for p _-> 0
and C\{z} is chordal. Note that by allowing p- 0 a chordal graph is not necessarily
connected. It is well known that a graph C is chordal if and only if each cycle of
length at least four has a chord, and in fact this is often used as the definition. Let
ce (C) denote the size of the largest clique in C. We should note here that we use the
term clique to refer to a complete subgraph which is maximal with respect to that
property. We say that graph G is chordal-clique-complete if G C--K(c)-l, where
C is a noncomplete chordal graph. Finally, a graph G is chordal-clique-complete-
extended if G G’--F, where G’ is chordal-clique-complete and F is any graph. The
following theorem completely characterizes those graphs G such that [G, G] has a
graph containing a G-bolt.

THEOREM 3.5. The class [G, G] has a graph containing a G-bolt if and only if
G is chordal-clique-complete-extended.

The rest of this section will be devoted to proving this theorem. We begin with
some definitions and elementary facts which will be used to show that if G is
chordal-clique-complete, then [G, G] has a graph containing a G-bolt.

A proper k-tree is any graph belonging to [Kk, Kk other than Kk itself. Obviously,
proper k-trees are chordal graphs. A simplicial point Of a chordal graph is a vertex x
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such that Fx Kp for some p >-0. The following facts can be proved by induction on
the size of the graph involved. For more details about chordal graphs and k-trees see
[6], [14], [15], [17].

FACT 3.6. Every chordal graph which is not complete has two nonadjacent sim-
plicial points.

FACT 3.7. Two distinct simplicial points of a proper k-tree Tare not adjacent unless
T is Kk+l.

FAc: 3.8. Every clique of a proper k-tree has cardinality k + 1.
FAc: 3.9. If x is a simplicial point of a proper k-tree T and T is not complete, then

T\{x} is a proper k-tree.
LEMM, 3.10. Let C be a chordal graph with maximal clique size <-_k + 1. Then

there exists a proper k-tree T containing C as an induced subgraph such that if C is
complete then every vertex of C is a simplicial point of T, and for C noncomplete, at
least two vertices of C are simplicial points of T.

Proof. First note that the lemma is trivially true if C is complete. We will use
induction on the cardinality of C. Thus assume that C is not complete and that the
lemma holds for proper subgraphs of C. Let x and y be nonadjacent simplicial points
of C, and let T’ be a proper k-tree containing C\{x} as an induced subgraph, satisfying
the hypothesis of the lemma. Suppose Fx is {Vl, , vp}. Then by Fact 3.8 there exist
vertices V/l,’’ ’, vk/l of T’ such that vl,..., Vk/l form a clique in T’. Moreover,
since y is not adjacent to x, we may assume that if y is one of the vertices vl, ., v/,
then y is the vertex v/. We obtain the proper k-tree T by adjoining vertices
X Xp+l, Xk/l to T’ such that xi is adjacent to vi for 1 _-<j-< 1 and xi is also
adjacent to x for + 1 <_- <_- k + 1. It is easy to see that C is an induced subgraph of
T and that x is a simplicial point of T.

We now show that T has another simplicial point which is not adjacent to x.
First note that if C\{x} is complete, then y is a simplicial point of T’. Since y is
adjacent to no vertex in T\T’, clearly y is also a simplicial point of T. Thus, we may
assume that C\{x} has two vertices u and v which are simplicial points of T’. Moreover,
by Fact 3.7, u and v are not adjacent, and hence at least one of them, say u, is not
v. for any/’. Thus u is a simplicial point of T which is not adjacent to x. [-1

We are now ready to complete the proof of one direction of Theorem 3.5.
PROPOSITION 3.11. Suppose G=G’=-F, where G’ is chordal-clique-complete.

Then [G, G] has a graph containing a G-bolt.
Proof. By Lemma 3.4 it suffices to show that [G’, G’] has a graph containing a

G’-bolt. Let G’= C =-Kk, where C is a noncomplete chordal graph with maximum
clique size equal to k + 1. By Lemma 3.10 and 3.7, we can find a proper k-tree T
containing C as an induced subgraph and two vertices x and y of C which are
nonadjacent simplicial points of T. Let C’ be a graph isomorphic to C. Then, since
T [Kk, Kk], as noted before, it is easy to see that T C’ [G’, G’]. Moreover, as
F(T)-Fy(T)-Kk, we have F(T=-C’)=Fy(T--C’)-G’. Choose a subgraph L of
C’ with L Kk, and let Z C -= L. Now it is easy to check that (x, y, F(T C’), Fr (T -=
C’), Z) forms a G’-bolt in T---C’. [3

We now concentrate on proving the opposite direction of Theorem 3.5. A vertex
x of a graph D is said to be a superpoint of D if x is adjacent to every other vertex
of D. We denote the set of superpoints on D by s(D).

LEMMA 3.12. I[ [G, G] has a graph which contains a G-bolt, then there exist
(H, B)[G, G]b and z H\B such that G(z)\(B U s(G(z))) , where G(z) is the
support of z in (H, B) (see beginning o] 2 for definition).
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Proof. Let H’ [G, G] contain a G-bolt (x, y,X, Y, Z). Form H by adding
new vertices u, v, z to H’ so that Fu =Xt_J{z}, Fo Y t.J{z} and Fz (Z\{x, y})O
{u, v}. Then for any base B of H’ it is simple to check that (H, B) is in [G, G]b.
Moreover, z H\B, and since u and v are not adjacent, they both belong to
G(z)\(B t.J s(G(z))).

If U and V are subgraphs of a graph, then we will say that U is completely
connected to V if every vertex of U is adjacent to every vertex of V, i.e., U [.J V
induces a subgraph isomorphic to U-= V. The following proposition completes the
proof of Theorem 3.5.

PROPOSITION 3.13. If [G, G] has a graph which contains a G-bolt, then G is
chordal-clique-complete-extended.

Proof. Suppose [G, G] has a graph containing a G-bolt. By Lemma 3.12 there
is some (H, B) [G, G]b, with z H\B and G(z)\(B s(G(z))) f, such that IH] is
minimal with respect to this property. By the minimality of IHI, it is obvious that for
each y G(z)\B we must have (G(y)\B)= s(G(y)). Let A be the union of the sets
B\G(y) for yG(z)\B, let J=(G(z)\B)(G(z)A) and let C=J\s(J). We will
prove the following facts about these subgraphs.

(a) A s (B).
(b) C is chordal.
(c) C is nonempty and is not a complete graph.
(d) Is(G(z))l>-_q, where q + 1 is the size of the largest clique in C.
(e) C is completely connected to G(z)\C.

It is clear that C fqs(G(z)) , since by the definition of C we have C G(z) and
s (C) . Combining this with (b), (c), (d) and (e), it is obvious that G is chordal-clique-
complete-extended since if K is any subgraph of s(G(z)) of size q, then G(z)=
(C K) =- (G(z)\(C K)) and C--K is chordal-clique-complete. Thus all that
remains is the proof of statements (a) to (e).

Proof of (a). Let d Is(G(z))l. Notice that since G =B -G(z)-G(y) for each
y in G(z)\B, the number of superpoints in each of these graphs is the same, namely
d. Since (G(y)\B)=s(G(y)), we have d=IG(y)\BI+Is(B fq G(y))I. Clearly, s(B)f’)
(O(y) f3 B) s(B fq G(y)) so

Is(B) fq (B\G(y))] d -Is(B) (B CI G(y))[
>-d- Is(B G(y))I IG(y)\B[ IB\G(y)[.

This shows that B\G(y) s(B) for each y G(z)\B.
Proof of (b). Let D be a cycle of length at least four in C. We will show that D

has a chord. By (a) we know that A is complete, so this is obvious if D A. Thus,
we can choose y (G(z)\B)fqD so that/(y) is maximal, where is the level function
with respect to B (defined in 2). Let x and w be the neighbors of y in D. Then x
and w are adjacent. This is obvious if both x and w are in A, so suppose x G(z)\B.
Since x and w are adjacent to y, by the maximality of/(y) we have x G(y)\B and
w G(y); but now x is adjacent to w since (G(y)\B) s(G(y)).

Proof of (c). Since we have already noted that s(C)= , it suffices to show that
C is nonempty, and thus, since C =J\s(J) we need only show that J has two
nonadjacent vertices. Because G(z)\(B t.J s(G(z))) , there are nonadjacent vertices
u and v with u G(z)\B and v G(z). Moreover, v is not in G(u) since v is not
adjacent to u. Hence, either v G(z)f3 (B\G(u)) or v G(z)\B, and in either case,
we have both u and v in J.
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Proof of (d). Let K be any largest clique in C. By (a) it suffices to show that

IAI =>lgl-a, This is obviously true if K cA so we may choose y K\A with /(y)
maximal. Now ]n\a(y)l- IG(y)\BI>-IK\A]- since the maximality of/(y) implies
that K\{y}c G(y) and the definition of C implies that (K\A)c(K\B). Moreover,
since K\{y}cG(y), we have KO(B\G(y))=, and hence we obtain IAI>_-
[g fqAI+IB\G(y)I>=([KI-K\AI)+([K\AI 1)= IK[- 1.

Proof of (e). First notice that G(z)\B is completely connected to B\A since for
each y G(z)\B we have B\A (B f’) G(y)) Fy. By (a), A is also completely con-
nected to B\A, and combining these we see that J and hence C, is completely connected
to B\A. It is easy to check that G(z)\C (B\A)U s(J), and hence C is completely
connected to G(z)\C, since obviously C is completely connected to s(J).

4. Polynomial isomorphism for some hookup classes. The results of the preceding
section naturally beg the question of the complexity of isomorphism testing in hookup
classes [A, G] in which no graph contains a G-bolt. We now give a polynomial
algorithm for isomorphism testing in such classes. We begin with two preliminary
lemmas which show that if H [A, G] does not contain a G-bolt then Hhas a rather
tree-like structure.

Given a base B of a graph H[A, G] with B-decomposition
{B(0),B(1),..., B(p)}, recall that the level function is defined on H by /(x)= if
xB(i).

LEMMA 4.1. If H [A, G] does not contain a G-bolt, then for any base B of H
with B-decomposition {B(0),B(1),..., B(p)} we have IG(z)B(l(z)-l)l= 1 for all
z with l(z) >= 2.

Proof. First note that since z B(l(z)) we must have ]G(z)fqB(l(z)- 1)1_-> 1 for
any z with /(z)=>l. Now suppose there exists zH with /(z)->2 and [G(z)fq
B(l(z)-l)l>-2. Choose x and y to be distinct vertices of G(z)fqB(l(z)-l). Let
X G(x), Y G(y) and Z G(z). Then (x, y, X, Y, Z) is a G-bolt in H. To see this
note that conditions (3.1.2) and (3.1.3) are trivially satisfied and that (3.1.1) is satisfied

/(z)--idue to Lemma 2.1(e). Finally, since FxfqLIj=0 B(f)= G(x) by Lemma 2.1(f) and
/(z)-IG(z)=j=o B(]), we have FxG(z)=G(x)fqG(z), and similarly, FyfqG(z)=

G(y) f3 G(z), satisfying (3.1.4). Thus we have shown thatH has a G-bolt, contradicting
the hypothesis. [-1

Let (H, B) [A, G]b such that H does not contain a G-bolt. For zH with
/(z)->_2, we let f(z) denote the vertex in G(z)f3B(l(z)-l). Loosely, [(z) can be
thought of as the father of z. We also define F(z) for z H with l(z)=> 1 to be a set
of vertices of H as follows"

[B if l(z)= 1,

F(z)=l{f(z)}UF(f(z)) if l(z)_->2.

Let T(H) be the rooted tree with vertices {r}U(H\B). The vertex r is the root of
T(H) and is father of all vertices in B(1); for any other vertex z in T(H)\(B(1){r}),
its father is [(z). Now if we identify r with B, it is easy to see that F(z) is the set of
vertices, excluding z, on the path from z to r.

LEMMA 4.2. Let (H, B) [A, G]b such thatH does not contain a G-bolt. Then for
all z with l(z) >- 1, we have G(z) F(z).

Proof. Suppose not. Choose zH such that G(z)\F(z) ( and such that l(z)
is minimal. Note that l(z) => 2 since by definition for z B(1) we have G(z) B F(z).
Choose x G(z)\F(z) such that l(x) is maximal, and let y =f(z). Let X=G(x),
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Y G(y) and Z G(z). As before, we will show that (x, y, X, Y, Z) forms a G-bolt
in H. Again, (3.1.2) and (3.1.3) are trivially satisfied and likewise Fyf’)G(z)=
G(y) fq G(z). We also have Fx f3 (U l(z)-I

i=/(x)+l B(]))f’) G(z)= . To see this suppose
fU l(z)-Iw E Fx f3 i=l(x+l B(])) G(z). Then since w and x are adjacent and l(x) < l(w),

obviously, x E G(w). However, as w E G(z) and l(w) > l(x) by the maximality of l(x),
we must have w E F(z) and hence F(w) c F(z). But now this shows that x E G(w)\F(w),
which is impossible by the minimality of l(z) since l(w)< l(z). Both (3.1.1) and the
rest of (3.1.4) follow immediately from F f’)([_j/(z)-ii=l(x)+l B(]))f’) G(z)= , since this

l(x)shows that x and y are not adjacent and that F (q G(z) F fq (i=o B(])) f-) G(z)
G(x) G(z). ]

Notice that if we interpret Lemma 4.2 in the context of T(H) it states that for
1 <= l(x)<=/(y) then x adjacent to y implies that x is on the path from y to the root
r. We are now ready to present the polynomial isomorphism testing algorithm.

THEOREM 4.3. / no graph in [A, G] contains a G-bolt, then isomorphism of
graphs in [A, G] can be tested in polynomial time with exponent IA[ + 2.

Proof. We claim that given two graphs H and H’ in [A, G] of cardinality n, with
bases B and B’, we can test whether (H, B)= (H’, B’) in O(n 2) time.

Using this we can test for isomorphism in [A, G] as follows: Let H and H’ be
two graphs of cardinality n in [A, G].

Step 1. Find a base B of H. This requires at most O(n Ial+) operations since we
can use Algorithm 2.2 to test every subgraph of H with cardinality [AI to see whether
it is a base of H and each test requires O(n) operations.

Step 2. For each subgraph B’ of H’ with cardinality IAI, test whether B’ is a base
of H’, and if so test whether (H, B)= (H’, B’). By the claim above and Algorithm
2.2, this requires at most O(n Ial+2) operations. Furthermore, it is clear that H =H’
if and only if for some base B’ of H’ we have (H, B)- (H’, B’).

We now prove our claim. Let the vertices of B be v,..., vq and those of B’ be
The procedure we describe actually tests whether there exists an isomorph-/3, /)q.

ism 4,:H-->H’ such that 4,(vi) v for each j. Thus to determine whether (H, B)-
(H’, B’) it may be necessary to test all possible q! ways of labelling the vertices of B’.

Let T be the rooted labelled tree formed by labelling the nodes of the rooted
tree T(H) as follows. For any vertex x of T(H) other than the root r, let x have the
label

{j: vie O(x)}U{n +j: O(x)l"lB(j)# ,/=> 1}.

As usual, B(0), B(1),..., B(p) denotes the B-decomposition of H, G(x) is defined
l<)- B(]) and l(x) is the level function of H with respect to B. Similarly,as Fx (3 i=0

let B’(0), B’(1),... ,B’(s) denote the B’-decomposition of H’, let G’(y) denote
l’(y)-Fy f3 i=o B’(f) for y E H’\B’, where/’(y) is the level function of H’ with respect

to B’. Note that we may assume s =p since otherwise obviously (H, B)#-(H’, B’).
Now let T’ denote the rooted labelled tree formed by analogously labelling the nodes
of T(H’). Thus if y is a nonroot vertex of T(H’) then y has the label

{j: v E G’(y)}U {n +j" G’(y)fqB’(j)# , j->l}.

Now we claim that there exists an isomorphism " H --> H’ such that (vi) v if
and only if the rooted labelled trees T and T’ are isomorphic, and the correspondence
vi vi’ induces an isomorphism from the graph B to B’. It is immediate that such an
isomorphism , yields an isomorphism from T to T’, so we will concentrate on proving
the opposite direction of this claim.
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Suppose v;-- v; is an isomorphism from B to B’, and let r’ be an isomorphism
from T to T’ which preserves both the rooting and labelling. Define a map from
H to H’ by r(x) r’(x) if x B, and z(vi) v.. We will show that r is an isomorphism.

First note that r preserves the level function since r(B)= B’ and if l(x)=> 1, then
l(x) is simply the distance from x to the root in T, whereas l’(r(x)) is the distance
from r(x) to the root in T’ and hence, l(x)= l’(’(x)). Suppose x and y are adjacent
vertices of H with 1 _-< l(x) </(y). Then n + l(x) is in the label of y in T so n + l’(r(x))
is in the label of r(y). By Lemma 4.2 we have that z(y) is adjacent to the vertex w
on the path from z(y) to the root of T’ such that l’(w)= l(x). However, since by
Lemma 4.2 we also have that x is the vertex on the path from y to the root of T with
level l(x), we see that w must be r(x), and we have shown that r(x) and z(y) are
adjacent. A similarly straightforward argument handles the cases that l(x)= 0 =/(y)
and l(x)= 0 </(y). It is clear that the symmetric argument shows that r(x) adjacent
to r(y) implies that x is adjacent to y, and hence r is an isomorphism.

The final point to note is that T and T’ can be constructed and tested for
isomorphism in O(n) operations, since the number of elements in each label is O([GI),
all elements of labels are in the set {1, 2,..., 2n- 1} and the sets B(f), B’(f), G(x),
G’(y) for 1 <= <-p, x H\B, y H’\B’, are available in O(n) operations by Algorithm
2.2. 71

COROLLARY 4.4. For any graph A and integer k >- 1, isomorphism in [A, Kk can
be tested in polynomial time. In particular, isomorphism testing of k-trees is polynomial
for any given k.

Proof. No graph can contain a Kk-bolt since every pair of vertices in Kk is adjacent,
and hence condition (3.1.3) cannot be satisfied.

It is, however, interesting to note the following fact.
THEOREM 4.5. The class ofall k-trees, i.e., kJ oo= [Kk, K], is isomorphism complete.
Proof. We show how to represent uniquely (and reconstructibly) any graph G of

cardinality n as an n-tree k(G), such that Ik(G)[= O(IG[). Let K be a complete
graph with vertices v,. , v, and let the vertices of G be labelled 1, 2,.. , n. Form
k(G) as follows. First adjoin a vertex z to K, making z adjacent to every vertex of
K. Next, for 1,. , n, add x adjacent to {v: ]
such that/is adjacent to] in G, add y(i, ])adjacent to {x} {Vk: k i, f} (3 {z}. Obviously
k(G) is constructible in O([GI) operations, and k(G)

5. Generalizations. In this section we will consider some possible generalizations
of hookup classes. We begin with the concept of a partial hookup class. A graph F
is partially isomorphic to G, written F---G, if a partial subgraph on all the vertices of
F is isomorphic to G. Equivalently, F G if it is possible to obtain a graph isomorphic
to G by removing some of the edges from F. We define the partial hookup class
p-[A, G] recursively by H p-[A, G] if either H is isomorphic to A, or there exists
z H such that Fz G and H\{z} p-[A, G]. Analogously, a partial G-bolt in a graph
H is a 5-tuple (x, y, X, Y, Z) such that X, Y, Z are subgraphs of H which are partially
isomorphic to G, and x and y are nonadjacent vertices of Z such that F, f3Z
(X\{x}) Yl Z and F (q Z (Y\{y}) f] Z.

It is easy to see, using an analogous construction to that of Theorem 3.2 that if
p-[A, G] has a graph containing a partial G-bolt, then p-[A, G] is isomorphism
complete. Combining this with the next theorem shows that virtually all nontrivial
partial hookup classes are isomorphism complete.

THEOREM 5.1. The class p-[A, G] contains a partial G-bolt if and only if G is
not complete and A has a subgraph partially isomorphic to G.



ISOMORPHISM TESTING IN HOOKUP CLASSES 271

Proof. It is obvious that p-[A, Kk] cannot contain a partial G-bolt since if Z’Kk
then Z Kk, and hence cannot contain a pair of nonadjacent vertices. Also, if A has
no subgraph which is partially isomorphic to G then p-[A, G]= {A}, and obviously
A does not contain a partial G-bolt.

Now suppose that A has a subgraph G’ which is partially isomorphic to G, and
let x’ and y’ be two vertices of G’ which correspond to nonadjacent vertices of G via
the partial isomorphism. Form H by adding vertices x and y to A so that they are
both adjacent to every vertex of G’. Obviously, H p-[A, G]. Moreover, if we let
X=Fx, Y=Fy, and Z={x,y}t.J(G’\{x’,y’}), it can easily be checked that
(x, y, X, Y, Z) is a partial G-bolt in H.

COROLLARY 5.2. If G is not a complete graph and A has a subgraph which is
partially isomorphic to G, then p-[A, G] is isomorphism complete; otherwise isomorphism
testing in p-[A, G] is polynomial.

Proof. This follows from noticing that if G is complete then p-[A, G] [A, G],
which was shown to have a polynorn’ial isomorphism algorithm in Corollary 4.4.

We now consider hookup classes with multiple initial and hooking graphs. Thus,
we define H sIAl,’" Ar; G1,’", Gs] if either H -Ai for some i, or there exists
z sH such that Fz =Gj for some j and H\{z}s[A1,’" Ar; G1,’", Gs]. A natural
conjecture to make is that isomorphism testing in [A1,... Ar; G1,"’, G2] is poly-
nomial if and only if it is polynomial in [Ai, Gj] for each i, ]. However, some evidence
against this is the following example of graphs A, G1 and G2 such that isomorphism
testing is polynomial in both [A, G1] and [A, G2], yet [A; G1, G2] is isomorphism
complete.

Example 5.3. Let A G1 K1 (a single node) and G2 P2 (the path of length
2). Now [A, G1] is the set of trees, and [A, G2] {A}, so obviously isomorphism testing
is polynomial in both [A, G1] and [A, G2]. Also, G2 is chordal-clique-complete since
G2-C--K1, where C is the (chordal) graph with two isolated points, and hence
[G2, G2] is isomorphism complete. Finally, since G2[A, G1], we have [G2, G2] C
[A; G1, G2], which shows that [A; G1, G2] is isomorphism complete.

It is, however, true that isomorphism testing is polynomial in
[K1,’", Kr; K1,’", Ks] for any r, s => 1. Let us define a var-k-tree as any graph in
[K1,’" ,Kk;K1,’" ,Kk]. Clearly, it suffices to give a polynomial algorithm for
isomorphism testing of var-k-trees. As in the algorithm given in the preceding section,
the basic strategy is to obtain a tree-like representation of var-k-trees, but unfortu-
nately, the representation is somewhat more complicated in this case. For the sake
of brevity, we merely sketch out the procedure of obtaining this representation and
how the isomorphism testing can be performed.

LEMMA 5.4. Every connected induced subgraph of a var-k-tree is a var-k-tree.
Proof. This follows immediately from noticing that a var-k-tree is simply a

connected chordal graph with maximum clique size -<k + 1.
LEMMA 5.5. IfH is a var-k-tree, then
(1) The induced subgraph on the simplicial vertices of H is a disjoint union of

cliques, say C(1),..., C(q).
(2) For any x, y C(i), we have Fx f’) (H\C(i)) Fy f’) (H\C(i)).
(3) EitherH= C(1) or H\t.J=I C(i) is connected and nonempty.
(4) IfH is not complete, then H\t_J=I C(i) is a var-k-tree.
Proof. (1) and (2) follow easily from the definition of simplicial vertex, and (4)

follows immediately from (3) and Lemma 5.4. Thus all we will prove is (3). Let
H’=H\t.J-_I C(i). Obviously if H’ is empty then H =C(1) since H is connected.
Thus assume H’ is nonempty and disconnected. Choose x and y in different
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components of H’ such that the distance between them in H is minimal, and let
x x1,"’, xt =y be a shortest path between them in H. By the minimality of the
distance, each xi must be a simplicial vertex for 2 -< =< t- 1, and moreover they must
all be in the same C(k) by (1). But now by (2) both x and y must be neighbors of
x2, and hence are adjacent as x2 is a simplicial vertex, a contradiction.

We call the cliques C(1),.. , C(q) the simplicial sets of H. For each simplicial
set C of H, we define its simplicial clique to be {x} U Fx(H), where x is any vertex of
C. Notice that by Lemma 5.5(2) this definition is independent of the choice of x. It
is easy to see that by Lemma 5.5, in polynomial time we can obtain a simplicial set
decomposition {C(i,/’): 1 <= <_-r, 1 <- <-qi}, with the following properties, where r is
some positive integer. Let H(i) U{C(t, ): _<- <_- r, 1 <-] <-q,}. Then H(1) H, each
H(i) is a var-k-tree and C(i, 1),.. , C(i, q) are the simplicial sets of H(i). Moreover,
by Lemma 5.5 it follows that the C(i, ) are disjoint and that qr 1. For any vertex
x H, we define the age of x, denoted by a(x), to be if x C(i, ) for some/’. In
other words, x is of age if x is a simplicial vertex of H(i). Define D(i, ) to be the
simplicial clique of C(i, f) in H(i). Now for any D(i, ) other than D(r, 1) we define
its lather, f(D(i, )), to be D(m, n) such that D(i, f)\C(i, ])c D(m, n) and m is maximal
with this property. Figure 2 illustrates these notions. The following two lemmas show
that f(D(i, f)) is well defined.

LEMMA 5.6. If D(i, ) D(r, 1), then there exists D(m, n) with m > such that
D(i, ])\C(i,)D(m, n).

Proo[. Let m =min {a(x): x D(i, f)\C(i,/’)}. Obviously m > and D(i, )\
C(i, f) H(m). Let x D(i, f)\C(i, ) such that x C(m, n) for some n. Since

FIG. 2
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D(i, j)\C(i, ]) is a complete subgraph we must have D(i, j)\C(i, j)c {x}UFx(H(m))=
D(m, n).

LEMMA 5.7. If D(i,j)\C(i,f)cD(a,b)fqD(a,c) for b #c and some a >-i, then
there exists m, n with m > a such thatD(i, j)\C(i, ])c D(m, n).

Proof. Since C(a, b)fq C(a, c)- , we have D(i, j)\C(i, j)c (D(a, b)\C(a, b)),
and the result follows immediately from Lemma 5.6.

Thus the father relationship f(D(i, ])) defines a rooted tree T on the sets D(i,
with D(r, 1) as the root. We call the set D(r, 1) the root-clique.

Let H(i, ]) be the induced subgraph of H on the union of the sets D(m, n) such
that D(i, j) is on the path from D(m, n) to D(r, 1) in T. Thus, in other words, H(i, j)
is the subgraph on vertices which are in simplicial cliques in the subtree of T rooted
at D(i, j). It is not hard to see that H(i, j) is connected and, hence, is a var-k-tree.
Moreover, D(i, j) separates H(i, j) from the rest of H, and the subtree of T rooted
at D(i, ]) is exactly the tree for H(i, ]).

The rest of this section is devoted to developing a polynomial algorithm to
determine, given a, b, c with b # c, whether there exists an isomorphism z mapping
H(a, b onto H(a, c such that r(D (a, b )) D (a, c ). To see that this yields a polynomial
algorithm for determining isomorphism of var-k-trees, note that if F and F’ are
var-k-trees with root-cliques D and D’ then we can form a var-(k + 1)-tree H by
adding a new vertex z to the union of F and F’, such that z is adjacent to every
vertex in D (A D’. Now F and .F’ are isomorphic if and only if {z} is the root-clique
D(r, 1) of H, D and D’ are the two sons D(r-1, 1) and D(r-1, 2) of D(r, 1) in T,
and there is an isomorphism r mapping H(r-1, 1) onto H(r-l,2) such that
z(D(r- 1, 1))= D(r- 1, 2).

For 1 <_-a _-< r- 1 and 1 <_-b _-< c <-_ q,, we define the mapping set M(a, b, c) to be
the set of isomorphisms from D(a, b) to D(a, c) which are extendable to isomorphisms
from H(a, b) to H(a, c). We will give an O((k + 1)![HI) algorithm which determines
M(a, b, c) given that M(d, e, 1:) is known for every d < a and 1 <- e <- ]e =< q. Clearly
this yields an O((k + 1)![HI3) algorithm for determining all the sets M(a, b, c) since
T has at most Inl nodes, and as a result, we have an O(((k + a) )21nl ) algorithm for
determining isomorphism of var-k-trees.

Given a one-to-one onto map 7r:D(a, b)D(a, c), we say that a son D(d, e) of
D(a,b) is 7r-isomorphic to a son D(d,f) of D(a,c) if zr(D(d,e)fqD(a,b))=
(D(d, f) f3 D(a, c)) and there is an isomorphism z: H(d, e) H(d, [) such that z agrees
with zr on D(d, e)fqD(a, b). Clearly such an isomorphism exists if and only if there
exists 0 M(d, e, f) such that 0 zr on D(d, e)f3D(a, b). Note that for any pair of
sons D(d, e) and D(g, h) of D(a, b), we have H(d, e) CI H(g, h) D(a, b). This ensures
that r M(a, b, c) if and only if we can find a one-to-one correspondence r between
the sons of D(a, b) and the sons of D(a, c), such that D(d, e) and r(D(d, e)) are
w-isomorphic for each son D(d, e) of D(a, b). Moreover, the same fact shows that if
D(d, e) is w-isomorphic to D(d, f) then such a correspondence o- exists if and only if
there is an analogous correspondence between {D:D is a son of D(a, b) and D
D(d, e)} and {D :D is the son of D(a, c) and D D(d, ])}. Gathering all these facts
together, we see that the following algorithm determines M(a, b, c) in O((k + 1)!]HI)
time, given that M(d, e, f) is known for all d < a.

ALGORITHM 5.8.
INPUT: A var-k-tree with its tree representation, a level a, mapping sets

M(d,e,f) for each d <a, 1-<e, f<=qa, and simplicial cliques D(a,b)
and D(a, c).
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OUTPUT: The mapping set M(a, b, c) of isomorphisms from D(a, b) to D(a, c)
which are extendable to isomorphisms from H(a, b) to H(a, c).

IF ID(a, b)l # ID(a, c)l THEN M(a, b, c)= ;
ELSE for each one-to-one onto map zr: D(a, b)--> D(a, c) DO;
YES := TRUE;
Let all sons of D(a, b) be unmarked;
For each son D of D(a, c) DO;

IF there is an unmarked son of D(a, b) which is r-isomorphic to D
THEN mark it;

ELSE YES := FALSE;
END;

IF any son of D(a, b) is still unmarked THEN YES := FALSE;
IF YES TRUE THEN add r to M(a, b, c):
END;

Acknowledgment. We would like to thank the referee for suggesting Example
5.3, which is much simpler than our original example, and also for several other
helpful comments.
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REPRESENTATIONS OF I(2, C) ON POSETS
AND THE SPERNER PROPERTY*

ROBERT A. PROCTORt

Abstract. A ranked partially ordered set is said to be Sperner if it has no antichain bigger than its
largest rank. A necessary and sufficient condition for a ranked partially ordered set to be rank symmetric,
rank unimodal and strongly Sperner is presented. This condition involves representations of I(2, C). It is
used to provide a new, short proof that this combination of properties is preserved under the product
operation. The sufficient part of this condition is also used to provide new, simpler proofs that certain
combinatorially interesting partially ordered sets are rank symmetric, rank unimodal and strongly Sperner.

1. Introduction.
DEFINITION. A ranked poset P of length r is a partially ordered set P together

with a partition P tO =0 Pi into r + 1 ranks Pi, 0 _-< -<_ r, such that elements in Pi cover
only elements in Pi-1.

DEFINITIONS. A ranked poset P is Sperner if no antichain has more elements
than the largest rank of P does. It is strongly Sperner if for every k _-> 1 no union of
k antichains contains more elements than the union of the k largest ranks of P does.

DEFINITIONS. A ranked poset of length r is rank symmetric if IPi[--[Pr-i[ for
0 <- < r/2. It is rank unimodal if IP0l <--]PI]-<-’" <--[Pkl--> [Pk+l[-->’’’ >- IPrl for some
O<-k<=r.

We follow [PSS] in using the following terminology:
DEFINITION. A ranked poset is Peck if it is rank symmetric, rank unimodal and

strongly Sperner.
The main result of this paper is a new necessary and sufficient condition for a

ranked poset to be Peck. This condition combines a linear algebra/combinatorial
lemma of Stanley [Sta] with a technique which uses representations of I(2, C). We
will refer to this condition as the representation condition. Each aspect of the representa-
tion theory of I(2, C) used will be stated clearly for the benefit of readers who are
unfamiliar with the subject.

The necessity and the sufficiency of the representation condition are combined
in 4 to produce a new "one line" proof that the product of Peck posets is Peck.
Although the statement of this result is purely combinatorial, no nonalgebraic proof
is known.

Stanley originally used the lemma mentioned above in conjunction with some
techniques from algebraic geometry to prove that a certain collection of posets arising
in algebraic geometry were Peck [Sta]. After noting that the representation condition
can be applied in principle to all of these posets, we will explicitly describe how to
apply this condition to the most combinatorially interesting cases. Two problems in
traditional combinatorics can be solved using the result that these cases are Peck [Sta].
Both the proof of this method and its application to the cases considered are somewhat
more elementary than Stanley’s original treatment. Although we have not found any
interesting posets besides those considered by Stanley to which to apply the representa-
tion condition, it is formulated in the context of arbitrary ranked posets and is not
restricted to posets arising from algebraic geometry.

* Received by the editors August 11, 1981, and in final form August 20, 1981. This research was
supported in part by a National Science Foundation Graduate Fellowship and by the Mittag-Leffler Institute.

" Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139. Current address: Department of Mathematics, University of California, Los Angeles, Los Angeles,
California 90024.
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It is possible to translate the Lie representation theory used in this paper to mildly
complicated linear algebra. However, this does not simplify the content of the proof
in any essential way. Such a translation of the sufficient part of the representation
condition in two special cases is presented in the expository article [Prl].

Readers interested in this technique of using linear algebra in extremal order
theory should be aware of papers by Saks [Sak] and Gansner [Gan]. The Jordan
canonical form viewpoint presented in these papers led to the discovery of the necessity
of the representation condition.

2. Main result. Associate to any ranked poset

a graded complex vector space

P=Pi
i=0

+-
where/ i is the complex vector space freely generated by vectors d co.rresp.onding to
elements of Pi. A linear operator X on P is a lowering operator if XPi

_
Pi-1. It is a

raising operator if X/i _/+1. A raising operator defined by

Xd ., O(a, b)

is an order raising operator if (R)(a, b) 0 implies b covers a. For any ranked poset P
of length r, define a linear operator H on/6 by

Hd (2i- r)d

when a Pg.
The Lie algebra I(2, C) consists of all 2 2 trace zero complex matrices with Lie

algebra multiplication given by [u, v]= uv-vu. The basis usually taken for I(2, C) is

[Hum, p. 31]

(00) h_( 0x=
0 0 Y= 1 0

The relations Ix, y] h, [h, x]= 2x and [h, y]=-2y completely describe the algebra
structure of I(2, C). A representation of I(2, C) on a complex vector space V can be
thought of as a choice of three linear operators X, Y andH on V such that XY- YX
H, HX-XH 2X and HY- YH =-2 Y. An eigenvector for H with eigenvalue A
is referred to as a "weight vector" of the representation of "weight" A. Any (d +
1)-dimensional irreducible representation of I(2, C) has as a basis a "string" of vectors
Vo, vl, ", va with Hvi (2/’- d)vi, Xvi vi+a and Yvi =j(d-j + 1)vi-1 [Hum, p. 32].

We now present the representation condition.
DEFNTOY. Let P be a ranked poset of length r. The poset P carries a representa-

tion of I(2, C) if there exist a lowering operator Y and an order raising operator X
on P such that XY- YX H.

Note that HX-XH 2X is true for all raising operators X, andHY- YH -2Y
is true for all lowering operators Y. Hence X, Y and H define a representation of
I(2, C) on/5 whenever the requirement of the definition, XY- YX H is satisfied.
If P does carry a representation of I(2, C), then the rank subspace/5i is the weight
space of weight 2i-r for the representation.
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LEMMA (Stanley [Sta]). A ranked poset P of length r is Peck if and only if them
exists an order raising operator X on P such that

is an isomorphism for eery 0 <- ( r/2.
THEOREM 1. A ranked poser is Peck if and only if it carries a representation of

d(2, C).
Proof. Let P be a ranked poset carrying a representation of d(2, C) with order

raising operator X. Use complete reducibility [Hum, p. 28] to express this representa-
tion as a direct sum of irreducible representations. Each of the irreducible representa-
tions has as a basis a "string" of vectors of the form described above. These strings
collectively form a new basis for P. If one of the irreducible representations has
dimension d + 1, then exactly one of its d + 1 basis vectors falls in each of the middle
d + 1 consecutive rank subspaces l(r-d)/2, (r-d)/2+l," .(r+d)/2. NOW the set of new
basis vectors falling in a given rank subs.pace form a basis for that rank subspace, and
a gi.ven string has a member falling in P_ if and only if it also has a member falling
in P,. Finally, note that the operator Xa-2 is an isomorphism from the ]th to the
(d-])th weight space in any irreducible (d+l)-dimensional representation, where
0 <= ] < d/2. Conclude that X-2 is an isomorphism from/ to/7,_, implying by the
lemma that P is Peck.

Conversely, suppose that P is Peck. U.sing the raising order operator X p.roduced
by the lemma, construct a new basis for P. Let v be any nonzero vector in Po. Then
v, Xv, X=v, ..,Xv are nonzero and linearly independent. Let V denote the subspace
spanned by these vectors. Let s be as small as possible such that/, is not contained
in V. Choose a nonzero w in/7 lying outside/5 fq V and such that Xr-2*+w 0. (Let
w’ P,-P, f’) V. If xr-2s+lw’k O, then xr-2s+lwt V. Find z P, fq V such that
x-E*+lz -x-E*+aw’. Set w w’ + z.) Then w, Xw, X2w,. , x-E*w are nonzero
and linearly independent, and none lies in V. Let W denote the subsp.ace spanned
by all basis vectors generated so far. Repeat this procedure until all of P is spanned.
The new basis is a disjoint union of strings of vectors, with each stri.ng symmetric
about the middle rank subspace of/5. Define a lowering operator Y on P with respect
to the new basis. Let u, Xu, X2u, X-2’u be a typical string of basis vectors. Set
Y[Xiu]=j(t-j+ 1)[Xi-u]. Then Xiu is an eigenvector of the operator XY-YX
with eigenvalue 2f-(r-2t). If t +j i, then 2j-(r-2t)= 2i- r. In other words, all
new basis vectors lying in/6 are eigenvectors for XY-YX with eigenvalue 2i- r.
Therefore XY- YX H, and P carries a representation of d(2, C).

3. Uniqueness ol lowering operator. The following fact will not be used in this
paper, but seems worthy of mention.

PROPOSITION 1. Let P be a ranked poser. Let X be a fixed order raising operator
on P. Then there is at mostone lowering operator YonPsuch thatPcarries a representation
of 1(2, C). That is, ifX is fixed, then Y is unique if it exists.

The proposition above is actually a restatement in the present context of the
proposition below. For a given representation of d(2, C), let X, Y and H denote the
images of the usual basis x, y and h.

PROPOSITION 2. In any representation of d(2, C), the image Y is completely
determined by the images X and H.

By change of basis, any representation of d(2, C) can be put into the form used
in the proof of Theorem 1. The matrices representing x, y and h are Xa09"
Xak, 21 Yal Yak and Hal 9" @Hak, where Xd Eo.1 +" + Eel-1,d,
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Ya dE,o +" +j(d -j + 1)Ei,i-1 +" + dE,d-1 and Ha =dEo,o + (d- 2)E.1 +’ +
(-d)Ea,a. (Here E,i denotes the (d + 1)x (d + 1) matrix with (i, j)th entry equal to
unity and all other entries equal to zero.)

LEMMA. Let , old and be as above for some values of k, d, dk. Then any
matrix which commutes with and Y also commutes with .

Proof. Suppose S S and SY S. Without loss of generality, assume k 2.
Set m d, n d2 and

(a B)$=
C D

Then AX,, Xo,A and AH,, H,,A, which implies that A is a scalar matrix. Also,
BX, X,,B and BHn HmB, which implies that B is zero if m # n or a scalar if m n.
Analogous conclusions can be drawn for D and C. So if m # n, we are done. But
even if m n, it is easily checked that S S.

Proof of Proposition 2. Let matrices X, H and Y define one representation of
I(2, C), and let X, H and Y’ define another representation. Since both representations
have the same character, they are equivalent [Hum, p. 125]. Let R be an invertible
matrix such that RXR-1= X, RHR-=H and RYR-1= Y’. Let $ be an invertible
matrix which puts the first representation into the canonical form described above’
SXS-1 ff, SHS-1 ’, and SYS- @. Then SRS-aSXS-iSRS-x SXS-1, i.e.,
(SRS-X)g(SRS-) , and similarly for Y(. By the lemma, (SRS-a)@(SRS-) 2t,
implying SR YR-IS-1= SYS-. Therefore Y RYR-1= Y’, i.e., Y is unique.

4. Products of Peck posers. The following theorem was the main result of [Can]
and [PSS]. Linear algebra, viz., Stanley’s lemma, was used in both proofs.

THEOREM 2. The product ofPeck posers is Peck.
Proof. Let P and Q be Peck posets. By Theorem 1, these posets each carry a

representation of I(2 C), say with operators X’ Y’ H’ and X", Y", H", respectively.
The tensor product/5 (R) 0 and the vector space P x Q arejsomor.phic as graded vector
spaces. Let I’ and I" denote the identity operators on P and Q. It is easy to verify
by direct computation that the operators X’ (R)I" / I’ (R)X", Y’(R)I" + I’(R) Y" and
H’ (R) I" + I’ (R)H" define a representation of I(2, C) on/6 (R) 0. (This is true by inspection
to readers who are familiar with the definition of the tensor product of two representa-
tions of a Lie algebra [Hum, p. 26].) It is also easy to verify that Y’(R)I"+ I’(R) Y" and
X’ (R)I" + I’ (R)X" are lowering and order raising operators respectively for P x Q. Apply
Theorem 1 to conclude that P x Q is Peck.

5. Alllieations. Bruhat posets (defined on Weyl groups) are a certain set of
partially ordered sets arising in algebraic geometry. Stanley originally used the lemma
in 2 in conjunction with the hard Lefschetz theorem of algebraic geometry to show
that all Bruhat posets are Peck [Sta]. In this section we explicitly describe representa-
tions of I(2, C) on the Bruhat posets which are the most interesting from a com-
binatorial viewpoint. Application of Theorem 1 then reproduces Stanley’s result in
these cases. The method used here was developed to avoid the use of algebraic
geometry. After this alternative method was developed, it was discovered that some
proofs of the hard Lefschetz theorem actually proceed by constructing a representation
of I(2, C). Under the identifications made in Stanley’s work, it can be seen that this
representation meets the requirements of Theorem 1 in the case of the Bruhat orders.
This guarantees that Theorem 1 can in principle always be applied directly to any
Bruhat order.
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DEFINITION. A uniquely modular poset is a ranked poset satisfying:
(i) Whenever two elements both cover a third element, then there exists a unique

fourth element covering both of them.
(ii) Whenever two elements are both covered by a third element, then there

exists a unique fourth element covered by both of them.
Finding suitable operators X and Y for an arbitrary ranked poset requires the

solution of a system of quadratic equations. When dealing with uniquely modular
posets, it is simpler (but less general) to seek representations of I(2, C) of a certain
form. This involves solving a system of linear equations in order to satisfy the
requirements in the following definition.

DEFINITION. A uniquely modular poset P of length r is edge-labelable if each
covering relationship a < d can be assigned a rational number y(d, a) such that:

(i) If d covers both a and b and both a and b cover c, then y(d, a)= y(b, c).
(ii) If a Pi, then

E y(a,c)- E y(d,a)=2i-r.
d

Pictorially, each edge of the Hasse diagram of the poset is to be labeled with a
rational number such that opposite edges in any "square" must receive the same
number and such that, for any element in the ith rank, the sum of the labels of edges
emanating below the element minus the sum of the labels of edges emanating above
the element must equal 2i- r.

PROPOSITION 3. Edge-labelable uniquely modular posers are Peck.
Proof. Let P be an edge-labelable uniquely modular poset. Define an order raising

operator X by

y.
b

for all a P and a lowering operator Y by

Y)= ’. y(b,a)d.
b

Now confirm that conditions (i) and (ii) in the definition of edge-labelable imply that
XY- YX H, where H is defined as usual. Apply Theorem 1.

Notation. Let m denote a total order with m elements. For any poset P, let J(P)
denote the lattice of order ideals of P.

THEOREM 3. The distributive lattices J(m n), j2(2 n- 1), jn (2 2), J3(2 3)
and j4(2 3), with m _-> 0, n _>- 1, are edge-labelabte and therefore Peck.

Proof. The lattice J(m n) can be described as the set of n-tuples (al, a2," an),
where 0 _-< a a2 --<:" -< an ----< m, with order given by a -<_ b if ai --< bi for all i. If b covers
a with ai=bi-1, set y(b,a)=(m+n-ai-i)(ai+i). The lattice j2(2n-1)can be
described as the set of n-tuples (al, a:z, an), where 0 al ak < ak+l <" <
an-<n, 1-<k_-<n, with order given by a_-<b if ai<-bi for all i. If b covers a with
ai bi- 1, set y(b, a)=n(n + 1)/2 if ai =0, otherwise set y(b, a)= n(n + 1)-ai(ai+ 1).
The edge labels for Jn(22) are 1(2n +2), 2(2n + 1),..., n(n +3), (n + 1)(n +2)/2
and (n + 1)(n + 2)/2; the labels for J3(23) are 1612, 3012, 426 and 226 (exponents
indicate the number of times each occurs); and the labels for j4(2 3) are 2712, 5212,
7512, 9612, 6612, 3412 and 4912. The verification of requirement (ii) for J(m n) was
performed in [Prl]. We leave the verification of this requirement in the other cases
to the reader.
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It is easy to verify directly by inspection that the last three cases of the theorem
are Peck. These cases are included for the sake of completeness" In a future paper
[Pr3], we will prove that there are no other irreducible (with respect to product)
edge-labelable distributive lattices besides those listed in Theorem 3. The representa-
tions of I(2, C) described in the proof of this theorem arise in a natural way from
minuscule representations of semisimple Lie algebras. They also arise in the context
of the Hodge identities on the minuscule flag manifolds (viewed as Kiihler manifolds).
Both of these connections will be described in [Pr2].

DEFIrITON. The poser of shuffles on l k12k2... mk’- is the set of all sequences
with kl l’s, ka 2’s," , k, m’s, with order generated by the relations

(ith and ]th entries interchanged) when aj<=ai. The unique maximal element is
1...12...2...m...m.

The lattice J(mn) is the shuffle poset 1"2n. The shuffle posets constitute all
Bruhat orders of "type A".

We will say that a poset Q is a cover suborder of a poset P if Q and P are partial
orders on the same set and the order on Q is generated by a subset of the covering
relations of P. Note then that if P and Q are also ranked with the same ranking, then
P is Peck if Q is Peck.

THEOREM 4. The shuffle posets are Peck.
Proof. Given the shuffle poset on lk22’’’m k’, the poset J(klk2)

J((kl+k2) xk3)""" J((k+k2+’’’ +k,_) k,) is one of (am")/(m + 1) such easily
formed suborders. It is easy to check that the product of edge-labelable posets
is edge-labelable. Hence the shuffle poset at hand has a Peck cover suborder with the
same ranking and is therefore Peck itself.
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A CLASS OF PERFECT GRAPHS*

JAMES B. SHEARERS"

Abstract. Let P be a simply connected polyomino. Let G(P) be the graph whose vertices are the
maximal rectangles in P, two such vertices being adjacent if the corresponding rectangles have nontrivial
intersection. In this paper we show that G(P) is perfect. This solves a problem posed by Berge et al.

Let P be a polyomino (i.e., a finite subset of the squares in an infinite checker-
board). Let G(P) be the graph derived from P as follows. Let the vertices of G(P)
be the maximal rectangles contained (as subpolyominoes) in P. Let two vertices in
G(P) be joined by an edge if the rectangles have a nontrivial (i.e., containing at least
one unit square of P) intersection. For any graph G let a(G) denote the independence
number of G (i.e., the maximum cardinality of a set of nonadjacent vertices of G)
and let O(G) denote the clique covering number of G (i.e., the minimum cardinality
of a collection of cliques in G containing every vertex of G). Clearly O(G)>=a(G).
We say G is perfect whenever a(G’)= O(G’) for all induced subgraphs G’ of G. In
this paper we prove the following theorem (thereby solving a problem posed in [1]).

THEOREM 1. Let P be simply connected. Then G(P) is a perfect graph.
Before proving Theorem 1 we mention the following consequence. Let P be a

simply connected polyomino. Let a (P) be the maximum cardinality of a collection of
disjoint maximal rectangles in P. Let O(P) be the minimum cardinality of a collection
of unit squares in P with the property that every maximal rectangle in P contains at
least one square of the collection. Then a (P) O(P). This follows at once from Theorem
1 and the identities a(P)=a(G(P)) and 0(P)= O(G(P)). The first identity is trivial
and the second depends on the following fact which is easy to prove.

FACT 1. If C is a clique in G(P) then P contains a unit square which is contained
in all rectangles in C.

Berge et al. in [1] give an example which shows that when P is not simply
connected a(P) need not equal O(P).

We now give the proof of Theorem 1. We will show c (G’) O(G’) for all induced
subgraphs G’ of G(P) by induction on the number of vertices in G’. Clearly a(G’)=
0(G’)= 1 if G’ consists of a single vertex. Next let G’ be an induced subgraph of
G(P) on n > 1 vertices. By the induction hypothesis a(G")=O(G") for all proper
induced subgraphs G" of G’. We wish to show a(G’) O(G’). Clearly we may assume
G’ is connected. The following four lemmas proved under the above assumptions are
in or follow easily from the literature on minimal imperfect graphs (see, for instance,
[2]). However, we give proofs for completeness.

LEMMA 1. Suppose G’ contains a clique C whose removal disconnects G’ (i.e., the
vertex set of G’ can be partitioned into 3 nonempty classes A, B and C such that the
subgraph of G’ induced by C is a clique and G’ contains no edges between points in A
and points in B). Then a(G’)= O(G’).

Proof. Let G’(S) denote the subgraph of G’ induced by S where S is a subset of
the vertex set of G’. Let r a(G’(A))= O(G’(A)), r2 a(G’(B))= O(G’(B)). Clearly
rt + r2 <= a(G’) <= r + r2 + 1. Suppose C contains a point c such that a(G’(A O c)) rt + 1
and a(G’(B t.J c)) r2 + 1. Then a(G’(A LIB t_J c)) r + r2 + 1. Hence we must have

* Received by the editors June 29, 1981. This research was supported in part by the Office of Naval

Research under grant N00014-76-C-0366 and in part by a National Science Foundation Fellowship.

f Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139.
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a(G’) O(G’)= ra + r2 + 1. Hence we may assume no such c exists. But then we can
partition C into two sets Ca and C2 such that a(G’(A t.J Ca))= ra, a(G’(B t.J C2)) r2
(since if for every c Ca a(G’(A c)) ra then a(G’(A Ca)) rl and similarly for
B and Ca). Hence O(G’(A [.J Ca)) rl, O(G’(B [_J Cz) r2 which implies O(G’) <= ra + r2.
Hence a(G’) O(G’) ra + rz. This completes the proof of Lemma 1.

LEMMA 2. Let v be a point in G’. Let Vbe the vertex set of G’. Then a(G’) O(G’)
if and only if there exists a clique C in G’ containing v such that a(G’(V-C))=
a(G’)- 1.

Proof. Let a(G’)= 0(G’)= r. Let Ca, C2,..., Cr be a clique cover of G’. Let
v Ca. Then C2,’ ", Cr is a clique cover of G’(V-Ca). Hence O(G’(V-Ca)) <- r- 1.
Let va," , vr be a maximum set of independent vertices in Ga. Clearly, at most one
vi can be contained in Ca. Hence a(G’(V-Ca))>=r-1. Since a(G’(V-C))=
O(G’(V-C)) we have a(G’(V-C))= r-1. Hence we may let C Ca.

Conversely let C be a clique in G’ such that a(G’(V-C))=a(G’)-I. Then
since a(G’(V-C)) O(G’(V-C)), G’(V-C) has a clique cover containing a (G’)- 1
cliques which implies G’ has a clique cover containing a(G’) cliques. Hence O(G’)=
c (G’).

LEMMA 3. Let va and va be distinct vertices in G’. Suppose there does not exist a
vertex v3 distinct from va and va such that vl is adjacent to v3 but va is not adjacent to

v3. Then (G’)= O(G’).
Proof. Suppose vl is adjacent to v2. Then any maximal clique in G’ containing

va also contains v2. Let V be the vertex set of G’. Then 0(G’)=
O(G’(V-vz)=a(G’(V-v2))<=a(G’)<=O(G’). Hence (G’)=O(G’). Suppose next
that va is not adjacent to v2. Let r= a(G’(V-v2)). By Lemma 2 there exists a clique
C in G’(V-v2) containing va such that a(G’(V-v2-C))= r-1. Suppose a(G’(V-
C))=r-1 also. Then O(G’(V-C))=r-1 so r>=O(G’)>=a(G’)>-a(G’(V-v2))=r
which implies a(G’)=O(G’). Hence we assume a(G’(V-C))=r. Then G’(V-C)
must contain a set of r independent vertices including v2. We add va to this set and
obtain a set of r + 1 independent vertices in G’. Now O(G’(V- v2)) r which implies
O(G’) -< r + 1. Hence r + 1 -< a(G’) -< O(G’) =< r + 1 which implies a(G’) O(G’). This
completes the proof of Lemma 3. 13

LEMMA 4. Let va and v2 be distinct nonadjacent vertices in G’. Suppose any
maximum sized independent set S of vertices in G’ containing vz also contains vl. Then
a(G’)=O(G’).

Proof. Let G"= G’(V-v.). By the induction hypothesis a(G")= O(G"). Suppose
a(G") a(G’)- 1. Clearly O(G’) <= O(G") + 1. Hence a(G’) <= O(G’) <= a(G’) so a(G’)
8(G’) as desired. Hence we may assume a(G")= c(G’). By Lemma 2 (applied to
and G") there exists a clique C in G" containing va such that a(G’(V-v-C))=
a(G")- 1 a(G’)- 1. We claim a(G’(V-C)) a(G’)- 1 also. For suppose not, then
there exist a set of independent vertices in G’ of size a(G’) containing v but no
vertex in C. But since va e C and a(G’) is the maximum size of a set of independent
vertices in G’ this is impossible. Now apply Lemma 2 to vl, G’ and C to obtain
a(G’) O(G’), as desired.

We now continue with the proof of Theorem 1. Let vl be that rectangle in (the
vertex set of) G’ with lowest top row. If there are several such rectangles choose the
one with lowest bottom row. Any remaining ties can be broken arbitrarily. Let L be
the leftmost square in the top row of v which is contained in another rectangle of
G’. Let R be the rightmost square in the top row of va which is contained in another
rectangle of G’. Let 11 be that portion of the top row of va which lies between L and
R inclusive. Note that any rectangle in G’ intersecting va must contain a square in
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11. Let x be a lowest square not in P lying directly above a square in 11. Let y be the
square immediately below x. Suppose y lies in I1. If y is contained in another rectangle
/-)2 Of G’ then because of the way we chose Vl, v2 must contain the entire top row of
vl. Hence, if v3 is any rectangle in G’ which intersects vl,/33 intersects/32 also. Therefore
we are done by Lemma 3. Suppose y is contained in /31 alone. Then removal of vl
disconnects G since rectangles containing L are separated from rectangles containing
R (we are using the fact that P is simply connected here). Hence in this case we are
done by Lemma 1. Therefore we may assume y does not lie in 11 which means I1
does not consist of the entire top row of/31 (else vl would not be a maximal rectangle)
and we may assume without loss of generality that 11 does not contain the upper left
hand corner of vl. Let I2 be the row consisting of those squares on the same level as
y and lying directly above squares in I1. Let /32 be a rectangle in G’ intersecting vl
but not I2. Then v2 must contain I1 (see Fig. 1) and we may apply Lemma 3 as above.

121 Y

L

FIG.

Hence we may assume that all rectangles (except vl) in G’ intersecting I1 intersect I2
also. Let y’ be that square in I1 lying directly below y. Let I3 consist of the column
of squares lying between y’ and y inclusive. Suppose a rectangle v2 in G’ intersects
I3 but not I1 (see Fig. 2). Then all rectangles in G’ intersecting vl (except vl) intersect
v2 also (as otherwise they could not intersect I2). Hence in this case we are done by
Lemma 3. Let C be the clique in G’ consisting of all rectangles in G’ which contain
y’. We may assume that the removal of C does not disconnect G’ else we are done
by Lemma 1. Hence we may assume all rectangles in G’ intersecting 11 but not
containing y’ lie on the same side of y’, say the right (the proof of the other case
proceeds analogously). Let /32 be a rectangle containing L. Then v2 must contain y’

12 y

FIG. 2
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also. Suppose any rectangle /)3 in G which intersects/)2 intersects /)1 also. Then we
are done by Lemma 3 (with the roles of/)1 and DE interchanged). Hence we may let
/)3 be a rectangle which intersects/)2 but not/)1./)3 can not intersect I3 as any rectangle
intersecting 13 also intersects/)1 (as we showed above)./)3 can not intersect/)2 to the
left of I3 as then removal of C disconnects G’ (we are assuming G’ contains a rectangle
which intersects/)1 but not/)2 else we are done by Lemma 3). Hence/)3 must inersect
/)2 to the right of I3 as shown in Fig. 3. Note if/)4 is a rectangle which intersects/)1

I

y

L

FIG. 3

but not v3 then v4 f’) vl c/)2. By Lemma 4 we may assume G’ contains a maximum-sized
independent set S of rectangles such that v3S, vieS. Let G"= G’(V-v2). Now
v2S (as v3 is) so S is independent in G" also and a(G")= a(G’). By the induction
hypothesis a(G")= O(G"). Apply Lemma 2 (with respect to vl and G") to obtain a
clique C’ in G" containing Vl such that a(G’(V-v2-C’))=a(G")-I. We claim
v2 LI C’ is a clique in G’. For let Z be a square contained in all the rectangles in C’
(such a Z exists by Fact 1). Since a(G’(V-v2-C’))=a(G")-I C’ must contain a
rectangle v4 in S. Since C’ is a clique and vl C’ v4 must intersect vl. Hence v4 v3.
Furthermore, v4 does not intersect v3 as v3 S (and S is an independent set). Hence
as noted above v4fq vl c v2. Hence Z v2 which proves the claim. But then a(G’(V-
v2 U C’)) a(G")- 1 a(G’)- 1 so by Lemma 2 applied to v and G’ we have a(G’)
O(G’) which completes the proof of Theorem 1. !-1
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A POINT-SYMMETRIC GRAPH THAT IS NOWHERE REVERSIBLE*

FRANK HARARY,t ANDREW VINCE; AND DALE WORLEY

Abstract. It is the purpose of this note to investigate the relationships among four concepts relating
to symmetry in graphs: point-symmetry, line-symmetry, arc-symmetry and reversibility; especially which
of the first three properties do not imply reversibility. Holt has found a counterexample to one such question
and we construct a counterexample to another using a Cayley graph. Both examples are nowhere reversible,
a property which is stronger than nonreversibility.

1. Introduction. Let G be a connected graph. Its automorphism group F(G) is
defined as the group of line preserving permutations of the point set V(G). Graph
G is called point-symmetric if F(G) is transitive on V(G) and is called line-symmetric
if F(G) is transitive on its line set E(G). If for the endpoints u, v of any line, there
is an automorphism a such that au v and av u, then G is called reversible. A
slightly stronger notion is arc-symmetry. A graph G is arc-symmetric if, for any pair
of (undirected) lines (u, v) and (u’, v’), there is an automorphism a such that au u’
and av v’. (Arc-symmetry is called 1-transitivity in [2, p. 173].) We call a graph G
nowhere reversible if there is no line (u, v) and automorphism a such that cu v and
O/2 U.

The following implications are immediate"
Fact 1. arc-symmetric =:),reversible.
Fact 2. reversible ==), point-symmetric.
Fact 3. arc-symmetric=>line-symmetric.
Fact 4. reversible and line-symmetricc=>arc-symmetric.

The next two results are given in [2, p. 172] and [3].
Fact 5. If G is line-symmetric, but not bipartite, then G is point-symmetric.
Fact 6. If G is point- and line-symmetric with odd regularity degree, then G is

arc-symmetric.
Two examples show that the converses of Facts 2 and 3 are false. The smallest

graph that is line-symmetric but not point-symmetric (and thus not arc-symmetric) is
shown in Fig. 1. The cubic graph in Fig. 2 is the smallest reversible graph that is not
line-symmetric (and thus not arc-symmetric).

FIG. A line-symmetric but not point-symmetric
graph.

FIG. 2. A reversible but not line-symmetric graph.

* Received by the editors April 9, 1980, and in revised form October 5, 1981.
t Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109.
Department of Mathematics, University of Florida, Gainesville, Florida 32611.
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts

02139.

285



286 F. HARARY, A. VINCE AND D. WORLEY

Two points a and b
{X X

-1 -1 -1 3,y,y ,yx, y x ,y
nowhere reversible.

2. The eounterexamples. The study of Facts 1 and 4 leads to the following less
obvious questions:

Question 1. What is the smallest graph that is both point- and line-symmetric, but
nowhere reversible ?

Question 2. What is the smallest point-symmetric graph that is nowhere reversible ?
Bouwer [1] found a large graph as an example for Question 1. More recently,

Holt 4] has shown that the answer to Question 1 is at most 27 points. His 27-point
graph H is constructed from the group

H (x, y, xlx9= y3 2 -1 4 -1 -1=z l, y xy=x ,z xz =x yz=zy)

and subgroup S (z). The points of H are the 27 cosets of S. The (unordered) pair
(S, SxTy) and all its images are the lines of H.

We next show that the answer to Question 2 is at most 21 points. The example
is the Cayley graph G of the group B with generators T. The points of G are the
elements of

B (x, y]x 7 y3 1, Xy yX2).
are adjacent whenever b=at, where is in T=
-ix, yxS}. Every Cayley graph is point-symmetric, but G is

THEOREM 1. The graph G is nowhere reversible.
Proof. Because H is a Cayley graph, any automorphism of G can be decomposed

uniquely into a product of:
(a) an inner automorphism (one which is premultiplication by a fixed element of

G), and
(b) an automorphism that fixes 1, which is either trivial or an outer automorphism

(not an inner automorphism).
Clearly, some line is reversed by some inner automorphism itt T contains an

element of order 2. Since T does not, any automorphism that reverses a line must
have a nontrivial outer automorphism factor. We will demonstrate that G has no
nontrivial automorphisms that fix 1, and so G is nowhere reversible.

Let/ be an automorphism that fixes 1. Let G’ be the link of 1, i.e., the subgraph
of G induced by the vertices adjacent to 1. Figure 3 shows G’.

FIG. 3. The link of the identity.

Now,/, when restricted to G’, must be an automorphism. Hence x and x -1 are
also fixed points of/3. Since G is point-symmetric, we have actually shown that if/
fixes a, then/ fixes ax. Thus, x, x, x6 must all be fixed by/. From G’ we can
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also deduce that/ either fixes y and y-1 or it reverses them. But, y is adjacent to
3 -1x and y- is not, so/ must fix y and y This shows that/ fixes G.
We conclude by noting that the minimality conditions of both Questions 1 and

2 remain open. However, we conjecture that Holt’s graph H and our graph G are
indeed the smallest examples of Questions 1 and 2. Unfortunately, these questions
will probably never be settled without an essentially exhaustive search for smaller
examples. But, they may be solvable with reasonable effort when restricted to graphs
generated by groups as H and G are.

Acknowledgment. We are grateful to Warren Brisley for kind advice and com-
ments.
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THE RELATIONSHIP BETWEEN CONVEX GAMES
AND MINIMUM COST SPANNING TREE GAMES:

A CASE FOR PERMUTATIONALLY CONVEX GAMES*

DANIEL GRANOT" AND GUR HUBERMANt

Abstract. Notwithstanding the apparent differences between convex games and minimum cost spanning
tree (m.c.s.t.) games, we show that there is a close relationship between these two types of games. This
close relationship is realized with the introduction of the group of permutationally convex (p.c.) games. It
is shown that a p.c. game has a nonempty core and that both convex games and m.c.s.t, games are
permutationally convex.

Introduction. The core is the simplest and most intuitive solution concept for
n-person cooperative games. It consists of all feasible payoff (or cost) vectors according
to which no subset of the players can sever its cooperation with the rest of the players
and be better off.

The complexity of the solution theory for cooperative games, as well as the
deficiency of the core as a solution concept, is apparent when realizing that in general
the core of a game may be empty. Nevertheless, being such a plausible solution
concept, the core is considered as basic to the solution theory of cooperative games.
In fact, other solution concepts gain support if it can be shown that they are in some
way related to it. The core’s existence (or its emptiness) is a very important property
for any cooperative game. Its size and shape are crucial for any analysis, and it is
usually the first thing one looks at when seeking a solution or when analyzing a
cooperative game (see also [12]).

In light of the central role of the core in game theory, much effort has been
devoted to characterize and study classes of games for which the core is not empty.
Some examples of games with nonempty cores are convex games [11], [8], linear
production games 10], market games [13] and the more recently introduced minimum
cost spanning tree (m.c.s.t.) games [1], [3], [4]. A brief discussion of the relationship
between convex and m.c.s.t, games is given below.

A convex game is defined as follows. Let (N;c) be a (cost) cooperative game in
characteristic function form1, whereN {1, 2, , n } is the set of players and c" 2N R
is the characteristic function satisfying c(QS)= 0. A cooperative game (N; c) is convex
(see 11 ]), if

() c (S) + c(T) >= c (S [_J T) + c (S T) for all S, T
_
N.

The class of m.c.s.t, games is best introduced via the cablevision cost allocation
problem (see [3], [4]). In the cablevision problem, the signals are initiated at a certain
geographical point and are then transmitted through a tree network to various
communities. Let us denote by ci the cost of transmitting signals between communities
i, ], and let C (c0) denote the symmetric cost matrix detailing the cost of connecting

* Received by the editors July 22, 1978 and in final revised form June 15, 1981.

" Faculty of Commerce and Business Administration, University of British Columbia, Vancouver,
British Columbia, Canada V6T 1W5., Graduate School of Business, University of Chicago, 1101 E. 58th Street, Chicago, Illinois 60637.

In the game (N; c) the characteristic function c is a cost function, unlike the usual case of a revenue
characteristic function v, i.e., c(S) is the cost incurred to the members of a coalition $ by forming that
coalition. Thus, we reverse the inequalities defining both various solution concepts (e.g., the core) and the
properties of the characteristic functions (e.g., superadditivity and convexity).
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any two communities. The cheapest transmission network is given by a minimum cost
spanning tree associated with C.

The question of how to allocate the total cost of constructing the transmission
network among the various communities can be answered by formulating this problem
as a cooperative game, leading to the m.c.s.t, game formulation which is presented
in2.

As it should be clear from the above discussion, convex games and m.c.s.t, games
are basically different. This is obvious when one considers the size of the data required
to specify a game in each class. A convex game is determined by specifying the 2 1
entries of the characteristic function, which is required to satisfy the convexity condition
(1). On the other hand, an m.c.s.t, game is derived by merely specifying (n + 1)n/2
entries in the symmetric cost matrix (cij).

In spite of the apparent difference between the two types of games, we demonstrate
in this paper a close relationship between convex games and m.c.s.t, games. This
relationship is illuminated here with the introduction of the class of permutationally
convex (p.c.) games. A p.c. game is a generalization of a convex game which captures
some of the properties of an m.c.s.t, game. Most importantly, the core of a p.c. game
is not empty, and both convex games and m.c.s.t, games are permutationally convex.
Finally, let us note that there are examples of convex m.c.s.t, games. These examples
include Bird’s minimal network game [1], the m.c.s.t, game that arises from existing
minimal spanning tree networks (see Magiddo [9]) and Littlechild’s airport game [7].
For further details see [5].

In the next section, we formally present m.c.s.t, games, motivate the introduction
of p.c. games and prove the nonemptiness of their cores. In the last section, we show
that m.c.s.t, games are indeed p.c.

2. Permutationally convex games: their definition and their cores. We first pro-
vide a brief review of m.c.s.t, games which will serve to motivate the introduction of
permutationally convex (p.c.) games.

Let N ={1,..., n} denote the set of players, and let 0 designate a common
supplier. The necessary data to define an m.c.s.t, game with n players are the entries
of a cost matrix. Once the cost matrix C (cii) (i, O, 1, 2,..., n) is specified, the
determination of the characteristic function of the corresponding m.c.s.t, game is as
follows. For every set (coalition) S c_c_ N construct a minimum cost graph, Fs, which
spans {0} U S, and denote its cost by c(S). (Of course, Fs is a tree, and hence the name
of this group of games.) Given a characteristic function c(. which maps all subsets
of N into the real line, the core is the set of cost allocations (i.e., x R n) which covers
the total cost (i.e., Yivxi c(N)) and which charges no subset (coalition) of N an
amount higher than the cost of its independent operation (i.e., for all S c N,sx <-
c(S)).

The construction of an m.c.s.t. Fv induces a partial order > on N, namely for
i, N say that >-] if node ] is on the (unique) path connecting node with the
common supplier 0 in Fr. Throughout this paper we assume that the labeling of the
nodes actually conforms to the partial order (i.e., if >-], then >/’). Under the partial
order > each node N has one immediate predecessor ](i) {0, 1,..., i- 1}.

Suppose Fv was constructed using the following version of the greedy algorithm
(see, e.g., [6]):

1. Let/(r {0} and/
2. If/Q {0} IJ N, stop. Else,
3. Choose a, b such that a ]Q, b N\ and cab is minimal among

{cy" x /Q, y N\}
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4. LetJQJQ{b},{(a,b)}
5. Go to 2.
Upon termination the set " =/Q is the edge set of Fu. The cost cii,) is the

marginal cost of adding the node to an existing m.c.s.t, of a subset of {0}LI N.
Denoting MC =- ci,) and MC =- (MC, MC2," MCn), we recall the main result on
m.c.s.t, games, namely, that the vector MC is in the core o the corresponding m.c.s.t.
game. reader is referred to [1], [2], [3], [4], [9] for further elaboration on m.c.s.t, games.

Convex games form another collection o games, whichlike m.c.s.t, games
possess nonempty cores. Moreover, in both cases it is easy to compute at least one
vertex of the core.

Denoting [0]= and [k] {1, 2,..., k}, let x c[i]-c[i- 1]. One of the main
results on convex games is that if the game (N; c) is convex then the vector x is a
vertex of the core of (N; c) for any ordering 1, 2,. ., n of the players.

To illuminate the analogy between the two types of games, recall that the
characteristic function c’ 2u --> R of a convex game satisfies

(2) c(S U {i})- c(S) <= c(T {i})- c(T)

for all N, T
_
S
_
N\{i}.

A reflection on (2) yields the following generalization. A game (N; c) is permuta-
tionally convex if there exists a labeling of the players, say 1, 2, , n, such that

(3) c (Ek] t.J S)-c (Ek ]) -< c([/] t.J S)-c (f/I)

for all S N\[k] and k _->/’.
Any labeling 1, 2,..., n of the players which satisfies (3) is a permutationally

convex order. Note that a convex game is permutationally convex and that a permuta-
tionally convex game is convex if every labeling of the players is a permutationally
convex order.

The nonemptiness of the core is our main result on permutationally convex games.
THEOREM. Let (N;c) be a permutationally convex game with a permutationally

convex order 1, 2,. ., n. Then the vector x (Xa, , x,) is in the core of (N; c ), where
x,=c[i]-c[i-1].

Proof. It is immediate from the choice of (xa, ’, x,) that Yi=a xi c(N). To see
that YisXi <=c(T) for all T_N, let T ={ma, mz," ", mr}, where 1 -<ma <m_ <.. <
mr -< n. Estimate Yirxi using (3) as follows:

(4)
r-1

E x, (c([mj])-c([mi- 1]))=c([mr])-c([mr- 1])+ Y (c([mi]-c([mj-1])).
iT j=l j=l

Apply (3) with S {mr}, k mr- 1 and/" mr-1 to estimate

c ([mr])- c([mr 1]) _-< c({mr} U [mr-a])- c([mr-1]),

which implies (using (4))
r-2

(5) E Xi <=c({mr}U[mr-1])--c([mr-1-- 1])+ (c([mi])--c([mi-- 1])).
ieT /=I

Apply (3) with S {mr} [,.J {mr-l}, k mr-1 1 and/" mr-2 to obtain (using (5))

Xi <=c({mr}l,.J{mr-1}[,.J[mr-2])-c([mr-2-1])+ (c([m])-c([m- 1])).
i.T /=1
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A repeated application of similar estimates will result in

Y x <-c({m}t.J{m_l} t.J {ml})= c(T),
iT

which completes the proof.

3. Minimum cost spanning tree games are permutationally convex. We prove
that an m.c.s.t, game is permutationally convex, thereby providing another constructive
core existence proof for this type of game. We recall that the players 1, 2,. , n are
labeled so that if ] is on the (unique) path connecting and 0 in the m.c.s.t. FN, then
>/’. Our objective is to show that any such labeling of the players is a permutationally

convex order.
Define the cost matrices (c k) on the sets (N\[i]) LI{0} (i 1,..., n 1) by

(6)
[’min {Cko, Ckj}

Ckl
Ckl

0k (N\[i]) LI {0}.
l0

The cost matrices (Cikt) determine the m.c.s.t, games (N\[i], c i) (i 1,..., n). From
the definition of (c kl) we have

(7) c k (S) <-_ c (S) for all S
_
N\[k and ] _-< k.

Next, apply the greedy algorithm to construct an m.c.s.t, for the graph obtained by
collapsing [/’] LI {0} to a single node and using the cost matrix (Ck). Such an exercise
results in the observation that

(8) c[]]+c(S)=c([f]t.JS) for all S_N\[/’].

From (7) and (8) we have

(9) c ([k (.J S) c ([k ]) c k (S) <= c (S) c ([/] t.J S) c ([/])

for all S
_
N\[k] and ] _<- k.

Now, (9) implies that 1,. , n is a permutationally convex order and that m.c.s.t.
games are indeed permutationally convex.

Acknowledgment. We are grateful to an anonymous referee for helpful sugges-
tions which improved the presentation of this paper.
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A SEMI-DEFINITE LYAPUNOV THEOREM AND THE
CHARACTERIZATION OF TRIDIAGONAL D-STABLE MATRICES*

DAVID CARLSON’, B. N. DATTA AND CHARLES R. JOHNSON

Abstract. A new necessary and sufficient condition is given for an n x n complex matrix A to be stable.
It involves a positive semi-definite image under a Lyapunov map and the real and imaginary parts of A.
This condition is then used to characterize the real tridiagonal matrices which are D-stable, and those
which are totally D-stable.

An n n complex matrix A is said to be (positive) stable if each eigenvalue of
A has positive real part. We shall be interested throughout in the Lyapunov equation

(1) 1/2(GA +A*G)=H,
in which we usually assume

(2) G is hermitian, positive definite

and

(3) H is (hermitian) positive semi-definite.

The well-known [12] result of Lyapunov characterizes stable matrices in the following
way.

THEOREM L. (i) The matrix A is stable if and only if there exist positive definite
matrices G and H satisfying (1).

(ii) Moreover, if herrnitian G and H satisfy (1), then the positive definiteness ofH
implies that A is stable if and only if G is positive definite.

While Lyapunov’s theorem is, of course, of great importance in differential
equations, the case of a semi-definite right-hand side in (1) seems also to arise often
in applications (such as root location [5], [6]). In the event that (1) holds for given G
satisfying (2) and H satisfying (3), A has no eigenvalues with negative real parts, but
may have pure imaginary eigenvalues [3]. (The pure imaginary eigenvalues of A must
have linear elementary divisors, viz., Jordan blocks of order 1 [3].) The controllability
of (A*, H) (cf. [9]) is then a necessary and sufficient condition for the stability of A
[4], [16].

We shall give another characterization of the circumstances under which A is
stable. While our condition will be seen to be equivalent to the controllability of
(A*, H), it will enable us to give simpler proofs than those in [4] and [16]. Moreover,
in some other circumstances, it may be easier to work with than controllability. For
example, in this paper, the condition will be applied to characterize the tridiagonal
D-stable matrices, a goal which motivated the present work. The D-stable matrices
arise [10], [11 in the stability analysis of general equilibrium economic systems with

* Received by the editors June 13, 1980, and in final and revised form October 15, 1981. This research
was conducted at the Universidade Estadual de Campinas, and supported by grants 79/0085 and 79/0591
from the Fundao de Amparo t Pesquisa do Estado de So Paulo, Brazil.
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293



294 DAVID CARLSON, B. N. DATTA AND CHARLES R. JOHNSON

unknown (market specific) adjustment rates. They have not yet been fully charac-
terized.

An important object which will provide the information necessary for a charac-
terization is the skew-hermitian matrix $ defined by

(4) 1/2(GA-A*G)S.
From (1) and (4), it follows that

(5) GA H+ S.

For a scalar A to be an eigenvalue of A, there must exist a vector x such that

(6) Ax x, x # O.

From (6), it follows that

(7) GAx AGx, x O,

which is equivalent to (6) if (2) holds. From (5) and (7) we obtain

(8)

(9)

and

(o)

(H + S)x AGx,

x*(H + S)x A x*Gx

Re (A). x*Gx x*Hx.

LEMMA 1. Assuming (1), (2), (3), (4), and (6), we have that

(12) (a) Sx AGx and (b) Hx O.

Proof. If (11) holds, it follows from (10) that

(13) x*Hx 0,

which, because of (3), is equivalent to (12b). However, in view of (8), (12a) also
follows, and we conclude that (11) implies (12). On the other hand, if (12) holds, then
(11) follows from (10) since x*Gx >0 and x*Hx =0. This completes the proof, l-1

We note that under the hypotheses of Lemma 1, each pure imaginary eigenvalue
of A is an eigenvalue of G-15 (whose eigenvalues are necessarily all pure imaginary)
for which there is an eigenvector in the null space of H. To emphasize, A has a pure
imaginary eigenvalue if and only if G-IS has an eigenvector in the null space of H,
and, furthermore, the eigenvalues of G-S (necessarily purely imaginary) whose
eigenvectors lie in the null space of H are exactly the pure imaginary eigenvalues of
A.

Remark. Let G/2 denote the positive definite square root of the positive definite
matrix G, and G-/2 the inverse of G/2. The following are equivalent, as may be
verified by simple algebraic manipulation’

(14)

(5)

(16)

(17)

There is an x 0 such that (12) holds.

An eigenvector of G-IS lies in the null space of H.

An eigenvector of SG- lies in the null space of HG-.
An eigenvector of G-/2SG-/2 lies in the null space of HG-/.

if and only if

(11) Re (A)=O



A SEMI-DEFINITE LYAPUNOV THEOREM 295

Our semi-definite generalization of Lyapunov’s theorem is then
THEOREM 1. Given matrix A, suppose that H =(GA +A’G) for some positive

definite matrix G and some positive semidenite matrix H. Then A is stable if and only

(18) No eigenvector of G-1S lies in the null space o]:H.

Proof: Because of (2) and (3), it follows from (6) and (10) that all eigenvalues of
A have nonnegative real parts. In view of Lemma 1, A is then stable if and only if
there is no x 0 satisfying (12). This is equivalent to the stated condition. I-!

Observe that if A is known to be nonsingular, we may replace (18) with

(18’) No eigenvector of G-IS, corresponding to a nonzero eigenvalue, lies in the
null space of H.

It is clear that if H is actually positive definite, then the condition of Theorem
1 is satisfied, since the null space of H consists only of the zero vector. Thus one
direction of part (ii) of Theorem L is an immediate corollary of Theorem 1.

Let zr(A), u(A), t(A) denote (respectively) the number of eigenvalues of A,
counting algebraic multiplicity, with positive, negative, and zero real parts. We have

COROLLARY 1. Assuming (1), (2), and (3), we have

r(A) -> rank (H) (= r(H)),

with equality homing if and only if them is a basis of the null space ofH consisting of
eigenvectors of G-xs.

Proof: In view of (2) and the fact that u(A)=0, the inequality of the corollary
is equivalent to

8(A)<=(H).

As pure imaginary eigenvalues of A have linear elementary divisors, this now follows
from Lemma 1.

The inequality of Corollary 1 may also be found in [3]. Since, for a nonsingular
real matrix A, t (A) cannot be odd, we further conclude"

COROLLARY 2. If a nonsingular real matrix A satisfies (1), while G satisfies (2)
and H satisfies (3), then, if rank (H) -> n 1, it follows that A is stable.

To show the equivalence of our condition with (A*, H) controllable, we note
that Hautus [9] has proved that (A*, H) is controllable if and only if

Ax Ax, H*x 0 x O.

In our case, A G-(H + S), H is hermitian, and clearly

Ax Ax, H*x 0 G- Sx Ax, Hx =0.

We have proved:
LEMMA 2. Assuming A G-(H + $) with H hermitian, (A*, H) is controllable

if and only if (18) holds.
The equation (1) has also been studied for hermitian G and H, with no restriction

that G satisfy (2). In this case, if H is positive definite, then G is nonsingular and we
have "equality of inertias" for A and G:

(19) zr(A) r(G), u(A) v(G), 8(A) 8(G) 0

([14], [15]). If we assume just that H satisfies (3), then it is known [4], [16], [2,
example, p. 240] that the controllability of (A*, H) is sufficient but not necessary for
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G to be nonsingular and the inertias of A and G to be equal, i.e., (19). Clearly we have:
COROLLARY 3. Suppose that H 1/2(GA +A’G) holds for nonsingular hermitian

G and positive semidefinite H. ffalso (18) holds, then the inertias ofA and G are equal.
We next turn to the consideration of D-stable matrices which have received

considerable study [10], [11] but have not been characterized. We will henceforth
assume all matrices to be real. A stable matrix A is called D-stable if DA is stable
for all positive diagonal matrices. Such a matrix is further called totally D-stable if
each of its principal submatrices is D-stable. A well-known necessary condition for
D-stability is that all principal minors be nonnegative and at least one of each size
be positive [10]. We call the class of all such matrices P. That all principal minors
be positive is necessary for total D-stability, and we call this class P/. Neither condition
is, in general, sufficient, and one sufficient condition for D-stability (in fact for total
D-stability) is that there exist a diagonal solution G to (1) with H positive definite.
In case A=(aij) is tridiagonal (aij=0 whenever Ii-]1>1), we characterize total
D-stability, because of the happy coincidence of necessary and sufficient conditions,
and also characterize D-stability.

We first consider totally D-stable tridiagonal matrices.
THEOREM 2. For a tridiagonal matrix A, the following conditions are equivalent:

(i) There is a positive diagonal matrix D such thatDA +ATD is positive definite;
(ii) A is totally D-stable; and
(iii) A P/.
Proof. The implications (i): (ii) and (ii)::> (iii) are known (and straightforward)

for general matrices. That (iii) =), (i) holds for tridiagonal matrices follows from a
construction of D. First, assume A is irreducible (cf. [8] or [13]) so that ai.i/la/l. 0
for 1,. ., n 1. Then, define D diag (dl," ,dn) sequentially by

lai,i+ll(20) dl= 1, di+l =di 1," , n 1.

Now, in DA, the absolute values of the (i, / 1), and (i + 1, i) entries are equated
whence it follows that in 1/2(DA +AT"D), the (i, + 1) and (i + 1, i) entries either agree
with those of DA or are both zero. Since A P/, DA is also, and it is then easy to
check that DA +AT"D P+ since each irreducible direct summand of DA +ArD
agrees with the corresponding submatrix of DA. But this means that, since it is
symmetric, DA +ArD is also positive definite.

To prove the theorem when A is reducible, assume first that for some k, 1 <_-k _<-
n-l,

(21) ak+l.kak,k+l 0, but ai+l.iai.i+l 0, 1, , n 1, k.

Let A (A22) denote the principal submatrix contained in the first k (last n -k) rows
and columns of A. By (21), for 1, 2, Aii is irreducible, so that there exists a positive
diagonal matrix Di so thatDA, +AD is positive definite. If ak+1,k ak,k+ 0, clearly
D D)D2 is a positive diagonal matrix for which DA /A7"D is positive definite.
If ak,k+l SO, define De=DO)eD2, e >0. The matrix He =DeA+ATDe is positive
definite for all sutticiently large e > 0. To see this, observe that He has the form

with HI, H22 positive definite. Now He is positive definite if and only if HI and the
Schur complement eH22-HEH-H2 are both positive definite; and this Schur
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complement is positive definite for sufficiently large e >0. Similarly, if ak+l,k # 0,
define D, eD1 @32, e > 0.

An inductive argument based on the above completes the proof for arbitrary
reducible A. U

In order to characterize the tridiagonal matrices which are D-stable (and not
necessarily totally D-stable), it is clearly sufficient to characterize the irreducible
tridiagonal matrices which are D-stable. We will consider three cases: these deal with
the irreducible tridiagonal matrices A (aj) for which

(22) ai,i+lai+l,i > O, 1, 2,. ., n 1,

(23) ai,i+lai+l.i < O, 1, 2,. ., n 1,

and the general case, when neither (22) nor (23) need hold. We shall define an n x n
tridiagonal real matrix A to be skew if a, 0, 1,..., n, and (23) holds. Before
giving our characterization of the irreducible tridiagonal D-stable matrices, we need
two lemmas, one dealing with skew and the other dealing with skew-symmetric
matrices.

LEMMA 3. Suppose that n n tridiagonal matrices A and B are skew and irreduc-
ible. Then there exist a positive diagonal matrix E and a nonsingular diagonal matrix
Ffor which B FEAF-1.

Proof. Given tridiagonal matrices A (aj) and B (bi), skew and irreducible, it
is sufficient to exhibit nonsingular diagonal matrices X and Y for which B XAY
and XY is positive diagonal, for then F y-1 and E XY satisfy the conditions of
the Lemma.

Let X=diag (xl,’.’,x,) and Y=diag (y1,’", y,). We have B =XAY if and
only if

ai,i+lxiyi+l bi,i+l,
and i= 1, 2,. , n-1.

ai+l,iXi+lYi bi+l,i,

But if we now choose x > 0, we obtain sequentially

and

b2k-l,2k
Y2k a 2k-l,2kX2k-1

X2k+l
a 2k+l,2kY2k

k=l,2,...

and if we choose y > 0, we obtain sequentially,

b2k,2k-1
X2k

a2k,2k-lY2k-1
and

b2k,2k+
Y2k+l

a2k,2k+lX2k

k=l,2,...

ForX and Y determined in this way, we have B XAY andXY positive diagonal.
Given positive integers n and p, 1 <_-p <-n, following [13, p. 9] we define

O,.p ={to (il," ’, ip)ll =<il<"’<io-<n}.
For vector x, we define to(x)= (il,’’ ", ip) Q,,p to be the sequence of positions of
zero components of the vector. (If no components of x are zero, we define to(x)= .)
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LEMMA 4. (i) Suppose tridiagonal matrix A is skew-symmetric and irreducible,
and that Ax hx for some h 0 and x O. If to (x) (ix,. ., ip) f, then

(24) il --> 3, i2- il >- 3, ", ip i- __--> 3, n i _--> 2.

(ii) Suppose either to ( or to Qn.p satisfying (24), and suppose A SO is
imaginary. Then them exist a tridiagonal matrix A, skew-symmetric and irreducible,
and an x 0 with to (x) w, for which Ax Ax.

Proof. We may assume n _-> 2. Let tridiagonal A be skew-symmetric and irreduc-
ible. For convenience of notation, we let ai.i+l bi, a+l. =-b, 1 ..., n- 1. Now
Ax Ax is equivalent to

(el) O=Axl-blX2,

(el) 0 bi-lxi-1 + Axi- bixi+x, 2, ’, n 1,

(e,) 0 b,-lx,-1 +

Proof of (i). Suppose Ax =Ax, h S0, but to(x)# (. As A is tridiagonal and
irreducible, it follows from (el)-(e,) that if xi x+l 0 for any 1, , n 1, then
x =0. If Xl=0 or x2=0, then by (el), Xl=X2=0, and x =0, i.e., if x 0, il-->3. If
x,-1 0 or x, 0, then by (e,), x,-1 x, 0, and x 0, i.e., if x O, n ip _>- 2. Finally,
if x # 0 and xi 0, then Xg+x # 0 and xg+2 Ax+l/b+l O, i.e., ik ik-1 ----> 3.

Remark. The argument for (i) clearly can be used to show that for any irreducible
tridiagonal A, with all nonzero diagonal entries, and any x with to(x) f for which
Ax 0, (24) must hold.

Proof of (ii). The proof is based on the following observation. For imaginary ,/z
with A/z < 0, and nonzero complex u, if real number b # 0 satisfies bz+ A/z --0, and
v =u/b, then tzu-bv =0, bu +Av =0. If real b 0 satisfies b2+A/z <0, and v u/b,
then txu -by =0, (bu +Av)A/u (b2 +/A)A//x <0, and (bu +Av)/v is imaginary. Note
that if u is real, v is pure imaginary, and vice versa.

We first prove (ii) for to . For n 2, we take/z A; then A/z A 2< 0. For
any nonzero real bl satisfying b + A= 0, any nonzero complex Xl u, and nonzero
x2 v Axl/bl, we have a solution x (xl, x2)r by our observation. For n 3, we
take/Xl =A, any nonzero real bl satisfying bl2 +A2<0, any nonzero complex Xl u,
and nonzero x2 v Axl/bl. Now (Xl, x2) is a solution of (el), and/x2 (blXl + Ax2)/x2
is imaginary, satisfying/z2A < 0. We may rewrite (e2) as

(blXl+AX2)
0 x2- b2x3.

x2

Now for any nonzero real b2 satisfying b "[-/it/,2 <0, X2 "-U, and nonzero X3 "-/2

Iz2x2/b2, we have x (xl,x2, x3) 7" as a solution also of (e2) and (e3). An inductive proof
for arbitrary n along these lines is easy, and will be omitted. The proof of (ii) for
to (and n >-2) is complete. Observe that x may be chosen so that xl, x2,’’’, x,
alternate between real and pure imaginary.

We must yet prove (ii) for to Q,., satisfying (24). We shall give a proof for p 1.
A similar inductive argument for arbitrary p is easy, and will be omitted. Let to (i).
From (24), we must have >-3 and n- _>-2. We shall consider matrices and vectors
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of the forms

A (1)

0 bl

A (2)

0

-bi+l

0

bi+l
O.

0

(1)
x1

(2)
Xi+l

x

Now A(1), A (2), X (1), X
(2) each have at least two rows. By what we have just proved

for a)= , for k 1, 2 there exist A (k) x (k) for which A(k)x
and for which the components of x (k) alternate between real and pure imaginary. This
is sufficient to show that for any bg_a, bi, and x 0, and

/ 0

A() 0 0

A 0"" 0 -bi- 0 bi 0... x

x (2)

0 0 A2

/ 0

(e),..., (e_), (e.),..., (e) hold. Now (ei) becomes

(eI) 0 b_x_ bx..
If both x_ and x are real, or both are imaginary, we may choose nonzero reals
b_, b so that (e) holds. If not, we merely replace x( by ix (, and then we may
choose b_, b real as required. We have A real, tridiagonal, irreducible and skew-
symmetric; x 0, with (x) (i), and Ax Ix.

In the characterization of irreducible tridiagonal matrices which are D-stable, the
paragraph which follows gives a common outline for the proofs of D-stability in all
three cases (i.e., matrices satisfying (22) and (23), and the general case).

Given A e P, tridiagonal and irreducible, and any positive diagonal matrix
there exists a positive diagonal matrix F such that F(EA)F-= B satisfies lb.+l
Ib+., i= 1,..., n- 1. (To obtain F, let F be defined by (20) applied to EA; then
F-(FEA)F- FEAF- B.) We have

(m + N, (m I s,
with H symmetric and S skew-symmetric. As B e P, and the irreducible principal
submatrices of H are just principal submatrices of B, H is positive semidefinite, i.e.,
H satisfies (3). Of course G =I satisfies (2). If, for each positive diagonal E, (18’)
holds, and NA is stable, then A is D-stable.

LMMA 5. Let A be an irreducible tridiagonal matrix satiffing (22). Then A is
D-stable (and in [act totally D-stable) i and only iA
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Proof. We have already noted that A P- is a necessary condition for D-stability.
Suppose that A P, and that E and F are positive diagonal matrices as indicated
above. Now B FEAF-x is symmetric, so that B H and $ 0. As $ has no nonzero
eigenvalues, (18’) holds, and B and EA are stable. As this is true for every positive
diagonal E, A is D-stable.

We give a second proof, showing that A is totally D-stable. By (20), we can
choose a positive diagonal matrixD so that DA +ATD. Then (DA +ATD DA P
since A is. But a symmetric matrix in P is positive definite; it is positive semidefinite
by definition, and has positive determinant. Now A is totally D-stable by Theorem
2. I-I

For each to (il,’ , ip) Qn.p, either (24) or its negation,

ix < 3, or ih+l ih < 3
(25)

or ip>n-2,

for some h 1, 2, , p 1,

holds. For matrix A, let &(A)= (ix,"" ", ip) be the sequence of indices of diagonal
entries which are not zero. (If all diagonal entries of A are zero, we define & (A)= .
If A 6 P-, clearly & (A)# 5.)

LEMMA 6. Let A pO+ be irreducible and tridiagonal, satisfying (23). Then A is
D-stable if and only if (25) holds for & (A ).

Proof. Suppose A P-, and that (25) holds for O(A)= (il,"’", i). Let E and F
be positive diagonal matrices as indicated above. In this case, H is diagonal, and $

is irreducible. Let Sx Ax, O.
By Lemma 4(i), either to(x)= or to(x)= (jl,""’, jq) , satisfying (24). As

&(A) &(H) ,Hx 0 if to(x) also. Suppose to(x) (]1," ", jq) satisfying
(24). Recall that we are assuming that O(A) (ix," ’, io) satisfies (25). If ix < 3, either
alx #0 or a22 0, and as/’x ->3, Hx 0; similarly if ip>n-2. If ik/x--ik --<2 for some
k 1,... ,p-l, either ik/l=ik+l or ik/l=ik+2, and either aikikaik/x.ik/lO or

aikikai+2.ik+2 0. As to(x) satisfies (24), the zero components of x occur at least 3
positions apart. We must have some aiixi O, and hence Hx O. In every possible
situation, Hx 0; thus by Lemma 1, B F(EA)F- is stable, hence so is EA. As this
holds for every positive diagonal matrix E, A is D-stable.

Suppose now that A s P-, and with (24) instead of (25) holding for O(A)=
(ix,’" ip).

By Lemma 4(ii), there exist an imaginary A # 0, a real tridiagonal B, skew-
symmetric and irreducible, and an x 0 with to (x) O (A), for which Bx Ax.

Now D =diag (axx,’’’, an,) is positive semi-definite, and A-D is tridiagonal,
skew and irreducible. By Lemma 3, there exist positive diagonal E and nonsingular
diagonal F for which B FE(A-D)F-x. We have FE.AF-x= ED +B, and, since
B T -B,

1/2(I(ED + B) + (ED +B TI) ED, 1/2(I(ED + B) (ED + B)TI) B,

with ED satisfying (3). As to(x)=&(A)=&(ED), EDx=O, while Bx=Ax. By
Theorem 1, FEAF- and thus EA are not stable, so that A is not D-stable.

Before stating and proving our characterization in the general case, we must
define and examine a decomposition of any irreducible tridiagonal A related to the
decomposition of B FEAF- already discussed. We write A H+ $, where H and
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S are also tridiagonal, and

h {
sii { aoii

We may partition $ and H as

(26)

ifi=], orij andaijaji>0,
otherwise,

if # ] and aiiaii < O,
otherwise.

S---. ",,
S

where each $ is either irreducible or 1 x 1 and zero, and, conformably,

H11 HI2

H2. H22
(27) n ".

0

o

where

h’ bi 0 0

and blc > 0. We shall also assume A partitioned conformably with S. We note that if
(22) holds, A H, S 0, and k n if (23) holds, H is diagonal and S is irreducible,
i.e., k 1; and if neither (22) nor (23) holds, then at least one Si # 0, and 1 < k < n.

If 1 < k <n, we shall be interested in the b(Aj) (defined analogously for each
] 1,. ., k) for those ] for which S # 0. If S # 0 and S+l # 0, we shall call the last
diagonal entry of Ai and the first diagonal entry of A+I transition entries; diagonal
entries which are not transition entries shall be called interior entries. We will say that
$(Aj) satisfies (25) ]’or interior entries if it satisfies (25) except that transition entries
cannot be used to satisfy (25). Thus, if the first diagonal entry of A is a transition
entry, then i < 3 is replaced in (25) by 2 b(A), and if the last diagonal entry of A
is a transition entry, ip > n-2 is replaced by n- 1 4,(A). We will say that b(A)
satisfies (25) for interior entries if at least one b(Aj) satisfies (25) for interior entries.
We shall call ai,iai+i,i+ -ai,i+ai+l, a transition minor if a, and ai+,+ are transition
entries (and a i,i+a i+,i > 0).

If DI, D2 are nonsingular diagonal matrices, decomposition of DIAD2 will yield
the same partitioning as that of A, and qb((DAD2)) $ (A), ] 1,..., k. A transition
minor of DAD2 will be zero if and only if the corresponding transition minor of A
is zero.

THEOREM 3. LetA P- be irreducible and tridiagonal. Then A is D-stable if and
only if
(29) qb (A) satisfies (25) for interior entries, or
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(30) at least one transition minor is nonzero, or

(31) $1 0 or Sk 0 or at least two successive S O.

Proof. Let A P be irreducible and tridiagonal. Let E be a positive diagonal
matrix, and let F and B FEAF-1 H + S as before. Partition H and S as in (26)-(28).
Suppose Sx Ax and Hx 0 for some A # 0 and for x (x/), partitioned conformably
with S. For each/, we have S/x/= Ax/; and either x/= 0 or x/is an eigenvector of S/
associated with the eigenvalue A. As A 0, if S/= 0, also x/= 0. If x/ 0, we know that
to(x satisfies (24). As Hx 0, we have, analogous to (el)-(e,),

(fl) 0 HllX1 + H12x2,

(f/) 0 --"/"/L/-1X/-1 d- H//x/+/-/./+1x/+1, / 2,. ., k 1,

(fk) O Hk,k Xk "Jc" Hk,kXk

Whenever xi 0, to(x/) satisfies (24), and/-/-l.j and Hj/I. have the form given in (28),
thus/-/-laX/ 0 and H//laX/ 0. It follows from (f)-(f) that whenever x xi+ 0,
x 0; and if x 0 or Xk 0, X 0. If (31) holds, then x 0.

Let xi (x, ., x,) f 1, k’, assuming S 0, n > 1, and equation (f) is
equivalent to the system- +hx =0(g) C/-lX,,_

(g) h/)x) O, 2,’", n/- 1,

(g,) h)- i) + bx+1) 0,

with two exceptions’

(g) h1 =0
(g) h- 0nk X nk

Suppose now (29), that some b (A,,) satisfies (25) for interior entries. If $,,-1 0, then
h") is an interior entry, and as x,,-1 =0, (g’) becomes h’)x" =0; if $,,-1 40, then
h(") is not an interior entry (and similarly for (")hn. and (gn.,)). If x,, 0, then w(x)
satisfies (24), and as in the proof of Lemma 6, hl’xl" 0 for some and Hx O, a

(m-l)contradiction; we must have x,, 0. But this implies, if m > 1, by (g), that x,._l 0,
X2)and x,,-1 0, and x 0; if m 1, by (g,1), 0, and x2 0, and x 0.

(m) (lm+ 1)Suppose instead (30), and that the transition minor h, h -b,,c,, is nonzero.
As equations (g,,) and (g / hold,

(m) +1),,,.x,,,. +bmx" =0, c.,x,,,,.+h"+l)x’’+1) =0,
(m) m+l)we must have x,. x 0, which implies that x, x,+l 0, which implies that

x 0. We have shown that if any one of (29)-(31) holds for A, then for each positive
diagonal E, the corresponding FEAF-1=H + S satisfies (18’) and is stable; A is
D-stable.

Suppose instead that none of (29)-(31) holds. We must have at least one S/ 0.
Note that, as A e P-, transition entries, if any, are nonzero.

For each S/ 0, let/-)o be defined as H/, except that any transition entries are
replaced by zero. Now 4(H)= (il,’’’, ip) satisfies (24). By Lemmas 3 and 4, there
exist positive diagonal matrix E/, nonsingular diagonal F, and vector x/# 0, w(x/)=
4 (/-)/), so that B/= F/Efl.rl; is skew-symmetric, with eigenvalue A and associated
eigenvector
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We define E to be the direct sum of the Ei, and define F to be a direct sum of
appropriate nonzero scalar multiples of the F. so that if B =FESF-a, Ibi+l,il Ibi,i+al
for all 1,. , n 1. (This is true for bi+ a,ibi.i+ < 0 as all B. 0 are skew-symmetric.)
For simplicity of notation, we assume B =/4 + S, as in (26)-(28), now with each $.
either 1 x 1 and zero, or skew-symmetric, and each bi ci 0. We know $1 # 0, and
thus X 0.

If $2 =0, then x2 =0, $3 0, and x3 0. Now as W(Xl) b (/-/1),/41aXl =0, and
equation (fa) holds. Equation (f2) becomes (in the notation of equations (g))

(a) 3)(g) clx,, + b2x =0,

and clearly we can replace the vector x3 by a nonzero multiple of x3 so that (g) is
satisfied.

On the other hand, if $2 # 0, then 1 # H, and h () and hl2)nl are transition entries.
As tO(Xl)=b(/-a), HaXl=0 except in the last position, i.e., (g) holds, l=
1 nl- 1 and as the transition minor h (a)I-<2)

,,1
,, blc2 0, we may replace the vector

x2 by a nonzero multiple of x2 so that

h (1)_ (1) .. blX(l O,nlXnl 2-. +h =0.

Continuing this process (by induction) we obtain a vector x 0 which is an eigenvector
of S, and which is also in the null space of H. By Theorem 1, B is not stable (and
consequently A is not D-stable). 71

Remarks. We note that in Lemmas 4 and 6, (il,’’’, ip) cannot satisfy (24)
for n < 5. Thus, for n x n tridiagonal matrices satisfying (23), with n < 5, D-stability
is equivalent to P. A "first" example, with n 5, b(A) (3), follows. Let

0 1 0 0 0

1 0 1 0 0
0 -1 1 1 0
0 0 -1 0 1
0 0 0 -1 0

A P. In the context of Theorem 1, let G =/, so that

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 1 0 0

H= 0 0 1 0 0 and S=G-S 0 -1 0 1 0

0 0 0 00 0 0 -1 0 1
0 0 0 0 0 0 -1 0

Now Sx ix for x T (1, i, 0, i, -1) while Hx 0, so that x is an eigenvector of G-aS
in the null space of H. This means according to Theorem 1 that A is not stable and
thus not D-stable. The magnitudesbut not the signsof the nonzero entries of A
are inconsequential in this example.

Similarly, in Theorem 3, the conditions (29), (30), (31) can simultaneously fail
only for n >_-4. For n x n irreducible tridiagonal matrices with n < 4, D-stability is
equivalent to P. An example in which (29), (30), (31) all fail, with n 4, follows.
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Let

0 1 0 0
1 1 0
1 1 1
0 -1 0/

A P. Let G =/, so that

0 0 0 0 0 1 0 0

i
1 1 0 S=G-S= -i

0 0 0
H=

1 1 0 0 0 1
0 0 0 0-1 0

Now Sy iy for y (1, i,-i, 1)T while Hy =0, so that A is not stable, and thus not
D-stable.
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COLORING BLOCK DESIGNS IS NP-COMPLETE*

CHARLES J. COLBOURN’t, MARLENE J. COLBOURN,+

KEVIN T. PHELPS AND VOJTECH RtDL

Abstract. Coloring partial Steiner triple systems is shown to be NP-complete. Together with an
embedding technique of Lindner, this provides a short proof of the NP-completeness of coloring block
designs.

1. Preliminaries. A balanced incomplete block design B[k,A; v] is a v-set V
together with a collection B of k-subsets of V called blocks; each 2-subset of V occurs
in exactly A blocks of B. A t-coloring of a block design (V, B) is a mapping k:v->
{1, 2,. , t}, so that there is no block {Vl, ’, Vk} having k(Vl)= k(v2) k(vk).
A block design is t-chromatic, or has chromatic number if it is t-colorable but not
(t-1)-colorable. Previous research has studied designs with given chromatic number
[1], [3], [8] in the general context of coloring hypergraphs [4], [5].

The purpose of this note is to present a short proof that deciding whether a block
design is t-colorable is NP-complete. Thus, a characterization of designs with given
chromatic number will likely not be "good" in the accepted sense [6].

2. Coloring partial STS. A Steiner triple system (STS) is a B[3, 1; v] design; a
partial STS is obtained by relaxing the constraints, so that every 2-subset of V appears
in at most one block. In this section, we establish the preliminary result that

THEOREM 2.1. Deciding whether a partial STS is t-colorable is NP-complete ]:or
any fixed >- 3.

In order to prove this theorem, we construct t-chromatic partial STS in which
any t-coloring assigns a fixed pair of elements different colors.

LEMMA 2.2. For each >-2, there is a t-chromatic partial STS for which any
t-coloring assigns the same color to two fixed elements.

Proof. There are (t+l)-chromatic STS for all t_>-2 [3]. Suppose P is a
(t + 1)-chromatic STS. A triple is said to be critical if its deletion lessens the chromatic
number of the partial STS. Starting with any (t + 1)-chromatic system, we delete blocks
until one becomes critical. Call this partial STS P. Deleting a critical block from P
produces a t-colorable partial STS P’. Any t-coloring of P’ assigns the same color to
the three elements forming the critical block of P, since otherwise the t-coloring of
P’ would also t-color P, which is in contradiction to our assumptions.

LEMMA 2.3. For each >-2, there exists a t-chromatic partial STS P and a fixed
pair of elements {x, x’} of P, such that any t-coloring of P assigns a different color to x
and x ’.

Proof. Let P be a partial STS with chromatic number t, having the property that
any t-coloring of P assigns the same color to two given elements x and y. Denote the
element set of P by Q t_J{x}. Take two copies of P, one on Q1 [_J{x} and one on
Q2 Ll{x}--i.e., two copies intersecting only at x. Add a new element x’ and include
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the block {y, Y2, X’}. This partial STS is t-chromatic, and any t-coloring must assign
the same color to x, y, and y2. Then x’ must be colored differently from x.

Proof of Theorem 2.1. Suppose we are to decide whether an arbitrary graph G
is t-colorable; we know that this problem is NP-complete for any fixed t->_ 3 [6]. First,
let P be a partial STS with chromatic number having fixed elements x, x’ which
every t-coloring of P assigns two different colors. We construct a partial STS with a
copy of P for every edge of the graph G; for an edge {y, z} of G, we take a copy of
P disjoint from the other copies, and identify x and x’ with y and z. The theorem
follows directly.

3. Coloring block designs. We prove in this section that
THORZM 3.1. Deciding whether a block design is t-colorable is NP-complete ]:or

all > =9.
Proof. Membership of this coloring problem in NP is immediate. Thus we need

only provide a polynomial time reduction of a known NP-complete problem to our
coloring problem. In light of Theorem 2.1, it suffices to show that, given a partial STS
on v elements, we can produce in polynomial time a B[3, 12tv + 3; 18tv + 3] which is
3t-colorable if and only if the partial STS is t-colorable.

Commencing with a partial STS P on v elements, we first take 3t disjoint copies
of P to form P’. Using Cruse’s method [2], we produce in polynomial time a commuta-
tive idempotent quasigroup of order 6tv+ 1 which contains the partial Steiner
quasigroup corresponding to P’. Using a construction of Lindner [7], we next produce
an STS of order 18tv+3 as follows. Let s=6tv+l. Our STS has element set
{x, ., x, y, , y, z, ., Zs}.

We process each pair {a, b} for 1 =< a < b <- s in turn. If {a, b} belongs to a triple
of P’, say the triple {a, b, c}, our STS contains the nine blocks {x, Yb, Z}, {X, y, Zb},
{Xb, Ya, Zc}, {Xb, Yo Za}, {Xc, Ya, Zb}, {Xc, Yb, Za}, {Xa, Xb, Xc}, {Ya, Yb, Yc}, and {Za, Zb, Zc}. On
the other hand, if {a, b} does not appear in a block of P’, we look up ab c in the
commutative quasigroup and add the three blocks {Xa, Xb, y}, {Ya, Yb, Z}, and {z, Zb, X}.
Finally, we add the block {xi, yi, Zi} for each 1 -< _-< s. This is an STS of order 18tv + 3.

We transform this into a B[3, 12tv + 3; 18tv + 3] B by adding the following blocks"

(1) {Xi, Xi, yk}, {Xi, Xj, Zk}, l <-i <j <=s, l <=k <=s,

(2) {yi, yi, x}, {yi, yi, z}, l<=i<j<=s, l<=k<=s,

(3)
and

(4)

{Zi, Z], Xk}, {Zi, zi, y}, 1 <_- < ] <_- s, 1 <_- k <_- s,

{Xi, Yi+rn, Zi+2m}, 1 <= <- s, 1 <= m <= s, each included twice.

In (4), subscripts are reduced into range as required. This collection of blocks is a
block design. Moreover, if P’ is t-colorable, B is 3t-colorable; a 3t-coloring uses
colors for each "level", i.e., for each of the {x}, the {yi} and the {zi}. Within a level,
the colors form a t-coloring of P’, and any of the colors can be used for the elements
of the level not in the copy of P’.

We claim also that if B is 3t-colorable, P’ is t-colorable. If the colors assigned
to each level are disjoint, the colors on a level induce a t-coloring of P’. Otherwise,
remark that a color appearing on more than one level appears exactly once on each
level as a consequence of the blocks (1)-(3). But then one of the 3t copies of P must
fail to contain an element with such a color, and hence must have colors used only
on that level; hence, P is t-colored.

This completes the polynomial time reduction as required.
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The result of Theorem 3.1 is not unexpected. Its importance derives in part from
the relative simplicity ot the proof; more important, however, is the fact that few
algorithmic problems in design theory are known to be NP-complete, despite expecta-
tions that many are. Thus Theorem 3.1 provides a first example of such a problem,
and supplies a building block for proving further NP-completeness results in computa-
tional design theory.
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SPREADS, TRANSLATION PLANES AND KERDOCK SETS. II*

w. M. KANTORt

Abstract. New Kerdock sets of q2n-1 skew-symmetric 2n 2n matrices over GF(q) are constructed
for even q whenever 2n- is composite. Related affine translation planes are studied in detail. In both
cases, explicit coordinate descriptions are given.

1. Introduction. This paper is a continuation of [6], hereafter called [STK]. In
that paper, the relationship between spreads, translation planes and Kerdock sets was
described. Nondesarguesian examples were given, arising either from slices of desar-
guesian spreads or from certain spreads in fl/(8, q) spaces. In this paper we will study
these slices more closely, and construct new Kerdock sets in higher dimensional spaces.

When an fl/(2m, qe) space is turned into an ll/(2em, q) space by following the
quadratic form with the trace map, new singular vectors are introduced. Thus, it is
not possible to directly change the dimension of the space in which an orthogonal
spread lies in order to obtain a new spread. However, when an Sp(2m, qe) space is
turned into an Sp(2ern, q) space, this difficulty does not arise. This produces the
following construction ( 2): take an orthogonal spread, slice in order to obtain a
symplectic spread, change fields, and then embed the resulting symplectic spread as
a slice of a new orthogonal spread.

This procedure provides us with a machine for grinding out large numbers of
new spreads and new translation planes. These do not seem to have new properties"
from the point of view of their groups, they have fewer properties than the original
spreads and planes. On the other hand, the procedure requires a great deal of
interesting interplay between orthogonal spreads and translation planes. It is not at
all clear how one can directly pass from an orthogonal spread to one of the many
new ones it spawns; it seems even less likely that one could directly pass from a
Kerdock set over GF(qe) to one of the many new ones over GF(q).

The spreads and Kerdock sets obtained in this manner from the unitary spreads
of [STK, 6] are new for trivial reasons ( 3), but are difficult to compute with.

Most of the paper is devoted to spreads obtained by starting with the desarguesian
plane AG(2, (qe)m), passing to one of its "cousins", and then changing fields. The
resulting orthogonal spreads and Kerdock sets are studied in 8 and 9. In order to
show that these are new, we must study the aforementioned cousins rather carefully.
This is done by using their coordinatizing quasifields in 5 and 6.

The spreads of I/(2m, 2) spaces obtained here produce partial geometries as in
DeClerck, Dye and Thas [2], having the same parameters as their partial geometries
but not isomorphic to their "desarguesian" ones.

2. Expanding spreads: definition. Let q be a power of 2, let rn be odd with
rn > 1, and let be a spread of an fl+(2m + 2, qe) space V. If e is odd, then many
spreads can be constructed in fl+(2ern + 2, q) spaces, as follows.

Let y be any nonsingular point of V, and form the spread

Z(y) (y- 71 ,)/y {(y, y+/- (’lF)/y IF }

* Received by the editors July 14, 1981.
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in the Sp(2m, tl e) space y-/y [STK, (3.1)]. If (.,.) is the symplectic form on y+/-/y,
and T: GF(qe)--> GF(q) is the trace map, then T(., .) turns y+/-/y into an Sp(2em, q)
space. Totally isotropic spaces remain totally isotropic. Thus, E(y) produces a spread
(y)e Of totally isotropic em-spaces of yl/y. (Of course, E(y) and .(y)e determine the
same translation plane A(5:(y)).) Finally, form the spread S((y)e) of an fl/(2em + 2, q)
space, as in [STK, (3.2)]. Note that e must be odd here, in order to have 2em + 2 =-
0 (mod 4).

The procedure described above will be called expanding the spread E(y) into
2era + 2 dimensions.

In view of [STK, 3], S((y)e) determines many translation planes defined by
symplectic spreads (zlfq S(,(y)e))/Z, where z is any nonsingular point of the various
l’l/(2em +2, q) spaces. S(E(y)e) also determines many Kerdock sets of (em + 1)
(era + 1) skew-symmetric matrices over GF(q), as in [STK, 5].

The remainder of this paper will be concerned with examples of such expanded
spreads, planes and Kerdock sets are new.

Of crucial importance are the following trivial observations.
LEMMA 2.1. Let E, y and X*= S((y)e) be as above.
(i) There is a nonsingular point y* of the underlying f/(2em + 2, q) space such

that E(y)e ,(y,).
(ii) FO/(2m + 2, qe).y induces a subgroup of FO/(2em + 2, q)r.*,* in such a way

that the permutation representations on and * are equivalent.

3. Unitary spreads. The expanded examples which are most easily shown to be
new arise from the unitary spreads constructed in [STK, 6]. Such a spread E arises
in an f/(8, qe) space, where log2 qe is odd and qe> 2. Define N and M as in [STK,
Thm. 7.1, Example 7.5]. Assume that e > 1.

THEOREM 3.1. The expanded spreads S(((N))e) and S(X((M))e) are nondesar-
guesian spreads in l/(6e + 2, q) space.

Proof. There is a subgroup G PGU(3, q3) of I-’O+(8, qe)x. By [STK, 7], Gr
GU(2, q*) has a cyclic normal subgroup of order qe + l fixing qe + l members of .
That cyclic group acts on S(((M))e) by Lemma 2.1. However, the subgroup of
FO/(6e + 2, q) preserving a desarguesian spread induces PFL(2, q3e) on that spread
[STK, (4.1)], and hence cannot have a cyclic subgroup acting as above. Consequently,
S(((N))e) is nondesarguesian, and the same argument shows that S(((M))e) also is.

THEOREM 3.2. S(((N))e) and S(Y((M))e) are not equivalent under the action of
FO+(6e+2, q).

Proof. This requires some group theory, and will only be briefly sketched. Assume
that these expanded spreads are equivalent. Call either of them E*. Then H
FO/(6e + 2, q). contains subgroups acting on E* as GN and GM do on their respective
symplectic spreads. It follows that H acts transitively on E*. A detailed analysis yields
that H acts 2-transitively on E*. However, this is impossible in view of the following
lemma.

LEMMA 3.3. Let E be a spread in an l-l/(2n + 2, q) space V, where q is even, n
is odd and n >3. Assume that FO/(2n +2, q). is 2-transitive on E. Then E is
desarguesian.

Proof. First note that qn+ 1 is not a prime power. Then FO/(2n + 2, q) has a
subgroup G inducing PSL(2, q") or PSU(3, qn/3) on (Holt [5, Thm. 2]). Here, G
has a GF(2)-representation on our space of size q2,/2. It follows that G cannot act
irreducibly on V, and fixes some 1-space z (Fong and Seitz [4, (4A), (4B), (4D)]).
Clearly, z cannot be singular. Thus, G acts on the translation plane A(E(z)), inducing
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PSL(2, qn) or PSU(3, q n/3) on the line at infinity. Consequently, X(z) is desarguesian
(Liineburg [7, pp. 178-179]), and hence so is Y_, (by definition [STK, 4]).

There are many translation planes arising from the spreads in Theorem 31 [STK,
3], but none seems manageable or interesting.

4. Desarguesian spreads. In order to deal with the expanded cousins of desar-
guesian spreads, we will need to study these cousins using their coordinatizing
quasifields. This in turn requires a description of the corresponding spreads, and hence
of desarguesian spreads of 1/(2m + 2, q) spaces.

Let q be even and m be odd. Set F GF(q") and K GF(q) throughout 4-7.
Let T:F-K be the trace map. Then T is K-linear, and satisfies

(4.1) T(a)2= T(ce 2) for all a F, T(a)= a if a K.

(4.2)

Let V0 be the F-space with basis e, ]’, view V0 as a 2m-dimensional K-space,
and form the (2m + 2)-dimensional space V VoW(U, w). Define a quadratic form
Q on V by

Q(ae + flf+ cu + dw) T(afl)+ c2 + cd.

This turns V into an fl+(2m + 2, q) space.
Set

X[]=Ff+K(u + w),

X,[s]={ae +(sot +sa)f+ T(sa)u +awla eF, a eK}

for s F. Then

X, {X[s]Is F LI {}}
is a desarguesian spread in V.

Define linear transformations ] and it] as follows (where F).

(4.3) ]" ]u u [t]:
u u/

(W-- W+U

ae ae + at2f+ T(at)u

Then ] and It] preserve O, and act on as follows" [s]j= [s-1] and [s]It]= [s + t].
Thus, G (], It]It F) induces $L(2, q’) on X, and is, in fact, isomorphic to $L(2, q’).
The action of G (and even of PFL(2, q’)) on is used in [STK, 4] in order to
distinguish between the various cousins of AG(2, q’).

Every cousin has the form X(y), with y (u), (f+ u), (u + kw) with k K-GF(2),
or (ku + w + r(e +f)) with k K, r K and x2 + x + r irreducible. These cousins are,
respectively, the first, second, third and fourth cousins of AG(2, q’) [STK, Thm. 4.2].

X((u)) produces AG(2, q’).
Second cousin.

(4.4)
x(([+ u))[]

x((f+ u))[s] {ae + (sEa + sT(a)+ T(sa))la F},

Third cousins.

(4.5)
X((u + kw))[] F[,

X((u + kw))[s] {ae + (s2a + ksT(sa))fla F}.
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In the above spreads, we have projected onto V0 in order to obtain these relatively
simple descriptions. Note that (4.4) and (4.5) are both symplectic relative to the natural
symplectic form (ae +f, a’e +/Tf) T(a’ +a’) on V0.

Fourth cousins are also easily computed as ,((ku + r(e +f))). However, the result-
ing spreads and quasifields seem difficult to compute with. An alternative description
of fourth cousins will be used in 7.

$. Second cousins. The next two sections consist of coordinate calculations with
second and third cousins of desarguesian planes. These calculations are needed for
Lemma 7.1, which is a crucial step in our proof (in Theorem 8.1) that expansions of
these cousins are new. For completeness, we will provide an alternative verification
of the fact that these cousins are nondesarguesian [STK, Thm. 4.2].

Let F, K and T be as in 4. The spread (4.4) yields a semifield, which we now
proceed to describe.

For x, y e F, write

X * y x2y 4- xT(y) + T(xy).

LEMMA 5.1. /f X * y 0 then x 0 or y O.
Proof. Write z=xy. Then z2+zT(y)+yT(z)=O. Apply T and obtain T(z)2-b

T(z)T(y)+ T(y)T(z)=O. Then T(z)=0 and z2=zT(y). If z 0 then z- T(y), so
that 0 T(z)= T(y) (by (4.1)). Thus, z 0. lq

DEFINITION 1.. is the unique solution to

(5.2) ++ T() x.

Thus, x a is the inverse of the map x x. 1. Note that a =a 1/2 if a K, while
T($)2=T(x)by(4.1).

DEFINITION 2. X y : * y 2y + T(y) + T(y).
THEOREr 5.3. (F, ) is a semifield. It is not a fieM if q" > 8.
Proof. If a K then a x ax x a. Also, x $ is additive. By Lemma 5.1,

(F, o) is a semifield. The second part of Theorem 5.3 follows from the next two lemmas.
LEMMA 5.4. GF(2)={aK[(a u)ov=a o(u ov) forall u, vF}.
Proof. Assume that (a u) v a (u v) for all u, v F, where a K-GF(2).

Since (a u) v (au) v and a (u v)= a(u v), we have

a-a:v +-d-aT(v)+ T(-d-av) a(av + aT(v)+ T(av)),

(-d-a + aa)v (-d-a+ a)T(v) + T(-d-v) + aT(v)).

If h--2+ ati2 0 for some u, we can divide in order to obtain dimrF-<2. Thus,
h--2 + at72 0 for all u.

From (5.2) it now follows that

or

a---+ au + T(-d-)= a(a + u + T())

a--- + aa T(-d- + aa

for all u F. Since --2 a/22 al/2 +a K for all u F. However, a /2 + a 0,
so this is impossible.

LEMMA 5.5. If q 8 then K ={z Fl(u v)o z u (v z) for all u, v F}.
Proof. Call the indicated set L. If a K then, by definition, (u v) a (u v)a

and u (v a) tTE(va) + aT(va)+ T(ft(va)). Thus, L _K.
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Note that (L, o) is a field. The maps u u z for z L* form a group acting
semiregularly on F*. If L is GF(q), then q-llq"*-1, so l[m. Assume that l> 1.
Since m is odd, ->_ 3. Let a K GF(2). Then (a u) v a (u v) for all u, v in
the field L. The argument in Lemma 5.4 can now be repeated (with u and v always
in L) in order to obtain a contradiction. This completes the proof of both Lemma 5.5
and Theorem 5.3.

6. Third cousins. Let F, K and T be as in 4, with q > 2. Fix k K-GF(2).
Using (4.5), we will again define x y, and x y; however, these expressions will
have nothing to do with those of the preceding section (except, of course, for the fact
that the corresponding planes are cousins).

For x, y F write

X * y x2y + kxT(xy).

LEMMA 6.1. ff U * y V * y 0 then u v or y O.
Proof. If (u y-v * y)y 0 then

2 2 EyEu y + kuyT(uy) v + kvyT(vy).

Set uy and fl vy. Then
2 2a + kaT(a) fl + kilT(d).

Apply T, and use (4.1)"

T(a)2 + kT(a)T(a) T(fl)2 + kT(B)T(fl).
2 2Thus, T(a T(fl ), so

then a+fl=kT(a), so O=T(a)+T()=kT(tr) and a+/=0. Thus, a=B, as
required.

DEFINITION 3. Let x be the inverse of the map x - (x 1)/(k + 1). Thus,
-2x + kT()(6.2) x
k+l

Apply T and obtain T(x)= T()2. Also, a a /2 if a K.
DEFINITION 4. Let y y’ be the inverse of y (1 y)/(k + 1). Thus,

y’+ kT(y’)
Y= k+l

This time, T(y)= T(y’), and we can solve for y"

y’=(k+l)y+kT(y).

Then a’= a if a K.
DEFINITION 5. X y (. , y’)/(k + 1).
THEOREM 6.3. (F, o) is a quasifield. It is never a fieM.
Proof. If a K then a y (a y’)/(k + 1) (a /2 y’)/(k + 1) (ay’+ kaT(y’))/

(k+l)=y and xoa=($,a’)/(k+l)=($,a)/(k+l)=a($,l)/(k+l)=ax. By
Lemma 6.1, (F, o) is thus a quasifield. The theorem is then a consequence of the next
result.

LEMMA 6.4. K {y Fl(u + v) y u y + v y for all u, v F}.
Proof. Let L denote the right-hand set. If a K then u a ua a u, so that

(u+v) oa=uoa+voa and K___L. Note that yL if and only if u+v,y’=
ti, y’+ fi, y’ for all u, v F. Set L’={y’Iy L}. Then L’ consists of all srF such



SPREADS, TRANSLATION PLANES AND KERDOCK SETS. II 313

that the following holds for all u, v F’

(6.5) u + v2( + ku + vT(u 4- f;) a( + kaT(a() +2+ kfT(O).

Thus, L’ is a vector space over K, and L’ K. We must show that L’ K.
Assume that dim L’->2. Define a nonsingular symmetric K-bilinear form on F

by setting (x, y)= T(xy). Then 1 x is the space of trace 0 elements F, and IIL’+/-.
From now on, ti and t5 will be chosen from 11. Since T(c) T(ff)2, this amounts to
choosing u, v 11 Then u + v and u + v also belong to 11

By (6.2), ti2= (k + 1)u. Thus, (6.5) reduces to

(u +v)T((u + v)sr2) uT(u2)+vT(v2)
for all u,vlI and srL’. Then uT(v2)=vT(u2). Since dim ll>dimL’1 we can
find v 11 and " L’ such that T(vsr2) (v, sr2) # 0. Then each u 11 lies in the 1-space
Kv. Since dim 11= m- 1 ->2, this is ridiculous. This completes the proof of both
Lemma 6.4 and Theorem 6.3. El

By definition, the plane over (F, o) has a very nice collineation of order q"-1
[STK, Thm. 4.2(iii)]. For completeness, we will exhibit this collineation.

PROPOSITION 6.6. There is a collineation g of order q" 1 which fixes 0 and two
points xoo and yo at infinity, such that (g) has orbits of length q"- 1 on the lines Oxoo,
0yoo and xooyoo.

Proof. The lines through the origin of the plane over (F, o) are x 0 and y n x.
Define g by

(x, y)* ([*(-x’)]/(k + ), Cy),

where (sr) GF(q")*. Clearly, x 0 and y 0 are fixed lines. We will show that g
sends y n x to y r x, where ti ?sr.

By definition, (x, n x)g (u, sr(n x)), where u [1 ((-lx’)]/(k + 1). The
definition of u’ shows that u’ st-ix ’, so x’= ’u’. Now

(m x)= ((r .((u’))/(k + 1)

sr[r2sru’ + krT(r(u’)]/(k + 1)

(? u’)/(k + 1)= r u.

Thus, g sends points of the form (x, m x) to points of the form (u, r u).
Since both x -, (x 1)/(k + 1) and its inverse x x’ are additive (in fact, K-linear),

g is a collineation. Moreover, the relations r/st and u’= x’sr- prove the desired
transitivity on the line y 0 and the line at infinity; on the line x 0, this transitivity
is obvious. This proves the result. [3

Remarks. 1. Let F(k) denote the quasifield in Theorem 6.3. Clearly,
Gal(GF(q’)/GF(q)) lies in Aut F(k), while Aut GF(q’) does not.

If q p2 is a square, and kp k, then the involutory field automorphism 0 defined
by x= x" is in AutF(k). If x= x then T(x) is also obtained from the trace map
GF(p’)-, GF(p), and we obtain a Baer subplane which can be coordinatized by a
quasifield obtained in the same manner as F(k) was. In particular, this subplane is
nondesarguesian.

2. In the notation of (4.5), F(k) arises from the nonsingular point (u + kw). By
(4.3), (u + kw) (u + kw) with k k/(k + 1), so the planes over F(k) and F(k) are
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isomorphic. This accounts for the 2 in the denominator occurring in [STK, Thm.
4.2(iii)].

3. By [STK, Thm. 4.2(iii)], the plane over F(k) is not a semifield plane. It seems
to be difficult to prove this directly from the definition of F(k).

7. Homologies. Let A, be a second, third or fourth cousin of AG(2, q"). The
group induced by Aut (A) on the line at infinity is described in [STK, Thm. 4.2]. In
order to deal with expansions of these planes, we will need information concerning
the groups of homologies with center 0. This amounts to an easy application of parts
of the last two sections when A is a second or third cousin; however, a different
approach is required in order to prove the corresponding result for fourth cousins.

LEMMA 7.1. Let A be a second, third orfourth cousin ofAG(2, q"), where q" > 8.
LetH denote the group of all homologies with center O. Then H GF(q)*.

Proof. If (F, o) is one of the quasifields in 5 or 6, then H is isomorphic to the
group of all x F* such that (u + v) x u x + v x and (u v) x u (v x) for all
u, v F (Dembowski 13, p. 132]). Now apply Lemmas 5.5 and 6.4.

The remainder of this section will be devoted to the case of fourth cousins. In
order to prove Lemma 7.1 in this case, we will need a description of their spreads.
This will be obtained from a description of desarguesian spreads different from that
of4.

Let K, F and T be as usual. Let F’= GF(q2") and K’= GF(q2). We will depart
from the notation in 4 by writing V F’0)K’ and

Q(a, r)= T(aff)+ r
tor a F’ and r K’; here, 5 a q". Note that K’F.

Let W denote the kernel of T. Set

;[0] {(Ow + Or, r)lw W, r K’}

whenever 00 1, and

{[0]l 0# 1}.

Then E[0] is a totally singular m + 1-space (so that V is an l]+(2m + 2, q) space), and
is a spread.

If r#0 then (0, r) is nonsingular. Set ’= Z(((0, r))). Then ’ is a symplectic
spread, which can be identified with the set of all K-subspaces

(7.2) Z’[0] OW+ OrK

of F’, where 00 1.
If r K then (7.2) states that ’[0] OF. Thus, ’ is desarguesian in this case, and

hence so is 5;.

Every rK’-K determines a fourth cousin of AG(2, q"). Clearly, r and ar
determine the same cousin if a K*. Note that r and ? determine isomorphic cousins
(compare [STK, Thm. 4.2(iv)]).

If bb 1, then x - bx sends ’[0] to E’[b0]. This produces the cyclic collineation
group appearing in [STK, Thm. 4.2(iv)].

We are now in a position to complete the proof oi Lemma 7.1. Fix r K’-K.
The groupH of homologies ot A(E’) with center 0 consists ot those invertible semilinear
transformations of the K-space F’ which induce the identity on 5;’.

Assume that IHI > q 1. Clearly, H is normalized by the above cyclic collineation
group of order q"+ 1. It follows that there is an irreducible collineation group (g)
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centralizing some h H such that ]hi A" q 1. By Schur’s lemma, CFL(F’) (g) F’*.
Consequently, h has the form x -.-> Ix for some s F’-K.

Now IE’[1] E’[1]. Since dim W m 1 _-> 2, IW W O. Then s F, so that
lW

_
F f) ,’[1] W (since r s K’- K). Consequently, [/1 divides both IF[- 1 and ]W[-

1. However, Ill A" q- 1, so this is ridiculous.
This completes the proof of Lemma 7.1. [3
Note that the above argument provides a direct verification of the fact that fourth

cousins are nondesarguesian.

8. Expanded cousins of desarguesian spreads. We are finally ready to deal with
the spreads S((y)e) obtained from a desarguesian spread E of an f/(2m +2, qe)
space, where e and rn are odd.

THEOREM 8.1. If E(y) is a second, third or fourth cousin of the AG(2, (qe)m)
spread, where e > 1, rn > 1 and em is odd, then S(Y(y)e) is a nondesarguesian spread
in an f/(2em + 2, q) space.

Proof. Assume that E*= S((y)e) is desarguesian. Let y* be as in Lemma 2.1.
Then E*(y*) must be a cousin of AG(2, qem), while E*(y*)= (y)e. Thus, E*(y*) is
nondesarguesian. Now two applications of Lemma 7.1 produce a contradiction.

THEOREM 8.2. (i) The nondesarguesian spreads in Theorem 8.1 are not equivalent
to the nondesarguesian spreads in Theorem 3.1.

(ii) The expandedfourth cousins in Theorem 8.1 are not equivalent to the expanded
second or third cousins.

Proof. (i) Assume that one of the spreads E* in Theorem 3.1 is equivalent to
one of those in Theorem 8.1. Then H FO/(6e + 2, q). has a subgroup Gr or GM
as in Theorem 3.1, as well as a subgroup with an orbit of length I*1-1 or
Thus, H is at least 2-transitive on E*. This contradicts Lemma 3.3.

(ii) Once again this follows from Lemma 3.3. [-1

An explicit description of expanded third cousins is given in (9.10).

9. New Kerdock sets. In [STK, 10], new Kerdock sets were shown to exist.
Similarly, by [STK, 5], the spreads in 3 and 8 also yield new Kerdock sets over
any field of characteristic 2, involving matrices of an arbitrarily large size. In this
section we will provide explicit examples, using expanded third cousins of desarguesian
planes. Instead of starting from a spread, we will begin with a direct construction,
later verifying that it arises from such a cousin.

Let F GF(qe"), K GF(qe) and K’= GF(q), where q is even, em is odd, and
e, rn 1. Let T"F K and T’:F K’ be the trace maps.

LEMMA 9.1. If Z F and k K then
(i) T’(T(z))= T’(z) and
(ii) T’(kzT(z))= T’(kz2).
Proof. (i) L(z) T’(T(z)) T’(z) defines a K’-linear map F-, K’ such that L(1)

xqi0andL(z) L(z).ThenLi__x’) emL(x) L(x),whilei= K soL(x)=O.
(ii) By (i), T’(kzT(z))= T’(T(kzT(z)))= T’(kT(z)T(z))= T’(kT(z))

T’(T(k/z))= T’(k/z)= T’(kz), as required.
Next, form the K’-space FK’. This has a natural inner product defined by

(a, a). (, b) T’(a) + ab. This is a nonsingular symmetric bilinear form, and admits
an orthonormal basis. Fix any such basis, and use it to identify matrices and linear
transformations.

Now fix k K- GF(2), and set k* 1 + k 1/2.
For s F, define M, by

(a, a)M (s2a + ksT(sa)+ k*sT’(k*sa)+ ak*s, T’(k*sa)).
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THEOREM 9.2. {Msls F} is a Kerdock set of (era + 1) x (era + 1) skew-symmetric
matrices.

Proof. Since

(a, a)Ms (a, a) T’(a[sEa + ksT(sa) + k*sT’(k*sa) + ak*s]) + aT’(k*sa)

T’(aEs2)+ T’(aksT(sa))+ T’(ak*s)T’(k*sa)

+ T’(aak*s)+ aT’(k*sa)

T’(aEs2(1 + k’E)) + T’(kasT(as)) 0

by Lemma 9.1(ii) (with z as), each Ms is skew-symmetric.
Assume that

(9.3) (a, a)(Mr +Ms) 0

with r s. Then

(9.4) T’(k*ra)= T’(k*sa)

and

(9.5) tEa + krT(ra)+ k*rT(k*ra)+ ak*r sEa + ksT(sa)+ k*sT(k*sa)+ ak*s.

Multiply (9.5) by a, and set x ra and y sa"

(9.6) xE+kxT(x)+k*xT’(k*x)+ak*x=yE+kyT(y)+k*yT’(k*y)+ak*y.
Apply T:

T(x)2 + kT(x)2+ k*T(x)T’(k*x)+ T(ak*x)

T(y2) + kT(y)2 + k*T(y)T’(k*y)+ T(ak*y).

By (9.4), T’(k*x)= T’(k*y), so this reduces to

(T(x)+ T(y))2(1 + k)= k*(T(x)+ T(y))T’(k*x).

Now T(x)+ T(y) is 0 or T’(k*x)/k*. If k*(T(x)+ T(y)) T’(k*x), apply T"

T’(k*x)= T’(T(k*T(x)+ k* T(y)))= T’(T(k*x + k’y))

=T’(k*x)+T’(k*y)=O

by Lemma 9.1(i) and (9.4). Thus, T(x)+ T(y)= T’(k*x)/k* =0.
This leaves us with the case T(x)+ T(y) 0. By (9.6) and (9.4),

(x + y)2 + k(x + y)T(x) + k*(x + y)T’(k*x)+ ak*(x + y) 0.

If a 0 then a 0 by (9.5). Assume that a 0, so a 0 and x + y 0. Then

x + y + kT(x)+ k*T’(k*x)+ ak* O.

Consequently, x + y K, so that x + y T(x)+ T(y)=0, which is not the case. This
contradiction completes the proof ot Theorem 9.2. [3

Remark 9.7. Let As be the matrix defined by (a, a)As (sa, a). Then Ms
AsM1As. Also, As is a symmetric matrix, since (a, a)As. (/3, b) T(as) + ab
(a, a). (, b)As. Clearly, the matrices {A, ls F*} form a cyclic automorphism group
of the Kerdock set in Theorem 9.2 which is transitive on the nonzero members. O
course, Kerdock sets need not have such a cyclic automorphism group" none of the
ones arising from Theorem 3.1 does.
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Remark 9.8. In the same notation, the usual Kerdock set on FK’ consists of
the matrices Ns, s F, defined by

(a, a)Ns (s2a +sT’(sa)+as, T’(sa)).

Once again, Ns AsN1As. The corresponding spread is the desarguesian one in (4.2).
Remark 9.9. The Kerdock set corresponding to the spread in [STK, 8] can be

described in a similar manner. Let F GF(q3), K GF(q), and define (a, a). (/, b)
as usual. This time,

(a, a)Ns (asq+q-+ aqs2+ aO-s, T(as+q)).
It is an amusing exercise to verify directly that this does, indeed, yield a Kerdock set.

We now turn to the spread from which the Kerdock set of Theorem 9.2 arises.
Let F, K, K’, T, T’, k and k* be as before. Let Vo denote the F-space with basis

e, ’, regard Vo as a K’-space, and form the (2era +2)-dimensional vector space
V’= VoO)(u’, w’). Define Q’: V’ K’ by

Q’(ae +[+cu’+dw’)= T’(a)+c2+cd.

This yields an f/(2em + 2, q) space. Set

(9.10)
X*[c] El’+ K’(u’ + w’),

X*[s]={ae +(s2a + ksT(sa)+ k*sa)f+ T’(k*stz)u’ + aw’l F, a K}

and X* {*[s]ls F kJ {co}}.
THEOREM 9.11. (i) X* is an expanded third cousin ofAG(2, (qe)m).
(ii) The Kerdock set defined by the pair (*,*[oo]) is the Kerdock set in

Theorem 9.2.
(iii) The Kerdock set in Theorem 9.2 is not equivalent to the desarguesian one in

Remark 9.8.
Proof. X*-{*[oo]} can be obtained as follows. Identify *[0] with F@K’ in the

natural manner. Let zr: *[0]--> X*[oo] be defined by (ae + aw’)zr af+ a(u’+ w’). If
s F let Ms be as in (9.2). Then

(9.12) Z*[s] {ae + aw’ + (ae + aw’)mrl F, a K’}.

Since Ms is skew-symmetric, (ae + aw, (ae + aw’)Msr) (ae + aw)Ms (ae + aw) O.
Thus, E*[s] is a totally singular (era + 1)-space.

In order to compute (u’)+/- fq ,*/(u’), set a 0 and u 0 in (9.10) and obtain (4.5)
(with K’ replacing K in (4.5)). By definition ( 2 and [STK, 3]), E* is obtained as
required in (i). Then (ii) also follows by definition [STK, 5]. Finally, (iii) is an
immediate consequence of Theorem 8.1 and [STK, Lemma 5.4].

THEOREM 9.13. Let q be a power o]’ 2, and let 2n 1 be composite.
(i) There are at least two inequivalent nondesarguesian spreads in an fl+(4n, q)

space.
(ii) Them are at least three inequivalent nondesarguesian Kerdock sets of 2n 2n

matrices over GF(q).
Proof. (i) Write 2n- 1 =em with e > 1 and m > 1. If qe,, 29 we can apply

Theorem 8.1 (for a suitable choice of e and m). If qe,, 29, use Theorem 3.1.
(ii) If ,E is one of the spreads in Theorem 9.11, then FO+(4n, q)x is not transitive

on X. Consequently, the result follows from [STK, Lemma 5.4].
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10. Concluding remarks. The reader will have noticed that we have left at least
as many questions unanswered as we have answered. Here is a sample of some of
these questions.

(1) Prove that all of the spreads in Theorem 8.1 are inequivalent. This will require
a much more geometric approach to inequivalence questions.

(2) The expansion process can be repeated indefinitely. Do new spreads always
arise? Prove that they do in the case of cousins of desarguesian spreads.

In particular, the fourth cousins of desarguesian planes can be expanded and
sliced over and over in such a way that each resulting translation plane has a collineation
transitively permuting the points at infinity. Presumably, this produces enormous
numbers of flag-transitive translation planes. (Of course, we already know at least
q/2 log2 q flag-transitive planes of order q2n-1 [STK, Thm. 4.2iv]. In particular, if
2n-1 is composite, then there are more than 2"//2x/ flag-transitive planes of
order 22n-1.)

Similarly, third cousins of desarguesian planes can be expanded over and over
while retaining the existence of a collineation behavin_g as in Proposition 6.6. (However,
there are already known to be more than 2"/-/2x/n planes of order 22n-1 behaving
this way whenever 2n 1 is composite.)

(3) The orthogonal spreads in Theorem 8.1 do not have transitive groups, and
hence produce large numbers of nonisomorphic translation planes [STK, (3.6)]. Do
any of them have interesting properties? Some have the rather perverse property that
no collineation acts nontrivially on the line at infinity; when expanded, these undoub-
tedly produce large numbers of inequivalent Kerdock sets.

(4) If X is as in Theorem 8.1, and if W is an f-(2em, q) subspace, then W fq X
is a spread of W. Show that the resulting spreads are not equivalent to spreads obtained
from desarguesian l)+(2em + 2, q) spreads.

(5) Find an internal criterion for a translation plane to be symplectic.
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A COMBINATORIAL PROOF OF THE ALL
MINORS MATRIX TREE THEOREM*

SETH CHAIKENt

Abstract. Let (Aii), i, ] V be the matrix with entries -ai if # ] and diagonal entries such that all
the column sums are zero. Let aii be a variable associated with arc i] in the complete digraph G on vertices
V. Let A(I/I f_7) be the matrix that results from deleting sets of k rows W and columns U from A. The
all minors matrix tree theorem states that IA(ff’l t_7)l enumerates the forests in G that have (a) k trees,
(b) each tree contains exactly one vertex in U and exactly one vertex in W, and (c) each arc is directed
away from the vertex in U of the tree containing the arc. We give an elementary combinatorial proof in
which we show that each of the terms in IA(ff’l )1 that corresponds to an enumerated forest occurs just
once and the other terms cancel. The sign of each term is determined by the parity of the linking from U
to W contained in the forest, and is easy to calculate explicitly in the proof.

The results are extended to signed graphs. The theorem provides a coordinatization (linear representa-
tion) of gammoids that is in a certain sense natural.

1. Introduction. This paper describes an elementary, combinatorial proof of the
matrix tree theorem, an extension of it to signed and voltage graphs, and its applicability
to the coordinatization of gammoids. We begin with a statement of the theorem.

Let the variables aij, for i, ] S and #: ] be weights on the arcs if of the complete,
loopless directed graph on a finite set of vertices S. Define matrix A by

(1) Aij I-ai if # ],

ak if/=/’.

A can be regarded as a "special" weighted adjacency matrix in which the #h diagonal
entry is the sum of the weights of arcs directed into vertex ]. Let A(ff’lO) be the
submatrix of A obtained by deleting the rows indexed by the elements of W c S and
the columns indexed by U c S. Assume S is linearly ordered; for example, it may be
{1, 2,..., N}. Assume W} ]UI. When F is a set of arcs, aF denotes the product of
their weights.

(ALL MINORS) MATRIX TREE THEOREM.

(2) det A(ff’[ )= e(W, S)e(U, S) e(r*)aF,
F

where the e (. denote signs which are defined in 2. The sum is over all forests F such
that

(i) F contains exactly WI U[ trees.
(ii) Each tree in F contains exactly one vertex in U and exactly one vertex in W.
(iii) Each arc in F is directed away from the vertex in U of the tree containing that

arc.
F defines a bi]ection or matching r*" W- U so r*(]) if and only if and ] are in
the same tree ofF.

The all minors matrix tree theorem was given in a form similar to that here by
W. K. Chen [4]. The rooted, directed forests enumerated in this theorem are sometimes
called branchings, the components of which are called arborescences.

One should observe that every forest enumerated by (2) contains a collection of
uI disjoint, simple, directed paths each of which starts at a vertex U and ends at

* Received by the editors July 15, 1981, and in revised form November 4, 1981.
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a vertex ’n’*-l(i) W. Each element of U f3 W comprises a trivial path of one vertex.
zr*, and therefore the relative signs of the terms in (2) are completely determined by
the pairs defined by the start and end vertices of these paths.

When U W every path above degenerates to a single vertex. Every sign in (2)
becomes + 1. If we replace the air by 0s or Is, the theorem gives us a way to count
the forests rooted and directed away from the vertices U in an arbitrary directed
graph. The resulting theorem is an easy generalization of the classical directed graph
version of the matrix tree theorem, for which uI- 1. The latter was probably first
described by Sylvester [23], [17], and was proved by Borchardt [2] and Tutte [24].
The undirected graph version is a special case for which air ari. When air is given the
value of the electrical conductance of the resistor joining nodes and/" in an electrical
network, (2) for IuI--1 and IuI-2 can be used to solve the electrical network
equations. The use of the duals of these "tree sums" for this purpose was given by
Kirchhoff [9]. Maxwell [14, Ch. 6 and appendix] described this application of (2)
which is called Maxwell’s rule. See [16] for an historical survey and applications. The
application of the matrix tree theorem and similar theorems to electrical network
theory is detailed by Chen [4]. The interested reader should also see [13] and [22].

Let G be a directed graph with vertices S. A linking in G from U c S onto
W c S is a subgraph of G consisting of UI disjoint, directed paths each of which
starts at a vertex in U and ends at a vertex in W. If the air are set to appropriate
values derived from a simple modification of G, a matrix M(SIS) is obtained for
which M(I/[ ) is nonsingular if and only if there is a linking from U onto W in G.
Thus submatrices of M-1 are coordinatizations (linear representations) of gammoids
defined by G. The coordinatizations so obtained are such that (up to a (det M)k factor,
which is a polynomial with all positive terms) determinants of their minors are
generating functions for directed forests that contain linkings. These generating func-
tions have the property that the sign of each term is determined by the parity of the
"permutation" defined by the linking. In 5 this coordinatization is contrasted with
two other known coordinatizations. See [25] and [21 as general references for matroid
theory and linking systems.

The notion of parity as used above is made precise in 2. In fact, our proof of
the matrix tree theorem is the result of a modification and strengthening of the linkage
lemma of Ingleton and Piff [8"] to take parity into account, along with an application
of the principle of inclusion and exclusion as used by Orlin [19] in a proof of the
theorem for U W {N}.

It is straightforward to extend the matrix tree theorem to graphs with multiple
arcs. We omit these details except in 4 where the results are extended to signed
graphs. There the results apply nontrivially even to the loops and half-arcs that may
belong to such graphs.

Our proofs are purely combinatorial in that we show every expression we deal
with is a generating function for a set of combinatorial objects. We classify and count,
with sign, the objects that correspond to a given monomial in order to compute its
coefficient. This way we can see why the subgraphs enumerated by (2) contain linkings
and have no cycles. We also see that the weights of the arcs in the linking only come
from off-diagonal matrix entries and all the other weights come from diagonal entries.
These insights lead us to proofs of extensions of the matrix tree theorem to signed
and voltage graphs ([27], [6] and [7]) which are discussed in 4.

The author’s study of the matrix tree theorem and the work in 2 and 5 is
mostly from [3], but 3 and 4 are new. [1] is a general reference for the elementary
graph theory notions which we do not define explicitly.
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2. Matchings, paths, cycles and signs. Let A and B be equicardinal and not
necessarily disjoint subsets of a set S. All sets in this paper are finite. A bijection
zr:A -> B is called a matching. A k-path in r is a sequence (Xo, Xl, , Xk) for which
xocA\B, xk cB\A, and "rt’(Xi)--Xi+l for 0_<-i <k. A O-path or trivial path (Xo) in zr
must satisfy Xo_A [.J B. For nontrivial k-paths, k >0, the elements x0, xl, ’, xk are
distinct, and xi c A B for 0 < < k. For n > 0, an n-cycle in zr is a set of distinct xi,
{xl, x2," , x,}, for which zr(xi) xi+l for 1 -< < n and zr(x,) xl. Every element of
an n-cycle in 7r belongs to A B. A 1-cycle is called a trivial cycle.

We can view the matching zr as a directed graph on S in which ij is an arc if and
only if cA and or(i)=/’. Given a directed graph G, we say 7r is a matching in G
when zr(i)=j only if ij c G. Unless otherwise specified, a cycle or path will always
mean a directed cycle or path. When we use the terms circuit or (connected) component,
we ignore the arc directions.

It is clear that every matching decomposes into disjoint paths and cycles. (To be
technical, we should note that the trivial paths depend upon the underlying set S.)
The outdegree (resp. indegree) of in zr is 1 if c A (resp. c B) and is 0 otherwise.
When A B there are no nontrivial paths in r and we get the familiar decomposition
of a permutation of A into cycles.

For completeness, we state the linkage lemma [8]. A linking of U onto W is a
collection of lUI disjoint directed paths each of which starts at an element of U and
ends at an element of W.

LEMMA. Suppose G is a directed graph of S. Let G’= G [_J{ii c S}. Suppose U,
Wc S. Then, there is a linking in G from U onto W if and only if there is a matching
7r S\ W-> S\U in G’.

For a proof, see [25].
Now suppose A and B are linearly ordered; for example, suppose A and B are

sets of integers. The pair {i, j}c A is an inversion in 7r if < and 7r(i)> r(j). Let
n(zr) denote the number of inversions in zr. We define the sign e(zr) of the matching
by

e(r)- (-1)(=)

When zr is a permutation, it is well known that e(zr) is its sign, that e(r) does
not depend on the ordering of A B, and that when zr is decomposed into cycles,

(3) e(zr)= l-I (-1)"-1.
cycles

Let Y be a linearly ordered set and X Y. We define

n (X, Y)= I{{i, j}li < 1, c Y\X, / c X}l
and

e(X, Y)= (-1)"(x’Y).

When Y={1,2,...,N}, n(X, Y) equals Y’.X-]X[-(II). Hence e(X, Y)e(X’, Y)
commonly appears as (-1)’x+’x’, when

Suppose $, T are linearly ordered sets and $ f’)T 4. Suppose or" A--) B and
or" A -) B are matehin8s where A $, A $\A, B T, and B $\B. We can combine
r and or’ to form a matching r or’" $ -) T for which

crier’(i) r(i) if cA,_
r’(i) if c A.
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It is easy to prove by induction on n (A, S)+ n (B, T) that

e(zrO)zr’) e(A, S)e(B, T)e(r)e(zr’).

COROLLARY. Suppose S is linearly ordered, A S, A S\A, B S, and B S\B.
Let r A B and zr" A B be matchings. Then

(4) e (Tr zr’)= e(A, S)e(B, S)e(r)e(zr’).

Proof. Let T be a disjoint copy of S. Redefine B, B appropriately and apply the
above remark. [3

Let A and B be subsets of a linearly ordered set $ and zr" A B be a matching.
The paths in r determine a matching zr*" A/ as follows" For each (possibly trivial)
path (Xo, xl,’", Xk), we have zr*(Xk)= Xo. The linkage lemma asserts that there is a
matching zr" A B in a certain digraph G’ if and only if there is a linking in G from
/ onto A which defines 7r* as shown. Our strengthening of this lemma shows how the
signs of any such pair zr, 7r* must be related.

THEOREM. Suppose r" A B and zr*" A B are given as above. Then

(5) e(zr)= e(r*)e(A, S)e(B, S) rI (-1)k rI (-1)"-.
k-paths n-cycles
in in

Proof. zrzr*" S S is a permutation. Its cycles consist of one (k + 1)-cycle for
each k-path in zr, along with all the n-cycles of zr. Hence, when we apply (3) we obtain

e(Trzr*)= rI (-1) H (-1)"-1.
k-paths n-cycles in
in

The identity follows immediately from (4). [3
The matrix tree theorem will be an easy consequence of the decomposition of zr

into paths and cycles, formula (5), and the definition of the determinant

det M(A IB) Y, e(r) I-I Mi,(i).
A-B A

The sum is taken over all matchings zr" A B.

3. Proo| ot the matrix tree theorem. For convenience, we here restate the matrix
tree theorem.

ALL MINORS MATRIX TREE THEOREM.
THEOREM. Suppose A(S IS) is given by (1), the e( are defined in 2, and U,

w s with UI Wl. Then

(2) det A(ff’l 0)= e( W, S)e( U, S) Y e(r*)a
F

where the sum is over all forests F on S such that
(i) F contains exactly [UI wI trees.

(ii) Each tree in F contains exactly one vertex in U and exactly one vertex in W.
(iii) Each arc in F is directed away from the vertex in U of the tree containing that

arc.
F defines a matching r*" W U so r*(]) if and only if and ] are in the same tree
o[F.

Proof. By definition of det A(ri ),

(6) det A([ 0)=
V-O W
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Suppose in (6), for each matching zr, we distinguish the diagonal entries, which have
the form Ajj, from the off-diagonal entries of A. If we apply the definition of A, we
obtain

(7) deta(ff’[ O)= Y’. e(zr)[ aij] I-I (--ail).
(’n’,o’) i" "n’(i) =]

Here, the determinant is expressed as a sum of terms +an, one for each pair (zr, o’)
such that 7r is a matching r" W U and o- is a set of arcs consisting of one and only
one arc if for each/" such that zr(])= ].

Let H be any subgraph defined by a pair (zr, o’) as above. In H, for all/" S,

1 if/’ U,
(8) indeg(j)

0 if j s U.

The indegrees in H are all at most one. Hence, any circuit in H must be a
(directed) cycle. Furthermore, the cycles in H are disjoint. Now consider any path P
in zr as a subgraph of H. No arc in P can belong to a cycle in H. This is because the
indegree in P of each vertex in P is equal to its indegree in H. Therefore, only arcs
in P may be directed into vertices in P. We conclude that each cycle in H either
belongs to tr or is a nontrivial cycle in zr.

We can now conclude that if H has no cycles, then H is a forest F that satisfies
(i), (ii), and (iii). Let us therefore write det A(ff’[ ) as HcnaH. The theorem will
be proved when we show that c/ 0 when H contains a cycle, that cn is given by (2)
otherwise, and that there is a pair (zr, tr) that defines H =F for every forest that
satisfies (i), (ii), and (iii).

Let r* be the matching zr*’ W--> U defined in (2) by the paths in zr. When we
apply (5) to (7) we obtain

(9) detA(ff’l r)=e(ff’, S)e(O, S) e(zr*)(-1)’<)[ ,aij] 1--[ ai
(’rr, o’) i" (i) =]

where cy(zr) is the number of nontrivial cycles in
Let H be a subgraph with K cycles that is defined by some (rrl, trl). Let us

consider all pairs (r, tr) that define H. In each pair, zr has the same paths as rl. All
the arcs that are neither in a cycle nor in a path in zr belong to tr. Each cycle in H
can be either a nontrivial cycle in r or a cycle in tr. Hence, there are 2K pairs (zr,
that define H and

ci=e(W,$)e(U,$)e(r,) y. (_1) =+(I_I)K +1 ifK=O,

--o 0 ifK 0.

It is easy to see e (if’, S)e (0", S) e (W, S)e (U, S) when wl- uI, Hence, is
given by (2).

Finally, suppose F is a forest that satisfies (i), (ii), and (iii). F is defined by the
pair (r, r) for which zr has the paths linking U to W in F, zr has no nontrivial cycles,
and tr consists of all the arcs in F not in these paths. !-]

The last step in the proof tells us each F counted by (2) is due to just one matching
r in (6). The weights of the arcs in the linking only come from the off-diagonal entries
of A. All the other arc weights come from diagonal entries which correspond to trivial
cycles in zr.
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4. Extension to signed graphs. A signed graph is a graph to which each arc has
been given a sign. See [27] for a systematic treatment of the definitions, properties,
and applications of signed graphs. Broadly speaking, signed graphs differ from ordinary
graphs in the matroids they define. For example, a circle (i.e., a circuit in the underlying
graph) is a circuit in the signed graphic matroid only if it is positivemthat is, the
product of the signs is + (see [7]), otherwise the circle is an independent set.

A signed directed graph is like an ordinary directed graph, except each arc e is
given a sign s(e)s {+,-}, and, this time, we allow multiple arcs, loops (arcs of the
form e ii), and half-arcs (e i; the sign of a half-arc is undefined). As in an ordinary
directed graph, arc e ij is said to be directed "out" from and "into" j (even if

j). If e i, e is said to be directed into i. A directed k-path is a sequence of arcs
(el xoxl, e2 xx2, , ek Xk-Xk) in which all the x are distinct. A directed n-cycle
is a set of n arcs {e xx2, e2 x2x3,"’, e, x,xl} incident on n distinct vertices.
Note half-arcs cannot appear in (directed) k-paths or n-cycles, while a loop is a
1-cycle. A signed directed graph differs from a signed graph (as in [27]) in that the
fixed order of the endpoints of each arc allows us to define directed paths and cycles
in directed graphs. These definitions must not be confused with those involving oriented
signed graphs [26].

A path or cycle will be called positive if the product of the signs of its arcs is +;
it is negative otherwise.

In this chapter we extend the matrix tree theorem and our proof to signed directed
graphs. Then, in the same way the undirected graph version of the matrix tree theorem
was obtained from the directed graph version, we obtain an extension of the matrix
tree theorem to signed graphs by Zaslavsky [27]. We further extend the theorem to
voltage graphs [6] over an abelian group.

As for the matrix tree theorem, we assign a weight a to each arc in the signed
directed graph. One must not confuse the weight of an arc with its sign. Matrix A(SIS)
is defined as follows.

(10a) If j, Aj - s(e)ae

where the sum is over all arcs e i].

(10b) Aji ae + . 2at + ah
h

where e ranges over arcs i/directed into / for which , ranges over negative loops
if, and h ranges over half-arcs into ].

MATRIX TREE THEOREM FOR SIGNED DIRECTED GRAPHS. Let G be a signed
directed graph on S and a(SIS) be as above. Suppose U, W S, [U[ wl, Then

(11) det A(I 0)= e(U, S)e(w, $) E e (r*)(-1)"(v)2"(V)av

where the sum is over all sets of arcs F in G such that
(i) F contains [U[ ]W[ components that are trees.

(ii) Each tree from (i) contains exactly one vertex in U and one vertex in W.
(iii) Each arc in each tree from (i) is directed away from the vertex in U of the tree

containing that arc. Hence these trees together contain a linking from U onto W. This
linking defines r*" W Uas in the matrix tree theorem, np(F) is the number of negative
paths in this linking.

(iv) Each of the remaining components of F contains exclusively either just one
half-arc or just one negative (directed) cycle. There are no other circles and each
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remaining arc is directed away from the half-arc or (directed) cycle of its component.
nc (F) is the number of negative cycles.

Proof. It is easy to verify that

det A(I/’ O) E chart,
H

where the sum is over some subgraphs H in which for all $, (8) is satisfied. Since
our task is to determine cn, we can set ae 0 for e H and write our proof as in 3.
Please note that if designates a particular arc in H c G with a given sign. Equation
(7) becomes (Sij 1 if j, 6ij 0 if # ], and 6 0)

(12)
(,r, r) qr

where we have abused the notation because cr may contain a half-arc. Still, any
nontrivial directed cycle in H is either a nontrivial cycle in zr or a nontrivial directed
cycle in r. The arc sign factors s(. only occur for arcs in 7r, so the extension of (9) is

det A(ff’l 0)= e(ff’, S)e(O, S)

(,r, r) //cr =i

where nc’(,n’) and np(’rr) are respectively the numbers of negative nontrivial cycles
and negative paths in r. If H has Kp positive nontrivial directed cycles and K, negative
nontrivial directed cycles, there are 2K.+:- pairs (Tr, o’) that define H. For each trivial
cycle ]] in H, ]] o- and zr(])=] for each (Tr, o’) that defines H, and so the factor
(1 + 6ii)= 2 occurs in each term for H in (13). Let Kt be the number of trivial cycles
in H.

We conclude

(14) cn e(V, S)e(, S)e(rr*)(--1)"P(H)2:’(1 + 1)*c" (1 1):".

Thus, if H has no positive cycles, cn is given by (11). Finally, suppose F is given
which satisfies (i), (ii), (iii), and (iv) with Kn negative nontrivial directed cycles. Again,
we set all the as but those in aF to zero. Then there are 2:- pairs (r, r) that define
F. In all of them, zr contains the linking described in (iii) and r contains the negative
trivial directed cycles and all arcs neither in a cycle nor the linking. Each negative,
nontrivial directed cycle belongs to either zr or r exclusively. Thus aF appears
in (11). F]

For a signed (undirected) graph G on $, A($15) is a symmetric matrix [27]. To
represent G by a signed directed graph G’, we represent each undirected arc e i
by a pair of directed arcs if and fi with identical weights ae and signs, even if .
Half arcs in the undirected graph are represented by only one arc in the directed
graph. Hence the analogue of (10) is

if # ], Aii= -E s (e)ae, Aii Z ae + E 4at +
h

The factor of 4 makes more sense when A is written A DED’ where D is a signed
incidence matrix of G and E is the diagonal matrix of arc weights.
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MATRIX TREE THEOREM FOR SIGNED (UNDIRECTED) GRAPHS [27].

(15) det A(.I tSr)= e(U, S)e(W, S) Y. e(zr*)(--1)nPF)4nc<F)aF.
F

The sum is over all sets of arcs F that satis]’y conditions similar to (i), (ii), (iii) and (iv).
The new conditions are obtained by deleting the "directed" qualifier everywhere from
the old conditions.

Proof. Suppose we apply the directed graph version of the theorem to G’. Suppose
T is a tree in G that, according to the conditions, contains u U or a half arc. Then
there is exactly one directed tree T’ in G’, with aT aT,, that satisfies the corresponding
conditions, and conversely. Now suppose T is a subgraph in G that, according to
condition (iv), contains a unique circle (which is negative). Then there are just two
subgraphs T’ in G’, with aT aT’ that satisfy the corresponding conditions, and
conversely. The directed cycles in these two subgraphs are directed oppositely while
all the other directed arcs are identical. Thus, each undirected graph F that satisfies
(i), (ii), (iii) and (iv) with nc(F) negative circles is counted 2he(F) times by directed
graphs F’ in G’ with aF-" aF’. The coefficient for each directed graph F’ is :i:2nc(F)

(and is constant), so c in (15) is +2nc(-)2’c(r)= +4nc(F). ["]

A voltage graph ([27], [6]) is a graph to which each arc has been given an element
of a group. Signed graphs are a special case of voltage graphs. Our method can be
used to prove a version of the matrix tree theorem for voltage graphs over an abelian
group F. It is necessary to extend the ring of coefficients for the polynomials in the
arc weights to the group ring of F. A directed cycle is positive when the product of
the voltages on its arcs is 1, the identity of F. Suppose we define matrix A for a
voltage graph as in (10) except s(e) now stands for the voltage of arc e and the
coefficient of al in Aii when is a loop =f/" is (I-s(/)). When E is a set of arcs, let
s(E) denote the product of their voltages. The voltage directed graph version goes
through as for the signed directed graph theorem except that the notion of positivity
is replaced with the notion of positivity for voltage graphs and expression (11) becomes

det A(ff’l O)= e(U, S)e(W, S) Y’. e(Tr*)s(P) I-[ (1--s(C))aF.
F C

Here, P is the linking from U onto W in condition (iii). C ranges over the nonpositive
directed cycles in F.

$. Gammoids. The matrix tree theorem can be used to give a coordinatization
(i.e., representation of a matroid by the column vectors of a matrix over a field) of
gammoids that is "natural" with respect to sign in a way that other known coordinatiz-
ations are not. We discuss this below. The books by Welsh [25] and Schrijver [21]
are our references for matroids and linking systems.

Let G be a directed graph on vertices $ and let aij be an indeterminate when if
is an arc in G and be zero otherwise. The matrix tree theorem implies that A (lgrl )
is nonsingular only if there is a linking in G of U onto W.

Now let -B be the same matrix as A except that its main diagonal entries are
all zero. Let ! be the identity matrix and T I-B. The linkage lemma of Ingleton
and Piff [8] asserts that det T(ff’]) is nonzero if and only if there is a linking in G
of U onto W. The subsets U of $ for which there is a linking in from U onto W,
where W is a fixed subset of S, comprise the bases of a matroid. Such a matroid is
called a strict gammoid [20]. The linkage lemma is the key step in the proof that a
matroid is a strict gammoid if and only if it is the dual of a transversal matroid.
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Linking systems or bimatroids [10] provide an alternative view of matroid theory
that is most suitable for the purposes of this section. A linking system (X, Y, A) is
equivalent to a matroid M on the disjoint union X t_J Y with a distinguished base X.
A pair (U, W) belongs to A c 2x 2 Y, which is called the set of linked pairs (or
nonsingular minors), when (X\ U)[_J W is a base in M. The axioms for linking systems
given by Schrijver [21] are properties satisfied by the (U, W) such that there is a
matching from U onto W in a bipartite graph G cX Y.

(a) If (U, W) A and x U, then (U\x, W\y) A for some y W.
(b) If (U, W) A and y W, then (U\y, W\y) A for some x U.
(c) If (U1, W1), (U2, W2) A, then there exists (U’, W’) A with U

U2 and W2 c W’c W W2.
The third is the Dulmage-Mendelsohn [15] property.

A linking system (X, Y, A) is said to be coordinatized by a matrix M(XI Y) when
(U, W) A if and only if M(UI W) is nonsingular. Now suppose (X, Y, A) is such that
(X, Y) A. Schrijver shows then that (Y, X, A-) is a linking system, where

A- ={(W, U) (X\ U, Y\ W) A}.

(Y, X, A-1) is called the inverse of (X, Y, A). It follows from Jacobi’s theorem [18]
that if M(XI Y) coordinatizes (X, Y, A), then M-(YIX) coordinatizes (Y, X, A-).
To be more specific in our application of Jacobi’s theorem, if M(S IS) is any matrix
and A3/(S S) is defined by

l/fi] e(i, S)e(j, S) det M(I -)
(note e(i, S)e(j, S) (-1)i+i when S {1, 2,. ., N}), then

(16) det3(UI W) (detM)lerl- e(U, S)e(W, S) det M(ff’] ).
Let G be a directed graph on S. G defines the strict gammoid linking system

(S, S, A) in which (U, W) s A if and only if there is a linking of U onto W in G. Thus,
the transposed submatrices of a coordinatization of the strict gammoid linking system
(S, S, A) comprise coordinatizations of all the gammoid matroids that can be defined
by G. We will give three coordinatizations of the strict gammoid linking system defined
by G. The coordinatizations will be over any extension field that contains the algebrai-
cally independent elements {ae e is an arc in G}.

The first coordinatization is . Essentially, it was described by Schrijver and the
proof of its correctness uses the linkage lemma. When we combine (16) with an
argument similar to that in 3, we obtain

det ’(UI W)= (det T)IUI-x e(’rt’*)(--1)cy<F)aF
F

where the sum is over all subgraphs F of G whose connected components consist of
a linking from U onto W, isolated vertices, and cy(F) disjoint (directed) cycles. The
linking defines a matching rr*" W--> U where rr*(])= when the linking contains a
path from to ].

The second coordinatization is/-jr, where H I +A and A is the matrix (1) in
the matrix tree theorem.

THEOREM. H(ff’l ) is nonsingular if and only if there is a disjoint collection of
directed paths linking U onto W in G.

Proof. Let 0 S. Consider graph G’ on S LJ{0} which contains all the arcs in G
along with all arcs 0j, j s S. Suppose the latter arcs have weight 1. H is the submatrix
of the "special" adjacency matrix (1) of G’ obtained by deleting row and column 0.
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If there is a linking L in G from U onto W, then there is a term in det H(
corresponding to the forest consisting of the arcs in L along with all arcs 0] for ] not
a vertex in L. Conversely, if det H(ff’l )# 0 there is a forest in G’ that contains a
linking in G from U onto W.

The above proof along with the matrix tree theorem and (16) is used to derive

det/-(U W)= (det H)IUl-1E e(’n’*)aF.
F

Apart from the (det H)IUl-1 factor, this is the generating function for all directed
forests in G that contain linkings from U to W. The sign of each term is the sign of
the matching r*" W U that the corresponding linking determines. In this sense we
remark that the coordinatization H is "natural" in a way the first coordinatization
fails to be.

The third coordinatization comes from Mason [12]. It is the matrix e(sls) defined
by

eii ap
P

where the sum is over all (simple) directed paths from to ] in G. Suppose UI WI I.
Mason’s proof uses Menger’s theorem to factor P(UI W) into a product of an x k
and a k x matrix with k < when no linking from U to W exists. LindstrSm [11]
attempted to give a proof based upon the claim that det P(U[ W) was equal to

(17) E e(cr*)aL
L

where the sum is over all linkings from U onto W and 7r*" W U is the matching
defined by each. This claim is false when G contains directed cycles. For example,
suppose G is itself a directed n-cycle. Then S {1, 2,..., n} and the arcs of G are
{ill 1 <= <- n and ] + 1 mod n }, so

ai,i+lai+l,i+2 ai-l,]
PiJ= 1

ifi#],
if i=]

where the subscripts are taken mod n. We have

(18) det P (1-a)n-

We remark that the determinant of a submatrix of P for an acyclic graph has
been applied to an enumeration problem for plane partitions by Gessel [5]. There,
the relevant e (zr*) are all equal to 1.

It is tempting to ask whether the coordinatization /= , 2/=/- or P can be
"fixed up" so that the factor (det M)Itrl- no longer appears in det /(U] W) in the
former two or that (17) indeed is the determinant of the (UIW) minor in the latter.
We remark the answer is no in all cases. The reason is simply that if we require this
of the 1 1 minors of the coordinatizations, we obtain the same matrices T, H and
P. One can ask, however, for a nice combinatorial description of det P(UIW) for all
u, w s, IuI- Iwl, which will provide a combinatorial proof of (18). This question
is apparently open.



ALL MINORS MATRIX TREE THEOREM 329

REFERENCES

[1] C. BERGE, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
[2] C. W. BORCHARDT, Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resul-

tante, J. Reine Angew. Math., 57 (1860), pp. 111-121.
[3] S. CHAIKEN, Matrix free theorems and degree sequence realization by strongly 2-connected digraphs,

Ph.D. thesis, Massachusetts Institute of Technology, 1980.
[4] W. K. CHEN, Applied Graph Theory, Graphs and Electrical Networks, 2nd ed., North-Holland, New

York, 1976.
15] I. M. GESSEL, Determinants and plane partitions, preprint.
16] J. L. GRoss, Voltage graphs, Discrete Math., 9 (1974), pp. 239-246.
[7] F. HARAR, On the notion of balance of a signed graph, Michigan Math. J., 2 (1953-1954), pp.

143-146.
[8] A. W. INGLETON AND M. J. PIFF, Gammoids and transversal matroids, J. Combin. Theory Ser. B,

15 (1973), pp. 51-68.
19] G. KIRCHHOFF, Ober die Aufl6sung der Gleichungen, auf welche man bei der Untersuchung der

linearen Verteilung galvanischer Strime gefuhrt wird, Ann. Physik Chemie, 72 (1847), pp. 497-508;
On the solution of the equations obtained from the investigation of the linear distribution of Galvanic
currents (J. B. O’Toole, tr.) IRE Trans. Circuit Theory, 5 (1958), pp. 4-8.

[10] J. P. S. KUNG, Bimatroids and invariants, Adv. in Math., 30 (1978), pp. 238-249.
[11] B. LINDSTROM, On the vector representations of induced matroids, Bull. London Math. Soc., 5 (1973),

pp. 85-90.
[12] J. H. MASON, On a class of matroids arising from paths in graphs, Proc. London Math. Soc., (3), 25

(1972), pp. 55-74.
[13] S. B. MAURER, Matrix generalizations of some theorems on trees, cycles, and cocycles in graphs, SIAM

J. Appl. Math., 30 (1976), pp. 143-148.
[14] J. C. MAXWELL, Electricity and Magnetism, Clarendon Press, Oxford, 1892. Reprinted by Dover,

New York.
15] N. S. MENDELSOHN AND A. L. DULMAGE, Some generalizations of the problem ofdistinct representa-

tives, Canad. J. Math., 10 (1958), pp. 230-241.
[16] J. W. MOON, Counting labelled trees, Canadian Math. Monograph 1, Canadian Math. Congress, 1970.
[17] T. MUIR, Theory of Determinants in the Historical Order of Development, vol. 2, Macmillan, London,

1911.
[18] ., A Treatise on the Theory ofDeterminants, Dover, New York, 1960.
[19] J. B. ORLIN, Line-digraphs arborescences, and theorems of Tutte and Knuth, J. Combin. Theory Ser.

B, 25 (1978), pp. 187-198.
[20] H. PERFECT, Application ofMenger’s theorem, J. Math. Anal. Appl., 22 (1968), pp. 96-111.
[21] A. SCHRIJVER, Matroids and linking systems, Math. Centre Tract 88, Mathematical Centre, Amster-

dam, 1978.
[22] C. A. B. SMITH, Electric currents in regular matroids, in Combinatorics, D. J. A. Welsh and D. R.

Woodal, eds., Inst. of Math. and Appl., Southend-on-Sea, 1972, pp. 262-284.
[23] J. J. SYLVESTER, On the change of systems of independent variables, Quart. J. Pure Appl. Math.,

(1855), pp. 42-56. Also appears in Collected Math. Papers, Cambridge, 2 (1908), pp. 65-85, and
is reviewed in 17].

[24] W. T. TUTTE, The dissection of equilateral triangles into equilateral triangles, Proc. Cambridge Philos.
Soc., 44 (1948), pp. 463-482.

[25] D. J. A. WELSH, Matroid Theory, Academic Press, New York, 1976.
[26] T. ZASLAVSK, Orientation of signed graphs, preprint.
[27],Signed graphs, Discrete Appl. Math., 4 (1982), no. 1, to appear.



SIAM J. ALG. DISC. METH.
Vol. 3, No. 3, September 1982

1982 Society for Industrial and Applied Mathematics

0196-5212/82/0303-0008 $01.00/0

A CLASS OF PERFECT GRAPHS ASSOCIATED WITH
PLANAR RECTILINEAR REGIONS*

MICHAEL SAKS"

Abstract. A class of graphs, arising in connection with a covering problem for rectilinear regions, is
shown to be perfect. This affirms a conjecture of Chaiken, Kleitman, Saks and Shearer [SIAM J. Alg. Disc.
Meth., 2 (1981), pp 394-410].

1. Introduction. Let $ denote the set of unit squares in the plane whose centers
have integer coordinates and whose sides are parallel to the coordinate axes. Squares
are referred to by the coordinates of their centers. A finite subset T of S is called a
region a rectangular shaped subset of a region T is called a rectangle of T. Associated
with a region T is a graph G Gr on vertex set T with two vertices joined by an arc
if they are contained in a common rectangle of T. It is not difficult to show that the
maximal cliques in this graph are exactly the maximal rectangles of T. Stable sets in
G are called antirectangles.

In response to a question of Chvfital, Chung [cited in 2] exhibited a simply
connected region T for which O(G), the clique cover number of G (which is the
minimum number of rectangles whose union is T), is strictly greater than a(G), the
stability number of G (which is the size of the largest antirectangle of T). Chaiken
et al. [2] proved that if T is convex, in the sense that each horizontal or vertical line
of T consists of consecutive squares, then O(G)= a(G). In their paper, they noted
that for convex T, the graph G need not be perfect, i.e., there may be subsets F_c_ T
for which the induced subgraph GF satisfies O(GF) > Ot(GF). They did show, however,
that for the set C of corner squares of a convex region T (those with at least two
neighboring squares not in T), the vertex induced subgraph Gc is perfect. They
conjectured that for B the set of boundary squares (those with at least one neighboring
square not in T), Gn is perfect. In this paper, this conjecture is settled in the affirmative.

We define a board to be a pair (T, F) where T is a region and F
_

T. A board
is depicted by placing a blackened square in the center of each square belonging to
F. A board (T, F) is said to be convex if T is convex. A rectangle cover of (T, F) is
a set of rectangles of T whose union contains F and an antirectangle of (T, F) is an
antirectangle of T contained in F. It is easy to see that O(GF) equals the size of the
minimum rectangle cover of (T, F) and a(GF) is the size of the largest antirectangle
of (T, F). The main theorem of this paper is

THEOREM 1.1. Let T be a convex region with boundary squares B. For F c_ B, the
minimum rectangle cover of (T, F) has the same size as the maximum antirectangle of
(T, F). Thus the subgraph G induced on G 7- by B is perfect.

In [2], it was pointed out that the graph Gn need not be perfect if T is not convex.

2. Definitions and simple facts. Let T be a convex subset of S. We identify T
with the region it maps out in the plane, thus T has a boundary and corners. A
boundary segment is a maximal line segment belonging to the boundary. A boundary
square of T is a square which has at least one side on a boundary segment and a

* Received by the editors August 26, 1981, and in revised form October 15, 1981. The results of this
paper are contained in the author’s doctoral thesis completed at the Massachusetts Institute of Technology
under the direction of Daniel J. Kleitman.

" University of California, Los Angeles, California 90024. Current address: Department of
Mathematics, Rutgers University, New Brunswick, New Jersey 08903.
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corner square is one with at least two sides on boundary segments. Corner squares
are of four types" lower left, upper left, lower right and upper right (a corner square
lying on three boundary segments has two types).

We will assume that T is connected, i.e., for every pair of squares s and there
is a sequence of squares s sl, s2,’’ ", Sk such that Sg and sg/l share a side. It is
not difficult to see that if Theorem 1.1 holds for connected regions it also holds for
disconnected ones.

For x <=x2Z, we use the notation [Xl, X2] to mean the set of integers between
x and x, inclusive, and [x, x2]x[yl, y] denotes the rectangle {(x, y)lx Ix1, x2],
y [y,

Let x and x e (for left and right) denote the minimum and maximum first
coordinates of any square in T and let yO and y t (for down and up) be the minimum
and maximum second coordinates of any square in T. For x _-< x -< x e, the xth column
of T is the subset of T with first coordinate x; for yO _<_ Y <__ Y the yth row of T is
defined analogously. By convexity, each row and each column consists of a set of
consecutive squares. For each x-<x _-<x n, we define U(x)= max {y’[(x, y’)e T} and
D(x)=min{y’l(x, y’)e T}, thus the xth column of T equals [x][D(x), U(x)].
Similarly, for yO__<y_<_yt we have R(y)=max{x’l(x’,y)e T} and L(y)=
min {x’l(x’, y) T}, so the yth row of T equals [L(y), R (y)] [y].

A sequence {a]i 7], m <- <- n} is unimodal if there exists m <- k _-< n such that
a -< a/x for < k and ag _-> ag+x for _-> k. The following proposition provides an
equivalent condition for convexity (the proof is omitted).

PROPOSiTiON 2.1. Tis convex ifand only if it is simply connected (in the topological
sense) and the sequences (U(x)lx <- x <=xe), (-D(x)lx <- x <=xe), (R (y)ly _-< y _-< yet)
and (-L(y)ly _-< y _-< yt) are each unimodal.

The set of squares of T lying in row y t (respectively, yO) is called the upper
(respectively, lower) boundary support of T and the set lying in column xe (respectively,
x) is called the right (respectively, left) boundary support of T.

If s T and some rectangle of T contains them, we say s is related to and
write s t. A square is not related to itself. If (x l, y) and (x, y) are related then the
opposite corners (x, y2) and (x2, yl) must be in T, and convexity implies that this is
sufficient. In fact we can strengthen this to"

PROPOSITION 2.2. Suppose Sl=(Xx, yx) and S2--(X2, Y2) belong to the convex
connected region T with s above and to the left of s2. Then s s2 if and only if T
contains a square s3 lying below and left of both Sl and s2 and a square s4 lying above
and to the right ofboth sl and s2. (By symmetry, the result holds if "above" and "below"
are interchanged throughout.)

Proof. "Only if" is obvious since (x x, Y2) and (x2, y x) satisfy the conditions of s3
and s4. Conversely, given s3 and s4 as stipulated there are paths from s3 to sx and s2
and from s4 to sx and s2 by connectivity. Together with convexity this implies (Xl, Y2)
and (x2, y x) are in T.

If s=(x,y) is a square we define RECT(s) to be the set [L(y),R(y)]
[D(x), U(x)] (see Fig. 2.1). RECT (s) is generally not in T. The following is an
immediate consequence of the previous proposition.

PROPOSITION 2.3. If s, T then s if and only if RECT (s).
If T is a region and F

__
T, the neighborhood in F of a square s T, written Nl(S),

is the set {tls t, F}. By Proposition 2.3, NF(S) F f’) RECT (s)\s.
The next proposition justifies the assertion made in the introduction that maximal

cliques in Ga correspond to maximal rectangles in T.
PROPOSITION 2.4. Lets (xl, y), s2 (x2, Y2)," ’, sn (xn, Yn) be a setofsquares

in T such that s si if ]. Then there exists a rectangle R of T with {sx, ., s, } R.
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FIG. 2.1. RECT (s) is shaded.

Proof. Let Xmin, Xmax, Ymin, and Ymax be the minimum and maximum x and y
coordinates of any square si. Since si sj, we have [min (xg, xj), max (xi, x)] [min (y, yi),
max (y, yi)] is contained in T for all 0 <- i, =< n. Taking the union of all these rectangles
yields the rectangle [Xmin, Xmax] x [Ymin, Ymax] (as is easily verified), which is the desired
rectangle. [3

3. Proof of Theorem 1.1. The proof of Theorem 1.1 is by induction. We order
all boards (T, F) (where T is convex and F consists of border squares), by (T’, F’)-<
(T, F)if T’I =< TI and IF’I =< IFI. The basis step of the induction is trivial. Let (T, F)
be a board and assume the theorem holds for all smaller boards.

The induction step relies on a set of nine reductions. Each reduction has three parts"
(1) The conditions which (T, F) must satisfy for the reduction to apply.
(2) The construction in which a smaller board (T’, F’) is constructed.
(3) By induction (T’,F’) has an antirectangle A’ and an equal-sized cover ’.

The correspondence describes how to use A’ and " to obtain an antirectangle A and
an equal sized cover of (T, F).

If the board (T, F) satisfies the conditions of a reduction (that is, is reducible),
then by induction and the correspondence the theorem holds for (T, F). The proof
of the theorem consists of showing that every nontrivial board is reducible.

Once a reduction has been presented we can assume, for purposes of subsequent
analysis, that (T, F) does not meet the conditions of that reduction.

By symmetry, each reduction we present corresponds to several reductions. For
example, if the condition for a reduction is that the lower left corner has a certain
property, then if an analogous condition holds for an upper right corner then the
board is reducible.

Reduction 1.
Condition. There exists a column of T containing no square of F. Let x’ be the

coordinate of the column (Fig. 3.1(i)).
Construction. T’ and F’ are obtained by deleting column x’ and shifting all squares

lying to the right of that column to the left by one unit (Fig. 3.1(ii)).
Correspondence. A is obtained from A’ by reversing the above shift, c is obtained

by replacing each rectangle [x, X2] X [Yl, Y2] in ’ by:

[x, x2] [y, Y2] if x2 <x’,

[x, x2 + 1] [y, Y2] if x < x’ _-< X2,

IX1 + 1, x. + 1] x [yl, 3,’2] if x’<
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These rectangles obviously cover F. In the first and third case, it is clear they lie
in T; in the second case convexity implies that the situation depicted in Fig. 3.2 cannot
happen, so the rectangle is in T.

(i) Condition. No square of F in column x’. (ii) Construction. Delete column x’.

FIG 3.1. Reduction 1.

FIG 3.2. The shaded rectangle in the reduced board (at right) does not correspond to a rectangle in the
original board; however, convexity precludes this situation.

Reduction 2.
Condition. Two adjacent columns have the same upper and lower boundaries,

i.e., there exists x’ such that U(x’)= U(x’+ 1) and D(x’)= D(x’+ 1) (Fig. 3.3(i)).
Construction. Merge columns x’ and x’+ 1. Formally, let

T’ {(x, y)l(x, y) T, x =< x’ or (x + 1, y) T, x -> x’},
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and

F’ {(x, y)l(x, y) F, x <= x’ or (x + 1, y) s F, x >= x’},

(see Fig. 3.3(ii)).
Correspondence. A and c are obtained from A’ and cg, by reversing the above

construction.
Reduction 3.
Condition. There is only one square in the uppermost row (yU) of T. Let s

(x’, yU) be the square. By RED1, we can assume s F (Fig. 3.4).
Construction. T’= T; F’ ={(x, y)F[x x’} (Fig. 3.4(ii)).
Correspondence. A A’t.J s is an antirectangle of (T, F) with IAI= IA’[ + 1. c is

obtained by adding rectangle [x’]x[D(x’), yu] to ’.

x x -t-

(i) Condition. Columns x’ and x’+ have
the same upper and lower boundaries.

(ii) Construction. Merge columns
x’ and x’+ 1.

FIG. 3.3. Reduction 2.

x’

u

(i) Condition. Only one square of T
in row y u.

(ii) Construction. Delete all
squares in F from column x’.

FIG 3.4. Reduction 3.
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Reduction 4.
Condition. There exists s, F with s t, and everything else in F which is related

to is also related to s, i.e., NF(t)c_NF(s) s.
Construction. T’ T; F’ F\s.
Correspondence. A A’. Let R’ be the rectangle in ’ covering t. By the reduction

condition, R’fqF_N(s)Us so by Proposition 2.4 there is a rectangle R covering
(R’ fq F) t.J s. c is obtained by replacing R’ by R in .

Reduction 5.
Condition. Two squares in F lie on the same boundary segment. Suppose s (x, y)

and (x, y’) lie on a left boundary segment (in column x), and assume R (y) _-> R (y’).
Then RECT (t)_ RECT (s) and so by Proposition 2.3 we can apply RED4 (Fig. 3.5).

FIG. 3.5. Condition for reduction 5. and s lie on the same boundary segment and RECT (t)
_
RECT (s).

RECT (t) is shaded.

Reduction 6.
Condition. There exists a corner (x, y)F such that no pair of squares

(x’, y), (x, y’) F are related.
Construction. T’= T\(x, y) and F’= F.
Correspondence. A A’ is an antirectangle in T since, under the given conditions,

deleting (x, y) does not alter any relations among squares in F. c , is a cover of
(T,F).

Reduction 7.
Condition. There exist squares s, s’ F such that
(i) s s"
(ii) Nl(S) f3 Nr(s’)
(iii) if t, t’ F and s and s’-- t’ then t--- t’ (Fig. 3.6).
Construction. T’ T; F’ F\s, s’.
Correspondence. By condition (iii), A’ cannot contain both a square in Nl(S) and

a square in Nr(s’), hence either A’LI s or A’LI s’ is an antirectangle A in (T, F) of
size one larger than A’. By adding a rectangle that covers s and s’ to ’, we obtain

with Ic1 IAI.
Reduction 8.
Condition. There exist squares q, t2 F and t3 T\F such that:

(i) qt2;
(ii) t t3, t2--- t3;
(iii) Nr(t3)\tl, t2 Nl(q) f3 N(t2);
(iv) if Ul N(6)\NI(t3) and u2 NF(t2)\NF(t3) then u rs u2 and u u2 (Fig. 3.7).
Construction. T’ T; F’= F t3 t3\t, t2.
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NF(s’)\s
\

/ \

FiG. 3.6. Condition ]:or reduction 7, which depends only on the structure of the graph G.

FIG. 3.7. Condition ]:or reduction 8, which depends only on the structure of G 7".

Correspondence. If t3 A’, then A A’. If t3 e A’ then either A’U tl\t3 or A’U t2\t3
is an antirectangle since, by (iv), A’ cannot contain both an element belonging to
NF(tl)\NF(t3) and an element belonging to NF(t2)\N(t3).

Let R’ be the rectangle in cC covering t3. By (iii), every square in R’fq F is related
to tl and t2 and thus, by Proposition 2.4, there is a rectangle R of T containing
(R’ CI F) U {h, t2}. Let ( (C U R \R’.

Reduction 9.
Condition. There exist squares Sl (Xl, yl) and s2 (x2, y2) in F, sl s2, such that

neither lie above the left or right boundary supports and neither R (x) nor R (x2) lie
to the right of the right corner of the upper boundary support. Formally,

(i) yl, y2 -< U(xL), U(xR),
(ii) R(yl),R(yE)<-R(y v)

(Fig. 3.8(i)). It is clear that if Sl and s2 satisfy these conditions, then any pair of related
squares with smaller y components satisfy them, so we assume S and s2 have minimal
y components, i.e., for any other pair of related squares (x
and y-< y2, then y yx and y y2. We label the squares so that y2 <- yl and if
yx y2 then

There are two cases.
Case 1. x2<-xl. We show that if tF\Sl and t--s2 then t.Sl and thus RED4

applies. By Proposition 2.3 we have t[L(y2),R(y2)][D(x2), U(xl)]. By condition
(i) and convexity, [L(y2), R(y2)][L(yl),R(yl)]. By the minimality of sx and s2,

cannot have a y-component smaller than y or else {s2, t} would be a lower pair of



A CLASS OF PERFECT GRAPHS 337

related squares. By (ii) and convexity, U(X2)U(x1) SO we conclude t
[L(yl), R(yl)]x[D(xl), U(Xl)] and thus t sl (Fig. 3.8(ii)).

Case 2. x2 > x. By hypothesis, y > y2. Since sx s2, s lies on a left boundary
segment and D(x) <- Y2 (Fig. 3.8(iii)). If D(x)< Y2 then RED6 can be applied to
delete corner (xl, D(Xl)), therefore (x, Y2) is a corner. Now we show that the conditions
of RED8 apply with t3 (X1, Y2), t2 $2 and t sx. The three squares are related, so
conditions (i) and (ii) hold. Examine RECT (tl), RECT (t2) and RECT (t3) (Fig.
3.8(iv)). We have RECT (t3) RECT (tl) f3 RECT (rE) (by convexity and the conditions
of RED9) so condition RED8(iii) holds. To verify RED8(iv) first note that by the
minimality of s and s2, nothing related to s2 lies strictly below s (in rectangle A of
Fig. 3.8(iv)). Thus NF(S)\NF(X, Y2)- A2 (Fig. 3.8(iv)) and NF(SE)\NF(x, y2)_ A3, so
it suffices to show that each square in A2 is related to each square in A3. Obviously
(X l, Y2) lies below and to the left of all such squares and by condition RED9(ii), the
square (R(ytr), ytr) is above and to the right of all such squares. By Proposition 2.2,
therefore, everything in NF(S1)\NF(Xl, Y2) is related to everything in NF(SE)\NF(Xl, Y2)
as required for condition (iv) of RED8.

$2--

(i) Condition. (ii) If X2X1, then RECT ($2)1")F
is contained in the shaded rectangle
which is contained in RECT (sl)f3 F.

m l---

(iii) If X2 > X1, then 51 lies on a
left boundary segment.

A31 (R(y t), ytZ)

A2

52

(iv) The conditions of RED8 hold between
51, 52 and (x, Y2).

FIG. 3.8. Reduction 9.
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We are now ready to show that every board contains a reducible configuration
which will complete the proof of Theorem 1.1. Suppose (T, F) is not reducible; we
use irreducibility to get a precise description of the board and eventually get a
contradiction. We proceed by a series of numbered observations.

Fact 1. Consider the squares lying on the upper and lower boundary supports,
B U =[L(yU),R(yU)]x[y U] and BD =[L(yD),R(yD)]x[yD]. By RED3,
L(y U) # R (yU) and L(yD) R (y) and by RED2, [L(yU), R (yU)]and [L(yD), R (y)]
overlap in at most one point, so without loss of generality assume R(yD)<=L(yU). By
convexity, D(x) is nondecreasing for x =>R(yD) and so by RED2, D(x) is strictly
increasing for L(yU)<=x-<R(y U) and thus the lower boundary opposite B U forms a
"rising staircase" (Fig. 3.9).

Fact 2. By RED1 and RED5 there is a unique square s U (x u, yU) in F which
lies on B U. If s U is related to some square s F lying to the left of it, then NF(S U) c_
NF(S) t.J S, SO RED4 applies (Fig. 3.10). Now we claim that s U must lie in the left corner
of B u, for if not, that corner satisfies the conditions of RED6. Hence x U L(y u).

L(y v) R(y U)

n U

FIG. 3.9. Fact 1. D(x) is strictly increasing]or L(yU) <-_x _-<R(yU).

S.->

FIG. 3.10. If s u is related to some square s F lying to the left of it then RED4 applies.
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Fact 3. The square (xt:,D(xt:)) is a lower right corner. The right boundary
segment incident to it extends up to D (x t: + 1)- 1. There must be a square s (x t:, Y 1)
in F which lies on that boundary segment or else the corner (x t:, D(xt:)) satisfies the
conditions of RED6; by RED5 the square is unique. Now by RED1, column R(yt:)
has a square in F; let s2 (x2, y2) be the square of highest y component in that column.
Notice every square in F that is related to s t: lies on the "rising staircase" between
sl and s2 (Fig. 3.11). By Proposition 2.3, any square related to both sl and s2 is related
to every square between them and thus to every square in Ne(st:).

Fact 4. The squares (besides st:) related to S lie to the left of column x t: and
above or even with D(x t:) (Fig. 3.12).

Fact 5. By Fact 3, if every square in F which is related to sl is also related to
s2, then they are related to every square in NF(sU), in which case, sl and s t: satisfy
the conditions for RED7. Thus there is a square s3 (x3, Y3) in F which is related to
sl but not s2. If s3 was above s2 they would be related, so s3 must lie strictly below
s2 (Fig. 3.13).

E

FIG. 3.11. Fact 3. Any square related to both sl and s2 is related to every square in NF(su). (Note that

s2 might be along the edge E rather than where it is shown here).

FIG. 3.12. Fact 4. Nr(sl) consists of squares above and to the left of sl.
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$2

<_.S

FIG. 3.13. Fact 5. I[ s3 sl and s3 does not lie strictly below sz then sz s3.

S

i_$_
D(x2)

<-’$1

FXG. 3.14. Fact 6. ff Y3 < D(x2) and the upper edge of the left boundary support lies above sl and $2

then RED9 applies.

Fact 6. If y3 <D(x2) then the upper edge of the left boundary support cannot
lie above both s and s3 (Fig. 3.14) or else sa and s3 would satisfy the conditions of
RED9.

Fact 7. s2 is not related to any square lying strictly to the right of it. Suppose,
to the contrary, that s4 (x4, Y4) were such a square. Then s2 cannot lie along a right
boundary segment and, therefore, must be the square (x2, D(x2)). By Fact 5, s3 lies
below s2 and thus by Fact 6, the upper edge of the left boundary support does also.
Now by reflecting the board around the line y =-x, RED9 applies to s2 and s4 (Fig.
3.15).
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Fact 8. L(yl) <L(y2) (Fig. 3.16). If instead L(yl)->L(y2) then since $3 is related
tos but not s2 we must have y3 < D(x2) and by convexity, the upper edge of the left
boundary support lies above both s and s3 contrary to Fact 6 (Fig. 3.17).

FIG. 3.15. Fact 7. RED9 applies to $2 and $4 when board is rotated around the line y =-x.

L(y) i
lll

FIG. 3.16. Fact 8. L(yl)<L(y2).

s2

Fact 9. Now RED8 applies to tl=S u, t2=82 and t3 (R (y t: ), yU) (Fig. 3.18).
Conditions (i), (ii) and (iii) of RED8 are obvious. By Fact 7, every square in
NF(s2)\NF(R(yt:), yt:) lies to the left of s t:. By Fact 8, every such square is related to
s and thus, by Fact 3, to every square in N(st:). Hence condition RED8(iv) is met.

This completes the proof of Theorem 1.1. l-!
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.I

I "$1

r--""

FIG. 3.17. Fact 8. If L(yl)-->L(y2) then the upper edge of the left boundary support lies above sl and
s3, contrary to Fact 6.

(R(y u), yu)

<--$2

FIG. 3.18. Fact 9. RED8 applies to tl s u, t2 $2, t3 (R(yU), yU). ff t--. sz and t7c s u then t--. Sl.
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THE STRUCTURE OF HOMOMETRIC SETS*

JOSEPH ROSENBLATT" AND PAUL D. SEYMOUR*

Abstract. One of the fundamental problems of phase retrieval in spectroscopic analysis is of a
combinatorial nature and can be solved using purely algebraic techniques. Given two sets A and B in some
Euclidean space R n, A and B are homometric if the sets of vector differences {x-y:x, yeA} and
{x y: x, y B} are identical counting multiplicities. More generally, given two finite sums A a,d;x and
B Y’. bx,, where ax, b are integers and 8x denotes the Dirac mass at x s R ’, A and B are homometric if
they have the same Patterson functions, i.e., for all z R, , {axay: x y z} , {bxby: x y z}. Using
a variation on factorization of polynomials with integer coefficients, one can prove that A and B are
homometric if and only if there exists two finite sums C , CxS and D Y. dxx such that A is the
convolution C * D and B is the convolution C D*, where D*(x) D(-x) for all x R ". Moreover, the
algebraic method above allows one to derive both practically and theoretically, from the Patterson function
A A*, all sums B with A and B homometric.

1. Introduction. The following combinatorial problem arises naturally in spectro-
scopic analysis of matter. If A

_
R" is a multiset (a finite set with repetitions allowed),

let AA denote the multiset of all vector differences x-y with x, y A. The problem
is to reconstruct A as far as possible from a knowledge of AA alone. In 3, we will
explain the connection of this problem with the problem of phase retrieval in spectro-
scopic analysis, i.e., retrieval of the distribution determined by ,4 from a knowledge
of the intensity of the Fourier transform of this distribution.

It is not possible to completely reconstruct A from a knowledge of AA. For
example, for any vRn, with A+{v} being the multiset {a+v: a sA}, we have
AA A(A +{v}). Also, if -A ={-a: a cA}, then A(A)= A(-A), too.

There are less trivial examples of this nonuniqueness. Let us say that two multisets
A and B are homometric if AA AB. The two constructions above are special cases
of the following. Let U, V c R" be two multisets. Then the multisets

U+ V={u+v: u U,v V}

and

U- V={u -v: u U, v V}

are homometric, as one can see very easily. Thus, for example, the sets
{0, 1, 3, 8, 9, 11, 12, 13, 15} and {0, 1, 3, 4, 5, 7, 12, 13, 15} in R are homometric and
arise from the above construction by taking U {6, 7, 9} and V {-6, 2, 6}.

It is natural to ask if every homometric pair is an instance of this construction.
The answer is negative; for example, one can check that {0, 1, 2, 5, 7, 9, 12} and
{0, 1, 5, 7, 8, 10, 12} are homometric but do not arise from the above construction.
Indeed, if they did arise this way, then the multiplicities [UI and [VI woud satisfy
ul[vI- u/ vI- 7 and either U[ or VI equals 1, an impossibility. Nevertheless,
this conjecture is true if we permit U and V to be "multisets with possibly negative
integer multiplicities". Moreover, this representation is accomplished by a purely
algebraic technique.

2. The main result. Let K be one of the rings of integers, Z, real numbers, R,
or complex numbers, C, under addition. The examples of the introduction only require

* Received by the editors June 30, 1981.
f Department of Mathematics, Ohio State University, Columbus, Ohio 43210. The work of this author

was partially supported by the National Science Foundation under grant MCS 8002881.
t Department of Mathematics, Ohio State University, Columbus, Ohio 43210.
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K Z. Let n be a whole number, the dimension of the Euclidean space R" from
which the multiset is chosen. Let xa,’’’, x, be some n commuting variables and let
K[R"] be the ring under multiplication of all sums

A(xa, x,)= Y. {av,.... v.x ’ "’Xn "(Va, ,V.)6R"}

where avl...o. K and avl...v. 0 for only finitely many choices of (va,’’’, v,) R".
It is convenient to abbreviate (va," , v,) by v and (xa,’’’, x,) by x, and x’ x,"
by x . Then a typical element A(x) K[R"] may be written more compactly as

A(x) . {avx: v R"}.
The ring operation in K[R"] is the usual multiplication with xx =x for all
v, w e R". The reader familiar with group rings will see that K[R"] is just the group
ring of R" with coefficients in K. We shall need the following theorem, which is well
known.

THEOREM 2.1. With K Z, R, or C, the ring K[Rn] is locally a unique ]actoriza-
tion domain. The units in K[R’] are the elements ux" where v R and u is a unit o] K.

Remark. Here we mean that if A ,..., Ak K[R’], there exists Z" e R such that
A 1,’.., A, K[Z’] and K[Z"] is a unique factorization domain. All factoring arguments
below will be local to some suitable K[Zm] in this sense.

Given AK[R"], A(x)=,aox v, we let A(x-a)=,ax-, where ti is the
complex conjugate of ao. We say that two elements A l(X) and A2(x) in K[R"] are
homometric if A a(x)Ax(x -a) A2(x)A2(x-a). The motivation for this is as follows. If
A___R" is a multiset, we associate with it the element A(x)Z[R"] defined by
A (x) Y’. {x v A}. ThenA(x)A (x a) y,. {x v-w: v, w R "} {x v AA}. Hence,
A and A2 are homometric as multisets if and only if A l(X) and A2(x) are homometric
as ring elements.

Our main result is the following.
THEOREM 2.2. Two elements A (x), A2(x) in K[R "] are homometric if and only

if them exist P(x), ((x) in K[R"] and a member c K of absolute value 1 such that
A(x) P(x)O(x) and a_(x) cP(x)O(x-a).

Proof. Certainly, if P(x), O(x)eK[R"], then P(x)O(x) and cP(x)O(x -a) are
homometric, as long as cg 1, because P(x)O(x)(P(x-a)O(x-1))
P(x)O(x-a)P(x-1)O((x-a)-a). Conversely, suppose Aa(x),Az(x)K[R"] are
homometric. Because K[R"] is locally a unique factorization domain, we can write

A l(X) Po(x)Ba(x), A2(x) Po(x)B2(x),

where P0(x), Bl(x), Bz(x) K[R"] and Bl(X), B2(x) are relatively prime. Now write

Bl(X) (o(x)Cl(x), B2(x -1) (o(x)C2(x),

where Oo(x), Cx(x), C2(x) K[R"] and Ca(x), C2(x) are relatively prime. Then because
Al(x)A(x -a) a2(x)az(x-a), we have

Po(x)Qo(x)Cx(x)Po(x-a)Qo(x-1)Ca(x -1) Po(x)Qo(x)Cz(x)Po(x-a)Qo(x-)C2(x-a).
So

(1) C(x)C(x-) C_(x)C(x-).
Moreover, both Cl(X) and Cl(X -a) are relatively prime to both C2(x) and C2(x-a).

Again, because K[Rn] is locally a unique factorization domain, any prime
D(x) which divides Cl(X) must divide C2(x)C2(x -a) and hence divides C2(x) or C2(x-’).
This is impossible and so Ca(x) is a unit. Similarly, C2(x) is a unit. By Theorem 2.1,
there are units ua, u2 K and vectors va, v2 R" with Cl(X)= ux ’, C2(x)= u2x 2. By
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(1) Ul/1--U2/2 and hence there exists c K, crY= 1, such that ul ---C/2. Put ]1
(vl rE) and ]2 1/2(vl + rE). Define P(x) a2xilPo(x) and Q(x) cxi2Qo(x). Then we
have

P(x)Q(x) ca2xi/J2Po(x)Qo(x) UlXVPo(x)Qo(x)

C(x)Po(x)Qo(x) A l(x),

and

cP(x)O(x-) c-c--2xi-iPo(x)Oo(x-1 a2x-Po(x)Qo(x-)
C2(x-1)Po(x)Qo(x -) A2(x).

When K Z and A x(x), A2(x) arise from multisets, so that their coefficients are
nonnegative integers, it can happen that Al(X)= P(x)Q(x) and AE(X)- P(x)Q(x -1)
where some of the coefficients of P(x) and Q(x) are negative. For instance, the
example given at the end of the introduction yields the homometric pair in Z[R

A(x) 1 + x t-x5 3r-x 7 -I-xS 3c’xlO r’X 12

and

Az(x) 1 + x + x 2 -- x -- x 7 -- x 9 + x 12,
and here the corresponding P(x) and Q(x) are respectively

P(x) x5/2(1 + x + x 2 -1- X
3 -I- X

4 -[- X
5 -[- X 7)

and

O(x) x-/:(1 -x3 + x).
If it should happen that the coefficients in P(x) and Q(x) are nonnegative integers,
then we can find multisets Ax, A2, U, V in R corresponding to A(x), AE(X), P(x),
Q(x) and we can write A U + V and A- U-V. This explains the rather vague
statement at the end of the introduction about "multisets with possibly negative integer
multiplicities".

It is clear from the remark after Theorem 2.1 and the purely algebraic nature of
the proof of Theorem 2.2 that a similar theorem is true in K[Zn]. The decomposition
takes a slightly different form.

THEOREM 2.3. Two elements A (x), AE(X) in K[Z] are homometric if and only
if there exist P(x), Q(x) in K[Z"], a number c Kofabsolute value one, and Vl, v2 Z
such that A l(X) xP(x)Q(x) and A2(x) cxP(x)Q(x-1).

It is also easy to extend our theorem to larger collections of pairwise homometric
ring elements as follows.

THEOREM 2.4. The elements A l(x), Ak(x) K[R] are pairwise hornometric
if and only if there exist Pl(x), ", Pr(x) K[Rn], I1, ", J[k {1,’’ ", r}, constants
cl, , Ck K of absolute value one, and vectors v 1, , Vk R, such that for each ],
l=j=k,

Ai(x) cix ’ 1-I {Pi(x): Ii} 1-I {Pi(x-): (1,..., r}\/.}.

Proof. The "if" part is easy, like the corresponding part of the proof of Theorem
2.2. For the converse, let A(x)= P(x)... Pr(X) be a prime factorization of Al(x) in
K[R"]. For 2=<f=<k, it can also be arranged that there exist/-K, cjt?j= 1, and
v. R" such that

Ai(x) cix
j 1-I {Pi(x)" I.} 1-I {Pi(x-1)" {1, ., r}\/}.
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Let Ix {1, , r}, ca 1, and va 0 to get the theorem.
Remark. Theorem 2.4 is also true if Z replaces R throughout. The terms x

do not appear in Theorem 2.2 because they can be absorbed in P(x), Q(x). But in
the more general form of Theorem 2.4, they are needed.

We also have what may seem a rather surprising result from this presentation.
Let us say that an element A(x) K[R"] is symmetric if there exists v R such that
A(x -a) xVA(x). We will say that A(x) is semi-symmetric if there exists v R" and
c K of absolute value one such that A(x -1) cxVA(x). For multisets A

___
R ", A is

centrally symmetric about some point of R" if and only if A(x) is symmetric; also, A
is centrally anti-symmetric about some point of R if and only ifA (x) is semi-symmetric
with the constant c 1. The constant c above is called the constant of symmetry.

THEOREM 2.5. If Aa(x),Az(x)K[R"] are both semi-symmetric and Al(x) is
homometric to A2(x), then there exist v R and c K of absolute value one such that
Aa(x) cxA2(x). Moreover, if Aa(x) and A2(x) have the same constants of symmetry,
then c can be taken in {-1, 1}.

Proof. We know that Ai(x -a) cx’Ai(x) for some v R" and c K of absolute
value one, for i= 1,2. Since Aa(x)Aa(x-a)=A2(x)A2(x-a), we have ClXlAl(X)2=

2 2
c2x A2(x) Let c K of absolute value one satisfy c =Clt72. Then taking square
roots, Aa(x)=ecxA2(x) where e {-1, 1} and v=(va-v2)/2. If ca=c2, then c can
be taken to be one.

COROLLARY 2.6. ffA a(x), A2(x) K[R"] are homometric and both are symmetric
(or anti-symmetric), then Aa(x)= exVA2(x) for some e {-1, 1} and v

Remark. Theorem 2.5 tells us that a centrally symmetric multiset A
_
R" can be

essentially reconstructed from AA. In the more general context of homometry dis-
cussed in 3, a theorem which is more general than Theorem 2.5 can be obtained
using complex analysis; the proof above though is very simple and purely algebraic.

Let us say that A(x)K[R"] is reconstructible if whenever B(x)K[R"] is
homometric to A(x), we have B(x)=cxA(x) or B(x)=cxA(x-a) for some v R
and c K of absolute value one. In view of Theorem 2.5, being reconstructible is
related to being symmetric; but the two concepts are not the same, as the following
theorem shows.

THEOREM 2.7. An elementA(x) K[R"] is reconstructible if and only irA(x) has
at most one prime factor counting multiplicities which is not semi-symmetric.

Proof. First, suppose A(x) is not reconstructible. Then there exists B(x)
homometric to A(x) such that B(x) cxA(x) for all v e R", e {-1, 1}, and c K
of absolute value one. By Theorem 2.2, there exist P(x), Q(x)K[R"] and cK of
absolute value one such that A(x)=P(x)Q(x) and B(x)=cP(x)Q(x-a). If Q(x) is
semi-symmetric, then B(x) caxA(x) for some v R" and ca K of absolute value
one. So, Q(x) is not semi-symmetric. By a similar argument, P(x) is not semi-
symmetric. Therefore, each of P(x) and Q(x) have prime factors (possibly the same
prime in K[R"]) which are not semi-symmetric. So if A(x) is not reconstructible, then
there exist two prime factors Pa(x) and P2(x) of A(x) (with P(x) being a factor of
A(x) if Pa(x)= P2(x)) such that Pl(X) and P2(x) are not semi-symmetric.

Conversely, suppose A(x) is reconstructible, but it has two prime factors counting
multiplicities which are not symmetric, say Pa(x) and P2(x). Let A(x)=
Pa(x)P2(x)Q(x). For convenience of notation, if Ba(x),B2(x)K[R"], then
B2(x) will mean that Ba(x)=cxB2(x) for some v R" and some cK of absolute
value one. Since A(x) is reconstructible, if B(x) is homometric to A(x), then B(x)
A(x) or B(x)--A(x-a). Hence, A(x).Pa(x-a)e2(x)Q(x) or A(x)---
Pa(x)P2(x-a)Q(x-a). In the former case, Pa(x)P2(x)O(x).Pa(x-a)P.(x)O(x) and so
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PI(X) Pl(x-1), contradicting the assumption that PI(X) is not semi-symmetric. Hence,
we have the latter case and so

(2) PE(x)Q(x) PE(X-1)Q(x-1).
A similar argument with Pl(X)PE(X-1)Q(x) replacing P(x-1)pE(X)Q(x) shows

(3) P1 (x )Q(x P1 (x-1)Q(x -1).
Since P(x) is not semi-symmetric, Q(x)TCQ(x -1) by (2). Hence, A(x)-
P(x)PE(x)Q(x)TcP(x)PE(x)Q(x-l). Since A(x) is reconstructible, we must have
Pl(X)PE(x)Q(x)---Pl(X-1)PE(X-)Q(x). That is,

(4) P(x)PE(X) Pl(X-x)P2(x-1).

This gives us, using (2), (3) and (4),

P1 (x)Ep2(x)Q(x) PI (X )Pl(x-1)pE(x-a)Q(x) PI (x-1)EpE(x-l)Q(x-1)

PI (x-1)EpE(X)Q(x).

Hence, PI(X)2"’PI(X-1)2. Taking square roots gives PI(X)’PI(X-1), a contra-
diction.

Remark. Theorem 2.7 shows how to distinguish symmetry or semi-symmetry and
reconstructibility. For instance, A (X) (1 + x + x3)(1 + x 2 + x 3) is symmetric but not
reconstructible in Z[R]. Also, A2(x) (1 + x + x3)(1 + x 2 + x3)(1 x) is semi-
symmetric, not symmetric, and not reconstructible in Z[R]. On the other hand,
A3(x) (1 + x + x3)(1 + x4 + x 8) is reconstructible in Z[R but it is not semi-symmetric.
Notice also that the coefficient ring K can have a great effect on how strong a restriction
it is for A(x) to be reconstructible. For instance, let A(x) C[Z] and choose v Z
such that xVA(x)= P(x) is a polynomial in x. Then A(x) is reconstructible in C[Z] if
and only if at most one of the roots of P(x) in C does not have absolute value one.

3. Applications. The structure theorems of 2 provide an entirely algebraic
approach to one of the phase retrieval problems arising in diffraction by distributions
which consist of a finite number of atoms. There are many texts which discuss the
theory of Fresnel and Fraunhofer diffraction (the latter being the limiting case of the
general Fresnel diffraction and is the one to which the theory of homometric sets is
most applicable). (See [2], [3], [4].) The general idea is that a bounded point distribution
in space (say R E or R 3) will diffract electromagnetic radiation, whose wave fronts are
essentially planar throughout the region of diffraction, in such a manner that, at large
distances from the diffracting atoms and near the axis of diffraction, the diffraction
has a complex amplitude in space which is given by the Fourier transform of the
original point distribution. That is, if the original distribution A is a finite sum Y axgx
where ax is a positive integer associated with the Dirac mass 8x at x R n, n 2, 3,
then the diffracted wavefront in Fraunhofer diffraction has a complex amplitude given
by A(y)= ax exp (-ix y) where x/--- and x y is the usual scalar product in
R n. The whole numbers ax correspond to the "size" of the Dirac point masses 8x
under diffraction; for example, in X-ray diffraction this usually is proportional to the
number of electrons in the atom at site x R ". This is of course the ideal situation;
in reality there will be many sources of scattering which cause ax to be a Gaussian
variable in R" centered at x with maximum amplitude given by ax. Also, there are
many difficulties in measuring A because one needs to sample the diffracted wavefront
at different points in R" or rotate the plane of the incoming wavefront before
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diffraction. But once A is determined up to an experimental error, then A is completely
determined up to corresponding errors by the Fourier inversion theorem.

The phase retrieval problem arises because in an actual experimental situation
it is the absolute value I(y) of (y) which is measured when taking photographs
of the diffracted wavefront or when using a Geiger counter to measure the intensity
(i.e., the absolute amplitude) of in space. With some computer assisted computations,
one can usually determine fairly well in a given experimental situation. The phase
retrieval problem is that the phase of is not given by I1 and I.1 does not uniquely
determine . or A. However, given Il or =, one has (y)(y) determined. The
Patterson function ofA (or the auto-correlation function, as it is also called) is the point
distribution A A* where A* is the usual involution given by A*(x)= Y. ax-x and
A.A* is the convolution of A and A*. That is, A.A*=CzSz where Cz=

{axay" x y z} for all z R n. It is easy to check that the Patterson function A A*
has a Fourier transform equal to (y)(y) since *(y)= A(y) for all y R n. Hence,
it is the Patterson function A A* which is determined by experimental measurement
in Fraunhofer diffraction.

We see then that two point distributionsA Y axSx andB Y. bxSx are homometric
if and only if they appear the same in diffraction experiments that measure only I/1
and I/ I. This shows how the structure theorems in 2 are directly applicable to the
phase retrieval problem of determining A from a knowledge of fi, that is, of A A*,
only. One could, throughout 2, have used the group ring notation or the very similar
notation of Dirac masses and convolution in R. In fact, all the theorems on homometry
apply to the ring under pointwise multiplication of exponential polynomials of the
form P(y) Y. ax exp (-ix y) where ax K is nonzero only finitely many times. The
theorems that were proved for this ring in 2, like Theorem 2.2, bear comparing with
the theorems of Ritt [5], [6], [7] that deal with more general exponential polynomials
of one variable. Nonetheless, we have used polynomial notation throughout 2 because
of its general familiarity and because of the availability of good computer programs
for factoring polynomials. Here is the general algebraic approach to phase retrieval
as it might be applied in an experimental context.

Step 1. Through experimental measurement, the Patterson function A A* is
determined. Notice that A A* is symmetric. SayA A* Y pvSv with the coefficients
pocK.

Step 2. Let V {v R"" po 0}. Then V is a finite set and spans an m-dimensional
lattice L ={Y.I=I cvi" cZ, v V, i= 1,..., l}. A basis for L is found, say some
el, ’, e, L. This determination is greatly simplified if the elements of V are already
at points of the natural lattice Z"

___
R" where R is the underlying space in which A

is given, but in general L may be a higher dimensional lattice. At least rn is no larger
than the number of elements in V.

Step 3. Express each v V as v Y’.i__l ve where Vl, ’, v, Z. Then let P(x)
be the element of K[Z given by P(x) pox . By multiplying P(x) by some suitable
x with w L (that is, by translation the Patterson function A A*), we get an element
Q(x) xWp(x) in K[Z which is a polynomial in positive powers of x,. ., x,.

Step 4. Using some algebraic factoring technique and/or a computer program
like IBM’s Scratchpad, we now factor Q(x) in the polynomial ring K[Xl," ", x,] into
its prime factors. Because Q(x) is essentially the Patterson function A. A* in a
polynomial form, there must be primes Q(x),. , Qr(x) K[x,..., x,] and a vector
wooL such that Q(x)= xw I-[i--1Q(x) 1-I--1Q(x-). We then form all possible prod-
ucts At(x) of the form Ax(x) I-I {Q(x)"/" I} I-I {Q(x-) ] {1,..., r}\I} where 1

___
{1,. ., r} as in Theorem 2.4. These products Ax(x) each have the form {a(I)x o" v
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L}, where the coefficients av(I) K, and depend on/, but are nonzero only finitely
many times. We use the notation At Y. av (I)8o. For each I, At is a point distribution
in L

_
R which is homometric to A. By Theorems 2.2 and 2.4, up to translations

and multiplications by c K of absolute value one, all possible point distributions
which are homometric with A must appear in the set {At: I c {1,..., r}}. Of course,
in particular A At for some I (not necessarily ! {1,..., r}). In this way, using just
the Patterson function A A*, we can rediscover A and all point distributions with
the same Patterson function. There may be as many as 2 distinct distributions At in
general; so the list of the At may take a good deal of computer time to enumerate.
This procedure can be considerably shortened by just choosing not to reflect any
Qi(x), 1,..., r, which is semi-symmetric. Also, if only At with positive coefficients
could possibly be A, then the other At can be ignored in a specific search for A.

The program for phase retrieval outlined in Steps 1-4 above is the first complete
algebraic procedure for recovering a general bounded point distribution from its
Patterson function alone. This procedure requires no additional information about A
(e.g., feasibility as a chemical molecule undergoing X-ray diffraction), although this
information can certainly be useful in locating feasible distributions among the At.
When starting with A which has only positive integral coefficients, the list of
homometric distributions At may include many which have nonpositive coefficients.
There are many possible experimental reasons for a coefficient ax to include a phase
shift and be a general complex value. This occurs typically in neutron diffraction and
also in X-ray diffraction where there is a phase shift in the diffracting wavefront due
to absorption at the atom site x R n. (See [3] for a discussion of this phenomenon.)
This means that we generally want to include all At in our list of feasible distributions,
even those with nonpositive coefficients.

In the method outlined in Steps 1-4, it was assumed at the outset that the Patterson
function is known precisely. In experimental measurements, there will always be some
errors to take into account. In factoring polynomials, especially in Z[R"], errors in
the coefficients or exponents can generally have an enormous effect on the factoriz-
ation. This is analogous to how the set of solutions of a system of linear equations
can be changed dramatically (from an infinite set to a singleton, for instance) by very
small changes in the coefficients. There are several possible methods of dealing with
these errors. First, if the Patterson function is known to have only integer coefficients
at the points of some known lattice Z", Z c R ", then the experimental errors can
be made small enough to identify the Patterson function precisely. Second, when
possible we can choose the coefficient ring to be C in order to improve the chances
of factorization occurring; this works especially well in C[Z]. Then one would multiply
these factors together to get approximate factorizations in the smaller ring Z[Z].
Finally, one should be prepared to incorporate in any computer program some random
sampling of many Patterson functions within the allowed experimental deviation from
the unknown actual Patterson function. The only a priori restriction on these sample
Patterson functions is symmetry. Each of these sample Patterson functions is then
used for the entire algebraic procedure Steps 1-4. It is advisable when doing this
sampling to try to make the dimension of the lattice L in Step 2 as small as possible
by appropriate choice of the atom sites within the allowed errors. This will increase
the number of prime factors in general (if there is any chance that A has many prime
factors) and it will make the factorization easier to accomplish. There are probably
many difficulties that errors in measurement will create for our algebraic program;
but there should also be many methods, for example the ones mentioned above, to
counteract these difficulties.
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Unfortunately, the algebraic techniques above only apply to finite distributions.
If one is dealing with periodic point distributions which are effectively (up to the
accuracy of experimental measurement) spread throughout space (as is the case in
X-ray crystallography for instance), then the structure theorems of 2 do not apply.
See [1] for some examples and a use of the convolution method of 2 to provide
large families of nonisometric, mutually homometric crystal structures. One can view
the failure of the algebraic technique as a result of having to replace K[R"] by a
group ring K[G] where G is some finite cyclic group Z or Z xZ or Z xZ x Z.
Such a group ring has zero divisors and is not locally a unique factorization domain.,
The reason for the change in the group ring is that for Fraunhofer diffraction of
crystals, it is the absolute value of a Fourier series which is measured experimentally
and all vectors in the support of the Patterson function have to be identified modulo
the crystal’s lattice structure. So there is still no adequate structure theory for phase
retrieval in Fraunhofer diffraction of periodic distributions.

Another direction in which one could hope to extend our technique is diffraction
of continuous distributions with compact support. Here Theorem 2.2 fails to hold
except as a method of providing large classes of nonisometric, mutually homometric
continuous distributions. However, Theorem 2.5 does hold in this generality, as one
can see using an argument in several complex variables as applied to the extension
of the Fourier transform to the complex domain C", as in the Paley-Wiener theorem.
But as with periodic distributions, there is no adequate structure theory yet for phase
retrieval in Fraunhofer diffraction of continuous distributions.

Acknowledgment. The authors wish to thank David Yun for some helpful
correspondence concerning the capabilities of IBM’s Scratchpad program.
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THE COMPLEXITY OF
THE PARTIAL ORDER DIMENSION PROBLEM*

MIHALIS YANNAKAKIS"

Abstract. The dimension of a partial order P is the minimum number of linear orders whose intersection
is P. There are efficient algorithms to test if a partial order has dimension or 2. We prove that it is
NP-complete to determine if a partial order has dimension 3. As a consequence, several other related
dimension-type problems are shown to be NP-complete.

Key words, partial order, dimension, NP-complete, interval dimension, threshold dimension, boxicity,
cubicity

1. Introduction. A partial order P of a finite set N is an irreflexive, transitive
binary relation on N; i.e., (x, x) P for each x N, and if (x, y) and (y, z) P then
(x, z) P. A linear order L of N is a partial order which contains (x, y) or (y, x) for
any two distinct elements x, y of N. The linear order L is a (linear) extension of a
partial order P if P_ L. A partial order P can be viewed as a transitive directed
acyclic graph (DAG) with set of nodes N and arcs x -> y for (x, y) P. A linear order
L is then a complete DAG; it is a linear extension of P if P is a subgraph of L.

The intersection of any set of partial orders of a set N is obviously also a partial
order. The dimension d (P) of a partial order P of N is the minimum number of linear
orders whose intersection is P [DM]. It is a well-defined parameter" every partial
order is the intersection of some linear extensions of it. Moreover, d(P)<= INI/2[H].
A geometric interpretation of the dimension (and justification of the term) is the
following. Let r be a mapping fromN to distinct points of the d-dimensional Euclidean
space Ed. Let P(zr) be the partial order of N defined by: (x, y) P if and only if each
coordinate of or(x) is less than the corresponding coordinate of 7r(y). The dimension
of a partial order P of N is the minimum d for which there exists such a mapping r
from N to Ea with P(cr)= P [O].

Clearly, a partial order has dimension 1 if and only if it is a linear order. Duschnik
and Miller [DM] proved a necessary and sufficient condition for a partial order P to
have dimension 2. Two elements x and y of N are comparable if (x, y) or (y, x)
belongs to P; otherwise they are incomparable. The incomparability graph of P is an
undirected graph I(P) with N as its set of nodes and edges connecting the pairs of
incomparable elements. [DM] proved that P has dimension 2 if and only if I(P) is
transitively orientable; i.e., the edges of I(P) can be oriented so that the resulting
directed graph is transitive. (Such a graph is sometimes called a comparability graph.)
This condition combined with an efficient algorithm for the recognition of transitively
orientable graphs [PLE] gives a polynomial algorithm to test if a partial order has
dimension at most 2. A complete set of forbidden subgraphs of such partial orders is
given in [K], [TM].

In this paper we will prove that it is NP-complete to determine if the dimension
of a partial order is at most 3, and consequently the same holds also for any fixed
k >_-3. The complexity of the partial order dimension problem was unknown for any
fixed k >_-3 and for an arbitrary k; it is one of the open problems in the list of Garey
and Johnson [GJ]. For an exposition on NP-completeness see [GJ].

* Received by the editors July 8, 1981 and in revised form September 3, 1981.
t Bell Laboratories, Murray Hill, New Jersey 07974.
All sets in this paper will be finite.
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2. Preliminaries. Before describing the reduction, let us get some insight into
the problem. Let P be a partial order of N (transitive DAG on N) and suppose that
N is partitioned into two sets S, S’ so that there is no arc of P directed from a node
of S’ to a node of S. Let B (P) be the bipartite graph with set of nodes N and set of
edges {Ix, y]lx S, y S’, x and y incomparable}. Consider now a linear extension L
of P, and let/_7, be the bipartite graph with set of nodes N and set of edges {Ix, y ]Ix $,
y S’, (y, x) L}; i.e., L contains those arcs (without the direction) which are directed
from nodes of S’ to nodes of S. Since P has no such arcs and L is a linear extension
of P, L must be a subgraph of B(P).

We say that two edges Ix, y l, [z, w l, of a graph are independent if the nodes x,
y, z, w are distinct and the subgraph induced by them consists of exactly these two
edges. Suppose that L had two independent edges Ix, y l, [z, w] with x, z S and
y, w S’. From the definition of L then, L would contain (y, x), (w, z), (z, y) and (x, w);
i.e., L would contain a cycle y x - w z y, contradicting the fact that L is a linear
order (complete DAG). Thus, L has no pair of independent edges. We call a bipartite
graph with this property, a chain graph. It is also characterized by the property that
the neighborhoods Fx (sets of nodes adjacent to x) of nodes x in $ are totally ordered
by set inclusion; i.e. for every x, y in S, either Fx

_
Fy or Fy

_
Fx [Y].

Suppose now that P has dimension d, and let L1,’", La be linear extensions of
P with intersection P. Let L1,..., La be the bipartite graphs that we defined above.
Each Li is a chain subgraph of B(P). Since the intersection of the Li’s is P, for every
edge Ix, y of B(P) with x $, y S’, the arc (y, x) must appear in at least one of the
Li’s; thus [x, y] is covered by (appears in) at least one of the Li’s. For a bipartite graph
G, let ch (G) be the minimum number of chain subgraphs of G that cover all the
edges of G. We have shown:

LEMMA 1. d(P) _>- ch (B (P)).
Thus, for example, if P is the crown on nodes {vl,..., vk, v,..., v:} with

arcs vi vj for # ], and we take S {v,. ., vk}, S’= {v,. ., v,}, then B(P) consists
of k pairwise independent edges Ivy, v],..., [v, v,], and d(P)->_ch (B(P))= k.

3. The reduction. The reduction is from the chromatic number 3 problem; i.e.,
given a graph G determine if the nodes of G can be colored with 3 colors so that
adjacent nodes receive different colors. This problem was shown NP-complete in
[GJS]. From G we will construct a partial order P so that G can be colored with 3
colors if and only if d(P)-< 3.

Let V={u,..., un} be the nodes of G, and E={el,..., e,,} its edges. P is a
partial order on the union N of two disjoint sets $ and $’. $ contains two nodes Ua,

Uib for every node ui of V, and two nodes ui, uj for every edge e [u, u] in E. $’

contains the primed versions of the nodes in $; thus, altogether N has 4n +4m
elements. The partial order P is defined as follows.

P= {(Uia, bltit)[1 <- n, t # a} U {(Uib, U’it)ll <= <- n, # b}

t.J{(ui,, u})ll <-i,]<-n, 1 <-_k <-_m, l> k or l=a or b}

U {(ui,, u,)l <- k =< m, e, [ui, u]}
t_J {(u, u)ll -<_ i, ] <_- n, 1 <_- k < <_- m}.

Notice that all arcs between S and $’ are directed from S to S’. Let B(P) be the
bipartite graph defined in the previous section. Let Q be the nodes Uk in S that
correspond to edges of G (i.e., with 1 <-k <= m), R the rest of the nodes in $ (i.e. with
k a, b), and let Q’, R’ be the analogous subsets of $’. In simple words, B(P) has
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the following structure: a node in Q is connected to its primed version and to all
nodes of Q’ with a strictly smaller second index; a node in R is connected to its
primed version and all nodes of S’ with a different first index. In Fig. 1 we give an
example of the construction; only part of the partial order is shown for clarity.

Ul

//2 U3

(a) A graph G.

1,111 I,21 112 U32 IAla Ulh

(b) Part of the partial order P.

FIG.

LEMMA 2. If ch (B(P))<-3 then G can be colored with <-3 colors.
Proof. Suppose that ch (B (P)) _<- 3, and let B1, BE, B3 be three chain subgraphs

of B(P) that cover it. Consider the subgraph Hi of B(P) induced by all nodes uit,

with first index i. It has three connected components" the edge [Uia, U’ia], the edge
[Uib, U ib] and the subgraph induced by the Uik, U ik with 1 _-< k <- m. Since a chain graph
cannot contain two independent edges, none of the Bi’s can contain two edges from
different components of Hi. Since Hi has three components, all edges of the third
component are in the same Bi; color node ui with the index of this Bi.

We must show now that this is a legal coloring of G. Suppose that there are two
adjacent nodes u, ui with the same color, say color 1. Let ek =[Ui, Ui]. From the
definition of the coloring we have funk, Uk], [Uik, Uk]EB1. But these two edges are
independent in B(P), hence also in B1, contradicting the assumption that B1 is a chain
graph.

LEMMA 3. If G can be colored with <- 3 colors then d(P)<-3.
Proof. Suppose that G can be colored with 3 colors, and let C1, C2, Ca be the

sets of nodes that receive color 1, 2, 3 respectively in a legal coloring of G. We will
construct three linear orders Lx, L2, L3 whose intersection is P. We will show only
La corresponding to the color class Cx; the two other linear orders are analogous.

We need some notation for describing linear orders. We shall write a linear order
as a string where every element is less than the elements to its right. If X is a set
then X will stand also for an arbitrary linear order of X. If F, F2 are linear orders
of disjoint sets X1, X2, then FF2 is the concatenation of the two strings. If I
{il, ik} is an index set with il < i2 <" < ik, and FI,. ., F are linear orders of
disjoint sets XI,.. ",Xik, then we will denote FIF2... F by (Fi’iEI), and
FkFik_. F/ by Fi ,1, I).

Let Rx {uia, UiblUi C} and similarly for R, R2 etc. Let ek [Ui, Ui] be an edge
ot G. If none ot ui, ui has color 1 then Ek {Uik, Uik}. If one of ek’S nodes, say u, has
color 1 then Ek is the order UjkU ikUik.

Let ui be a node that receives color 2 or 3. Define a linear order Ki on
{Uia, Uib, U ia, U tib} J {U ilui e} as follows. If u has color 2 then Ki is UbU i,,U ,,U ib followed
by the elements of the second set in decreasing order of the second index (k). If u
has color 3 then K is u,u bUbU ,, followed by the elements of the second set again in
decreasing order of k.
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The linear orderL now is R < Ek k {1,’.., m} >R (Ki ui C2) (Ki $ ui C3).
The two other orders are defined in a cyclically symmetric fashion.

It is straightforward to verify that each Li is a linear extension of P. We will show
now that for every pair of incomparable elements x, y of P, (x, y) is in one of the Li’s.

Case 1. x $’, y S. This case amounts to showing that the chain subgraphs L,
2,/$3 of B(P) cover all of its edges. Let a u’ik, Y Ujt, and suppose ug has color 1,
and uj color c. If c 1, or t{1,..., m} then (x, y)L1. Assume then c 1 and
t{a,b}. If i>] then (x, y)L2; if i<j then (x,y)L3. If i=] we must have k=t
since x and y are incomparable and a or b; then (x, y) L2 or L3.

Case 2. x, y S’. Let x u ik, Y U#. If ] and 1 -< < k _<- m, then, (x, y) Lc
where c is not the color of ui. In all other cases there is a node z of $ incomparable
with x and such that (z, y)P: If /" or [i =/" and k {a, b}, say k a] then uia is
such a node z. If j and k {1,. ., rn} then we must have {a, b} or > k, and
Uk is such a node z. From Case 1, (x, z) is in one of the linear extensions Lr of P and
therefore (x, y) Lr by transitivity.

Case 3. x S, y S’. Clearly, there is a z S’ such that z y, (x, z) P. Since z
and y are incomparable, (z, y) is in some L from Case 2 and by transitivity (x, y) L.

Case 4. x, y S. If there is a z in S’ incomparable to y with (x, z) P, then (x, y)
is in some L as before. If there is no such z, then it is easy to see that x Uik for
some k {a, b} and y ui, for some {1,..., m}. Then (x, y)Lc where c is the
color of ui.

THEOREM 1. It is NP-cornplete to determine if the dimension of a given partial
order is at most 3.

Proof. Follows immediately from Lemmas 1, 2, 3.
COROLLARY 1. It is NP-complete to determine if a given bipartite graph can be

covered by 3 chain subgraphs.
Proof. Same as for Theorem 1. 13
We should mention here that it is possible to determine in polynomial time if a

bipartite graph can be covered by 2 chain subgraphs; this follows from the results of
Ibaraki and Peled in [IP] and Lemma 7 in the next section.

The height of a partial order P is the length of the longest path in (the DAG)
P. [Ki] showed that a partial order P can be transformed efficiently into another partial
order P’ of height 1 with d(P) -< d(P’) <= d(P) + 1.2 Therefore, an efficient algorithm
for computing the dimension of partial orders of height 1 would give a good approxima-
tion of the dimension of an arbitrary partial order.

COROLLARY 2. It is NP-complete to determine if the dimension of a partial order
of height 1 is at most 4.

Proof. Let B be a bipartite graph with S, S a bipartition of its nodes. Let B
be obtained fromB by adding two new nodes u, u’ and an edge [u, u’]. Let $ $1 {u}
and $’= S LI {u’}. Let P be the partial order of height one with (x, y)P if and only
if x S, y S’ and Ix, y] B. Notice that B is the graph B (P) that we defined in 2.
We claim that ch (B1) <= 3 if and only if d(P) <-4 (if and only if ch (B)-<_4).

(/f) Suppose that d(P)-<4. From Lemma 1 then ch (B)-<4. Let G, G2, G3, G4
be chain subgraphs of B that cover its edges and suppose without loss of generality
that [u, u’] G. Since [u, u’] is independent from all the other edges of B, the rest
of the edges must all appear in the other three chain subgraphs.

2The partial order P’ of height has the property d(P)= ch (B(P’))" that is, the construction of [Ki]
is actually a reduction of the dimension problem to the chain covering problem. It is easy to see also that
for any order P’ of height 1, d(P’)<-ch (B(P’))+ 1--a proof is essentially contained in Corollary 2.
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(only if) Let G, G2, G3 be three chain subgraphs of B1 that cover its edges.
From any chain graph G we can get a linear order L on S US such that L Gg.
To see this, recall from 2 that the neighborhoods in G of all nodes of S (and $)
are totally ordered by set inclusion. From this it follows easily that the nodes in S
can be partitioned into sets R,R2,... ,Rk and the nodes in S into sets
R’,R’2,... ,R’k so that the neighborhood of each node in Ri is I,,JtwR’t. (R’ and/or
Rk may be empty.) The linear order L-RkRkRk_Rk_,’’’, RR’I satisfies then
Li Gi (see Fig. 2).

R’j R2

Rj R,

R; R’k

R2 Rk-

FIG. 2

Let L1, L2, L3 therefore be linear orders with Li Gi. Let F be the intersection
of the restrictions of L1, L2, L3 on Sl, and F the intersection of the restrictions on
S. Let F, F’ be any linear orders of Sl, S respectively with F f’) F1 , F’ (qF
e.g., F can be the inverse of any topological sort (linear extension) of the DAG

Let L uLlu’, L’ uL2u’, L’3 uL3u’, L’4 Fu’uF’, and let P* be the intersec-
tion of the L’s. Clearly, all L"is are linear extensions of P; thus P

___
P* From our

choice of F and F’, the restrictions of P* on S and $’ are empty. For x S, y S’
with x, y incomparable we have (x, y)L or x u, y u’ and (x, y) L. For x S,
y Sl incomparable, (x, y) is in the L that corresponds to the chain subgraph Gi that
covers Ix, y]. Finally, (u’, u) is in L. Thus, P P*.

COROLLARY 3. For any k >-3 it is NP-complete to determine if the dimension of
a partial order is at most k.

Proof. Apply the reduction of Corollary 2, k- 3 times. 71
Note. E. Lawler and O. Vornberger showed recently (and independently) the

result in the case of arbitrary dimension; i.e., given partial order P and integer k it
is NP-complete to determine if d (P)-< k [L].

4. Related problems. In this section we will show that several related dimension-
type problems are NP-complete, using Corollary 1.

Interval dimension. Let X be a set of closed intervals on the real line. We can
define a partial order P on X, where for x, y in X we have (x, y)s P if and only if
the right endpoint of interval x is to the left of the left endpoint of interval y. A
partial order that can be constructed in this way from a set of intervals is called an
interval order. Clearly, every linear order is an interval order; in this case the intervals
can be taken to be distinct points.

The interval dimension of a partial order P, denoted id (P), is the minimum
number of interval orders whose intersection is P [TB]. Since every linear order is
also an interval order, we have id (P)<_-d (P).

Interval orders of height 1 are closely related to chain graphs. A necessary and
sufficient condition for a partial order P to be an interval order is that P does not
contain a pair of independent arcs, i.e., two arcs (x, y) and (u, v) with x, y, u, v distinct
elements and such that the subgraph of P induced by them consists of exactly these
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tWO arcs IF]. Thus, a partial order of height 1 is an interval order if and only if its
underlying graph (its comparability graph) is a chain graph.

Let P be a partial order of height 1 and let S be the set of elements of height 1
and S’ the set of elements of height 0. Clearly all arcs of P are directed from S to
S’. Let G(P) be the underlying graph of P, and B(P) the graph that we defined in
2; i.e., B (P) is the bipartite graph with the set of edges {[x, y ]Ix S, y $’, (x, y) P}.

It follows easily from the definitions that G(P) is a chain graph if and only if B(P) is
a chain graph.

LEMMA 4. Let P be a partial order of height 1. Then id (P) ch (B (P)).
Proof.
(1) id (P)_-<ch (B(P)). Let B1,’’’ ,Bk be chain subgraphs of B(P) that cover its

edges. For each Bi define the partial order Pi {(x, y)lx s S, y s S’, [x, y] Bi}. Since Bi
is a chain subgraph of B(P), Pi is an interval order that contains P. Since the Bi’s
cover the edges of B (P), the intersection of the Pi’s is P.

(2) ch (B (P))<_-id (P). Let PI,""", Pk be interval orders whose intersection is P.
For each i, let P[ be the subgraph of Pi that consists of those arcs of Pi that are
directed from S to S’. Let (x, y), (u, v) be two arcs of P’i with the nodes x, u s S and
y, v s S’ distinct. Since Pi is an interval order, these two arcs cannot be independent
in Pi. Suppose that Pi contains an arc from one of {x, y} to one of {u, v} (the other
case is symmetric). Then, by transitivity, (x, v) is in Pg, and therefore also in P[. Thus,
P[ is an interval order of height 1, and consequently B(PI) is a chain graph. Since
the intersection of the Pi’s is P and all arcs of P are directed from S to S’, the
intersection of the P’s is also P. Therefore, the B(P)’s are chain subgraphs of B(P)
that cover its edges.
CooI 4. It is NP-complete to determine if the interval dimension ofa partial

order of height 1 is at most 3.
Proof. Follows from Corollary 1 and Lemma 4. I-1
[TM] presents a characterization of partial orders of height 1 that have interval

dimension 2, in terms of forbidden subgraphs. However, the interval dimension 2
problem for general partial orders is open.

Boxieity. Let X be a set of closed intervals on the real line. We can construct a
graph G with the intervals as nodes, and an edge between any two intervals with a
nonempty intersection. A graph that can be constructed in this way from a set of
intervals is called an interval graph. Thus, an interval graph is the incomparability
graph of an interval order.

If G1," , Gk are graphs with the same set of nodes, their intersection is a graph
with the same nodes and with those edges that are contained in all the G’s. The
boxicity of a graph G, denoted b(G), is the minimum number of interval graphs whose
intersection is G. A geometric interpretation (and justification of the term) is the
following. Let X be a set of boxes in the k-dimensional space with sides parallel to
the coordinate axis. Their intersection graph has set of nodes X and an edge between
any two boxes with a nonempty intersection. The boxicity of a graph G is the minimum
k such that G is the intersection graph of a set of such boxes in the k-dimensional
space JR]. Thus, G has boxicity 1 if and only if it is an interval graph, boxicity 2 if
and only if it is the intersection graph of rectangles in the plane with sides parallel to
the axis, etc.

LEMMA 5. Let B be the complement of a bipartite graph B. Then, b(B)= ch (B).
Proof. At first let us show that the complement G of a bipartite graph G is an

interval graph if and only if G is a chain graph. If G is a chain graph with S, S’ a
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bipartition of its nodes, then the partial order P obtained from G by directing all its
edges from $ to $’ is an interval order. Therefore, G, the incomparability graph of P,
is an interval graph. Conversely, if G is an interval graph then it is the incomparability
graph of an interval order P. Therefore G, the underlying graph of P, does not contain
a pair of independent edges. Since G is also bipartite, it is a chain graph.

(1) b(B)=<ch (B). Let B1,’’’ ,Bk be chain subgraphs of B that cover its edges.
Their complements B1,""", Bk are interval graphs whose intersection is B.

(2) ch (B) -<_ b(B). Let B1, ", Bk be interval graphs whose intersection is B. The
complements BI,..., Bk of the B’s are subgraphs of B and therefore are bipartite.
Thus, the Bi’s are chain subgraphs of B that cover its edges. [-!

COROLLARY 5. It is NP-complete to determine if the boxicity of a graph is at
most 3.

Cozzens showed recently the NP-completeness of the boxicity problem for
arbitrary k, i.e., that given graph G and number k it is NP-complete to tell if b(G) <= k
[C]. The boxicity 2 case remains open.

Culieity. A unit-interval graph is the intersection graph of unit intervals (closed
intervals of length 1) on the real line. The cubicity c(G) of a graph G is the minimum
number of unit-interval graphs whose intersection is G. Geometrically, the cubicity
of G is the minimum number k such that G is the intersection graph of unit cubes
with sides parallel to the coordinate axes in the k-dimensional space [R]. Clearly,
b(G)<=c(G).

LEMMA 6. Let B be the complement of a bipartite graph B. Then, c(B)= ch (B).
Proof. In view of Lemma 5 it suffices to show that the complement of a chain

graph G is a unit interval graph. Let G be a chain graph that has the form of Fig. 1.
We shall construct a unit-interval model for G. Associate with every node of
(i 1,. , k) the (closed) unit interval [ilk, 1 + ilk], and with every node of R the
interval [1 + ilk, 2 + ilk]. It is easy to see then that the intersection graph of these
intervals is G, the complement of G.

COROLLARY 6. It is NP-complete to determine if the cubicity of a graph is at
most 3.

Threshold dimension. Let G be a graph with nodes v, , vn. With every subset
X of nodes we can associate its characteristic vector x (x l,"’", xn), where x is 1 or
0 depending on whether the node v is in X or not. The threshold dimension O(G) of
G is the minimum number of linear inequalities in the variables x1,’ x, such that
a set of nodes X is independent (i.e., does not induce any edge) if and only if its
characteristic vector satisfies the inequalities [CH1]. A graph G with O(G) =< 1 is called
a threshold graph. The threshold dimension of a graph G can be defined in an equivalent
way as the minimum number of threshold subgraphs of G that cover its edges.

A threshold graph has the following structure. Its nodes can be partitioned into
an independent set of nodes P and a clique Q so that the subgraph of G consisting
of the edges of G between P and Q is a chain graph. Equivalently, G is a threshold
graph if and only if it does not contain as an induced subgraph a pair of independent
edges, a path of length 3, or a cycle of length 4 (see [CH1], [G] for more details).

LEMMA 7. Let B be a bipartite graph with P, Q a bipartition of its nodes. Let B’
be obtained from B by including all edges between nodes in Q (i.e., making Q a clique).
Then ch (B)= O(B’).

Proof. (1) ch (B)-> O(B’). Let B,..., B be chain subgraphs of B that cover its
edges, and let B,..., B: respectively be obtained from them by turning Q into a
clique. Then the Bi’s are threshold subgraphs of B’ that cover its edges.
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(2) ch (B)<=O(B’). Let B,..., B, be threshold subgraphs of B’ that cover its
edges. For each i, let Bi consist of the edges of BI between P and Q. Then the Bi’s
cover the edges of B. We claim that they are also chain graphs. For, suppose that B
has a pair of independent edges [x, y], [u, v] with x, u P and y, v Q. Then the
subgraph of B induced by these four nodes is either a path of length 3 (if it contains
the edge [y, v]) or a pair of independent edges (if it does not contain [y, v]). In either
case B is not a threshold graph.

COROLLARY 7. It is NP-complete to determine if a given graph has threshold
dimension at most 3.

Chvatal and Hammer [CH2] had shown the NP-completeness of the threshold
dimension problem in the case of arbitrary dimension. The case of dimension 2 remains
open.

Acknowledgment. I wish to thank Martin Golumbic for pointing out the implica-
tion for the threshold dimension problem (Corollary 7) and for helpful discussions on
the problems of 4.
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MULTISETS OF APERIODIC CYCLES*

N. G. DE BRUIJN" AND D. A. KLARNER

Abstract. The basic result is that if A is a finite set then there are exactly ]AI" multisets of aperiodic
cycles over A with total length n. This is shown by a counting technique but also by establishing an explicit
bijection from these multisets to words over A of length n.

1. Notation. Let {0, 1, .} and P {1, 2, .} be the sets of nonnegative and
positive integers respectively. Let A be a finite or countable set, and for each n P
let A be the set of all n-tuples over A. An element x A is called an n-word or
sometimes just a word, and the length of x is defined to be A (x)= n. Also, it is
convenient to have an empty word A whose length is defined to be A (A)= 0. Let A*
be the set of all words over A, then elements x, y A* are concatenated to form a
new word xy A* in the usual way. In particular, Ax xA x for all x A*. Also,
for each k , x A*, x k is defined to be the concatenation of k copies of x. (That
is, X X, and X

k+l
X X

k for all k s P). If x, y s A* are such that y xu for some
u A*, we write x

_
y and say x is an initial word of y.

Suppose x s A n, n P, with x x xn, xi A for 1,.. , n. Then the word
xa+"" xnx’"xa is called the d-shift of x for d 1, ..., n-1. If x is equal to a
d-shift of x, then x is called periodic; otherwise, x is called aperiodic. The empty word
is neither periodic, nor aperiodic. Suppose x is periodic and let d s P be the smallest
number such that x is equal to the d-shift of x. Then d is called the period of x and
we define 7r(x) to be the initial word of x with length d. If x is aperiodic we define
r(x) x. It is easy to check that zr(x) is an aperiodic word for all x A*\{A}. Also,
if x is an n-word and zr(x) is a d-word where n P, then d divides n. Furthermore,
if k- n/d, then x (zr(x)) k. This motivates the definition of a k-fold word, namely, a
word having the form yk with y an aperiodic word. Let Pk(A) be the set of k-fold
words over A; in particular, PI(A) is the set of aperiodic words.

Now we define an equivalence relation on A*\{A}. Put x---y just when x-y or
y is a d-shift of x for 1 <_- d < h (x). An equivalence class is called a cycle over A, and
(A) is defined to be the set of all cycles over A. If x A*\{A}, let (x) be the cycle
which has x as an element. We will speak of a property common to all the words in
an equivalence class as a property of the cycle, and notation will be used in a similar
fashion even though this is a bit improper. For example, if x--y, then h (x)= h (y).
So we speak of the length of (x) and write h (x) for it. Also, if x---y, then x and y
have the same period, and 7r(x)---zr(y). So we speak of the period of (x), and write
7r(x) (zr(x)). If x is a k-fold word, (x) is called a k-fold cycle. Let Mk(A) be the set
of k-fold cycles over A, k g). If x is aperiodic, we say (x) is aperiodic. Let M(A)=
MI(A) be the set of aperiodic cycles over A. Thus, {MI(A), /?2(A),’’ "} is a partition
of c(A) into disjoint sets.

A finite multiset on a set X is a mapping f from X into such that the size of
f, which is defined to be to(f)=Y.xxf(x), is finite. In this paper we shall just say
multiset instead of "finite multiset". Let /(A) and Mk(A) be the set of all multisets
on c4(A) and 4k(A) respectively for all k P. For f in (A) or in Mk (A) we introduce

* Received by the editors July 14, 1981, and in revised from November 19, 1981.
f Eindhoven University of Technology, Department of Mathematics, 5600 MB Eindhoven, the Nether-
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359



360 N. G. DE BRUIJN AND D. A. KLARNER

a measure x (f) called the length total of f, that is different from the size w(f). Instead
of just counting the elements of the multiset, we give each element C a weight that
equals A (C). So the length total of fl(A) is defined to be <(f)= Y’.cA)f(C)A (C),
and K (f) for f k(A) is defined similarly as a sum over k(A). If K (f)= n, we call f
an n-multiset for all n N.

2. Statement of results. The heart of our results is a bijection between the set
of n-multisets over (A) and the set of n-words over A. That is, every multiset of
aperiodic cycles whose lengths total n corresponds to a word of length n, and
conversely. We will use this bijection to prove a weighted version. Let w be a product
weight on A*. That is, w is a mapping of ,4" into some sort of commutative algebra,
and one of the most important properties of w is that w(xy)= w(x)w(y) for all
x, y s A*. This means w (Xl xn) w (Xl). w (xn) for all xi A, 1, , n. For
our purposes, w must possess some other properties which guarantee that certain
infinite sums and products are themselves weights. These extra assumptions will
become evident later, but will not be explicitly stated. Since x y implies w (x) w (y),
we speak of the weight of a cycle C s (A) and write w(C)= w(x) for all x s C.

Finally we define a weight function W on //(A) and k(A) in terms of w. For
all f s (A) we put

() w(/’)= II (w(C)):<).
Ce(A)

The weight of f ///k (A) is defined similarly as a product over k(A), k P. Note that
since {Sl(A), s2(A),...} is a partition of (A), a multiset ft(A) is completely
determined by its restrictions to the blocks of this partition. Let fk be the restriction
of f to Sk(A) for all k P. Then it is easy to see that

() w(f)= I-[ w().
k=l

and furthermore,

(3) E W(/)= 1-I Y’. W(fk).
f.,C A k

Finally, we will prove that for all k s IP

(4) 2 W(f) , (W(g)).
f ./f/l A g//l(A)

Here we are dealing with multisets of k-fold cycles. Recall that there is a natural
bijection 7r between s(A) and I(A). Say (x) (A), then ((x)) is the correspond-
ing element in (A). Going the other way, (y) e (A) corresponds to (y) in (A).
Thus, g (A) corresponds to fe(A) where g(x}=f(x) for all (x}e (A); also,
W(f) (W(g)) for all k P.

We will prove in subsequent sections that

(5) 2 w(/)= 2 w(x)= 2 w(a
fe(A) xeA* n=O

However, an immediate consequence of (5) is that

(6) 2 (w(f))= E E (w(a))
f(A) n=O aA
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This follows just by replacing w with the kth power of w in the definition of the
weight of fdtl(A) so that W is replaced with the kth power of W. Combining (3),
(4), and (6) gives

)E W(f) VI (w(al)k
(7)

ra() k= ,=o

However, we still have to prove (5); this is done combinatorially in 4 and algebraically
in5.

3. Some motivation. The inspiration for this paper was a formula due to Read
[8] which expresses f(n), the number of endomorphism patterns on an n-set, in terms
of t(1), ..., t(n), where t(k) is the number of isomorphism classes of rooted trees
with n points. The formula is most elegantly expressed in terms of the two generat-
ing functions involved. Let F(z)= 1 +f(1)z +f(2)z2+ ., and let T(z)= t(1)z +
t(2)z2+ .. Then Read’s formula is

(8) F(z) ki_I
1

=, 1- T(zk)"
Read’s derivation of (8) was based on a formula due to Harary [6] who used P61ya’s
fundamental enumeration theorem to find an algorithm for computing the number of
endomorphism patterns with n vertices.

An endomorphism on a set of n points can be described by means of a collection
of cycles where each point of each cycle is the root of a tree. The idea that gave rise
to the present paper is the discovery that the separate factors in (1) allow simple
interpretations. The factor (1-T(z))-1 is related to the cycles on which the set of
trees does not show any periodicity, and in general the factor (1- T(zk))-1 is related
to the cycles on which the set of trees has the exact period m/k (where m is the
number of points on the cycle). A description of how endomorphisms are relted to

cycles with trees is given in 6.
A quite simple observation is that the counting argument (presented in its simplest

form in 5) does not make use of the fact that the objects growing on the cycles are
trees. We can replace the trees by the elements of any arbitrary finite or countable
set A. This gives rise to the problem formulation presented in 2.

4. The bijection. Our objective in this section is to construct a bijection fl
between the set of n-words over A and the set of n-multisets of aperiodic cycles over
A represented in a certain normal form. Also, fl preserves weights. That is, if x
corresponds to multiset f, then w(x)= W(f). Since

Y. w(x)=( w(a))xc=A a.A

we can sum this over all n s t and use the bijection 12 to get (5).
The basis of 12 is an algorithm which factors an n-word into its corresponding

n-multiset expressed in normal form. The algorithm and normal form both depend
on an arbitrary linear order imposed on A. So we suppose the countable set A is
ordered linearly by -<, and extend -< to the lexicographical order on A* in the usual
way. That is, for all x, y A*, x =< y means x

___
y or there exist u, r, s A* and p, q s A

with p < q such that x upr, y uqs.
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We should not be trapped into thinking that for u, v, x c A*, the inequality u < v
always implies ux < vx. The implication is correct, however, if A (u)= A (v). We shall
use this repeatedly.

A word x cA* is called normal if A(x)= 1, or if A(x)> 1 and x is less than
all its d-shifts for d 1, ..., A (x)-1. If x is aperiodic, then x and all its d-shifts
(d 1,..., h (x)- 1) are distinct.

Let N(A) be the set of normal words over A. Thus, every aperiodic cycle contains
exactly one normal word, and every normal word x gives rise to an aperiodic cycle
x. The sequence of normal words (cl, "’, Ck) is defined to be the normal form u(f)
of a multiset f over M(A) just when Cl >" > Ck, I (f) h (Cl) +" +/ (Ok), and for
each c oN(A) the number of (1 <-i<-k) with ci c equals .f(c). Roughly speaking,
normal words replace aperiodic cycles, and ]" is represented as a decreasing list of
words after this replacement. For example, suppose A {a, b, c,. .} with a < b < c <.., and define f to be 0 for all aperiodic cycles over A except that ]’(a)= 3, f(b)= 1,
(ab) 2, and/(abacb) 1. This means ([) 3 + 1 + 4 + 5 13, and since b, abacb,
ab, a are all normal and in decreasing order, u(f)= (b, abacb, ab, ab, a, a, a). It will
turn out that the word corresponding to f in this case is lq-1 (f)= babacbababaaa.

Let x c A* with x A, let r(x) be the longest normal initial word of x, and let
-(x) be the rest of x after or(x) has been deleted. Create a sequence (x) of normal
words as follows. Define fl(x)= (x) for all normal words x, and define fl(x)= (o’(x),
f(’(x))) for all other nonempty words. (Delete extra parentheses according to the
rules (u, (v))= (u, v).)

If l(x)= (xl,’’’, x,) then x xl... x,. We shall show in Lemmas 3 and 4 that
the converse is true if x l, , x are all normal and x ->" >- xn.

LEMMA 1. Suppose x, y c A*, y is normal x A and x < y. Then xy < yx.
Proof. By definition of x < y, there are two cases. In the first case, we have y xt

with c A*, A. Then xt < tx because y is normal, so xy xxt < xtx yx. In the
second case, we have x upr, y uqs with u, r, s cA*, p, q cA, and p <q. Then
xy upry < uqsx yx because p < q. This completes the proof.

The next result is a generalization of this one.
LEMMA 2. Suppose x, Yl, , Yk C A*, yl, ’, Yk normal, and x <- yl, , Yk.

Then xy yt, <- y yt,x.
Proof. Using the previous lemma we have

(9)

That is, the ith inequality holds because x =< yi and because yi normal implies xyi <= yix

for 1, ..., k. This completes the proof.
LEMMA 3. Suppose xl, "’’, Xh cA*, xx, "’’, Xh are normal, and x >-... >=Xh.

Let x x Xh. Then lq(x (X l, ", Xh ). That is, every n-rnultiset over sg(A in
normal form is the image under fl of some element ofA

Proof. It is enough to show that r(x) x1, because then fZ(x) (x 1,. , x,) follows
by a simple induction. Since x is normal, we certainly have x_ r(x). Suppose
o,(x) xl xku where u G x/l for some k 1, ., h 1, and u # A. Then x, ,
x ->x/ =>x, and Xl, ’, x are normal by hypothesis, so ux. xk <-xl xku by
Lemma 2. This means xl’"xu is not normal. Thus, r(u)xl, so r(u)= x. This
completes the proof, i-1

LEMMA 4. Suppose x c A*, x A, fl(x (x l, , xk ). Then x >-" >- x.
Proof. It can be assumed without loss of generality that k 2. If k 1, there is

nothing to prove. If the theorem is true for k 2, then for k => 3 one can use the fact
that fZ(x)= (x,..., x) implies f(xlxi/l)= (xi, x/l) for 1, ..., k- 1 to conclude
that xg>-xg/l for i= 1, ..., k-l; that is, xl ->.. .->x.
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We will show that if xl and X2 are normal words, and if ’(X1X2)"-" (X1, X2), then
xl _-> x2. This will be done by induction on the length of XIX2o Actually we shall prove
for n _-> 2 the following statement: for every linearly ordered set A, and for every pair
x, x2 of normal words over A with A(XlXE)=n, ’(X1, XE)--(X1, X2), we have xl>-x2.
If n 2 this statement is true. Next we assume n > 2.

Let ax, a2 be the initial elements of x, x2 respectively. Then because xi is normal,
every element of xi is not less than ai for 1, 2. Also, a _-> a2, for if a < a2 we will
show that xla2 is normal, contradicting the assumption that tr(xlx2)= x. To show
that xla2 is normal if a < a2, we have to show that xla2 is exceeded by all its shifts.
First, xa2 < aExl because a < a2. If A (x)= 1 this shows that xla2 is normal. Next,
suppose x- uv with u # A, v A. Then uv < vu because x is normal. Hence,
u12a2 t3ua2. But the initial element of u is al, so ua2 < aEu. Hence, ul3a2 12ua2 t)aEu.

This shows xa2 is normal, a contradiction, so al -> a2.
If al > a2, we have Xl X2 and we are done.
Finally we get to the hardest case: al "--a2 a. Then a is the smallest element in

xx2. Thus, we can put Xl au...auh, x2 avl.." av where the u’s and v’s are
words either empty or with every element greater than a.

Let A be the set of all p A with p > a. Then words with every element greater
than a are elements of A:, and so is the empty word. The combinations ax with
x AI*, will be called syllables. The au, ..., aUh, avl,’’’, av mentioned in the
previous paragraph are syllables.

Let us use the letter B for the set of all syllables. If b, b B we write bl < b2
if and only if this inequality holds in A* (elements of B are words over A). By
lexicographic order, this inequality is extended to elements of B* (the set of words
over B).

There is a natural injection from words over B to words over A. For example,
if au, ..., aUk are syllables, then (aul)(au2)... (aUk) is a word over B, and it is
mapped onto aulau2.., aUk, which is a word over A. This injection is easily seen to
preserve lexicographic order: (au)... (auk)<(av)... (av) in B* if and only if
au aUk < av avi in A*. And it preserves normality: (aul) (aUk) is normal
in B* if and only if au aUk is normal in A*.

Now let xl=au"’ aUk and x2=av’’’ av be normal in A*, with A(xx2)=n
and f(XlX2) (x, x2). TheninB* the words yl (aux).. (aUk)and Y2 (au). (avi)
are normal, with I(yly2) (y, y2). But A (yly2) is less than n (the case that all syllables
in XlX2 have length 1 is easily dismissed because n > 2). So by the induction hypothesis
we have yl -> y2. Since the injection preserves order, we conclude Xl =>x2. This com-
pletes the proof.

The foregoing lemmas lead to the following.
THEOREM 1. Every x A corresponds to exactly one n-multisetf over 4(A) such

that f(x)= v(f). Furthermore w(x)= W(f).
This concludes our combinatorial proof of (5). To illustrate the bijection, consider

all words over A {a, b, c} with a < b < c which have two as, one b and one c. These
words together with their lq-factorizations are"

x f(x) x f(x)

aabc aabc baac b, aac
aacb (aacb) baca (b, ac, a)
abac abac bcaa bc, a, a)
abca (abc, a) caab (c, aab)
acab (ac, ab) caba (c, ab, a)
acba (acb, a) abaa (c, b, a, a)
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We have listed the words in this illustration in lexicographical order. It might be
noticed that if each fl(x) is viewed as a word overN(A), then the list of fl-factorizations
is also in lexicographical order. An explanation for this is given by the following results.

LEMMA 5. Let x, y c A* with x <- y. Then r(x) <= o’(y).
Proof. If x-< y, there are two cases to consider. In the first case, we have y xt

for some c A*. Then r(x) r(xt) r(y), so r(x) -< r(y). In the second case we have
x upr, y uqs, u, r, s c A*, p, q c A, and p < q. If u A, then p c_ r(x), q

_
or(y), so

r(x) < r(y). If u A, then either r(x)
_

u, or up
_

r(x). If r(x)
_

u, then r(x) r(u)
_

r(y) since u
_

y, so r(x) <_- r(y). If up c_ r(x), we will show uq is normal, so uq
_

o’(y),
and we have r(x) < o,(y). To see that up

_
o,(x) implies uq normal, suppose o-(x) upt,

teA*. Let u =ulu_ with ul A, then Uuapt<u2ptu because upt is normal. We
finally show that replacing pt by q preserves this inequality. We write uua vrw
where v, w cA*, r cA and A (v) A (ua). Since uuapt < uaptu, we have vrwpt < uaptul.
We consider the two cases v < ua and v ua separately. If v < ua then vrwq < uaqu
(because of A(v)=A(ua)), so uuaq<u.qu. If v=ua we have r<=p, and therefore
r<q, whence vrwq<uaqu, so again uluaq <uaqu. This means that uq is normal,
and our proof is complete, l-1

THEOREM 2. Suppose x < y. Then fl(x)< fl(y).
Proof. This is proved by induction on A (x). The case it (x)= 1 is trivial. Suppose

the theorem is true for all x c A* with it (x)< n for some n-> 2. Let x, y c A* with
x < y, it (x)= n. We know from the previous lemma that r(x)-< o’(y). If r(x)= r(y),
then ’(x) < ’(y), and it (-(x)) < it (x), so fl(r(x)) < fl(-(y)) by the induction hypothesis.
Hence, l(x)=(r(x),fl(’(x)))<(r(x),fl(r(y)))=fl(y). If o’(x)<o’(y), then f(x)=
(r(x), fl(r(x)))< (o’(y), fl(’(y)))= I(y). This completes the proof. [l

As an application of Theorem 2, we mention that if v and w are normal words
over A, and if v < w, then v < w for all n c P. For if v and w are viewed as single
letters, and v < w, then v v is lexicographically less than w.

We state without proof another curious property. Let e (x) be the longest normal
terminal word of x for all x c A*, and let (x) be the rest of x after e(x) has been
deleted. Define fl’(x), a factorization of x into normal words, as follows. First,
fl’(x) (x) if x is normal. Otherwise if x is not empty, IY(x)= ([Y(8(x)), e(x)), and
extra parentheses are deleted as in the definition of fl. The surprise is that fl(x) IY(x)!

5. Algebraic proof of (5). Recall that P(A) is the set of aperiodic words over
A, and that M(A) is the set of aperiodic cycles over A. Every aperiodic cycle of length
n can give rise to n distinct aperiodic words (which are obtained by breaking the cycle
open at one of the n possible places).

Because of the definition of W and w in 2 we have

(10) y. w(f)= E [I (w(C)).
fel(A) C(A) k=0

We shall use the identity

k

(11) y. zk=exp{ --}.k=O k=l

Applying this with z w(C), (10) becomes

(12) E W(f)= 1-[
fo, (A Csl(A

exp - Z (w(C))k

k=l k=l CM(A)
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(13)

We shall prove the identity-- Ced(A) (w(C))= Y. -- E w(y).
m=l m yA

The left-hand side can be written as

(14) ., 2 -n Y. (w(x))k,
k=l =1 xP(A)

X(x)=n

since each aperiodic cycle C with length n corresponds to exactly n elements of PI(A).
Taking terms with the same value of kn together, we transform (14) into

(15) 2
1 y,. y,. (w(x)),/n"

m=l m nlm xPI(A)
X(x)=n

Every word y with length rn can be written uniquely as y x "/n, where n is a
divisor of rn and x is aperiodic. Conversely, if n divides rn and if x P1(A),/1 (x)= n,
then x "/" A". Therefore we can write (15) as the right-hand side of (13), just noting
that (w(x))"/" w(x"/"). This proves (13).

Since

(16) w(y)=(Y w(a))yA aA

we find that application of the exponential function to the right-hand side of (13)
leads to

k

2 w(a)
k=0

(cf. (11)), whence (12) and (13) lead to (5).
As a generalization of (13) we mention, with an extra parameter s,

(17) y,. 1 (w(c))k w(y)
k=lk+1 E E +1.
A (X (C))" A*Xt (X(y))

The case s 0 is (13), but the case s =-1 looks pretty as well.

6. Some examples. Let us return to the problem we described in 3. Let D be
an n-set, n P, let S(D) be the set (and group) of all permutations of D, and let D
be the set of all mappings of D into D. Elements of D are called endornorphisms
of D. The (directed) graph of/" D. has vertex set D and edge set {(d, f(d)): d D}.
Elements f, g D are defined to be equivalent if the graph of f is isomorphic to the
graph of g. This means there exists yeS(D) such that {(yd, yf(d)): dD}=
{(d, g(d): d D} {(yd, gy(d): d D}, that is, yf gy, which is the same as yfy-1 g.
An equivalence class in D is called an endomorphisrn pattern of D, and f(n) is defined
to be the number of these patterns for any n-set D. Next, t(n) is defined to be the
number of isomorphic classes of rooted trees with vertex set any n-set V, n e P. Such
a class is called a rooted tree pattern. Diagrams representing rooted tree patterns having
fewer than six vertices are shown in Fig. 1. Diagrams representing endomorphism
patterns of an n-set for n 1, 2, 3 are shown in Fig. 2. Also, Fig. 3 indicates how an
endomorphism pattern might be viewed as a multiset of cycles of rooted tree patterns.
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FIG. 1. Rooted tree patterns.

FIG. 2. Endomorphism patterns.

FIG. 3. An endomorphism pattern viewed as a multiset of rooted tree cycles.

Read’s formula (8) tells us how to compute f(n), the number of endomorphism
patterns on an n-set, in terms of the rooted tree numbers. However, the bijection
described in 4 tells how to encode such a pattern as a sequence of words over the
set of trees. The kth word in the sequence corresponds to the k-fold cycles of trees.
For example, the endomorphism pattern in Fig. 3 is encoded as (6, 2, 7), (4, 14), (1, 1),
(A, A, A,...). To decode a sequence of words (xl, x2,’" "), apply 1 to xk for k
1, 2,. to get f(Xk) (Xkl, Xk2, "); then Xki is used to form a k-fold cycle of rooted
trees (x kki). We use as a convention that Xk is replaced by A if there are no k-fold cycles.

Our generalization of Read’s formula allows us to enumerate other kinds oI
endomorphism patterns with equal ease. For example, suppose we are only interested
in those f D with If-(d)l _-< h; that is, every d D is the image under f of at most
h other elements of D, h P. When h 1, these endomorphisms are the permutations
of D, and the patterns correspond to partitions of n if D is an n-set. For any h P,
endomorphisms f such that If-(d)] _-< h give rise to patterns whose encoding as trees
involves a special sort of rooted tree. Namely, the in-degree of the root vertex is at
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most h- 1, and the in-degrees of all other vertices are at most h. When h 1, there
is only one tree like this, namely, the rooted tree with one vertex. In this case we
would take T(z)= z in (8) to get

(18) f(n)z" k]-I k,
=o = 1-z

which is the generating function for the number of partitions of n, as expected. When
h 2, the form of T is in part

T(z)=z +z2+z3+2z’*+3z5+6z6+llz+23zs+46z9+98z+. ..
We note that T(z) z(1 + $(z)), where $(z) is the generating function for the rooted
trees in which all vertices have degree _-< 2. By PSlya’s method (see [7]) we have

S(z z(1 + S(z) + 1/2S(z) + 1/2(S(z))),
and therefore

T(z z + 1/2( T(z 2) + T(z ))2).
Using (8) with this new generating function T we get

F(z)= 1 +z +3z2+6z3+ 15z*+31z5+75z6+ 164z 7

+ 388z s + 887z 9 + 2092z + 4884z + 11599z 2 + 27443z 3

+65509z+ 156427z + 375263z6+. ..
Thus, there are exactly 887 endomorphism patterns on a 9-set, involving f D such
that ]f-(d)] _-< 2 for all d e D.

We close with some comments on the several papers which have dealt with the
computation of f(n). Fisher (1942) [4] seems to be first, and the same article with
some corrections and additions appears in [5] (1950). In his 1950 reprinting of his
earlier paper, Fisher adds a note indicating that he was unaware of P61ya’s enumeration
method. Nevertheless, Fisher’s method produces results which run parallel to what
one would get using P61ya’s method. Davis (1953) [3] was aware of P61ya’s method,
but he elected to give an explicit formula for f(n) using "Burnside’s lemma" which
is now properly renamed the Cauchy-Frobenius theorem. (See de Bruijn [1].) Harary
(1959) [6] touched on the problem of computing F(z) in his enumeration of patterns
of functional digraphs, and he used P61ya’s method. Read (1959) [8] obtained (8) by
simplifying a formula given in Harary’s paper. Finally, de Bruijn (1972) [2] investigated
endomorphism patterns using the group action p(y)f yfy-, finding new proofs for
older results.

Note added in proof. We are indebted to D. Foata for pointing out that Theorem
1 was known in the context of the theory of free Lie algebras. The oldest reference
seems to be to A. I. ilov, Subalgebras of free Lie algebras, Mat. Sbornik N.S. 33
(75) (1953) pp. 441-452. For related results see G. Viennot, Algdbres de Lie libres
et monodes libres, Lecture Notes in Mathematics 691, Springer-Verlag, Berlin, Heidel-
berg, New York, 1978.
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SOME MAXIMAL SOLUTIONS OF THE GENERALIZED
SUBADDITIVE INEQUALITY*

C. J. K. BATTY AND D. G. ROGERS

Abstract. For real numbers g(n, r), 0 < < n, the generalized subadditive inequality

h(n)<-_h(r)+h(n-r)+g(n,r), 0<r<n,

arises in a variety of problems of combinatorial interest. We study maximal solutions of this inequality,
that is, sequences {.f(n): n > 0} defined recursively by

f(n) min {/(r) + [(n r) + g(n, r)}, n -> 2.
Or<n

1. Introduction. Let G {g(n, r)" 0 < r < n; n _>- 2} be an array of real numbers.
A sequence h ={h(n)’n >= 1} is said to be a generalized subadditive sequence with
respect to G if it satisfies the generalized subadditive inequality

(1) h(n)<-h(r)+h(n-r)+g(n,r), 0<r<n.

If h is such a sequence, then so is {h (n)- nh (1): n => 1}. So, without loss of generality,
we standardize these sequences by taking h(1)=0. Also, replacing g(n,r) by
min (g(n, r), g(n, n-r)), there is no loss of generality in assuming that g(n, r)=
g(n,n-r) and then restricting attention to O<r<=[n/2] in (1), so we shall do this.
(Here, as usual Ix] denotes the integer part of x.)

We are particularly interested in maximal solutions of (1), that is sequences
f= {f(n)" n >= 1} defined by

(2a) f(1) 0, f(n) min f(n, r),
O<r<--[n/2]

where

(2b) .f(n, r)=f(r)+f(n-r)+g(n, r), 0<r <_- [].
Thus f is a generalized subadditive sequence with respect to G and is maximal among
all such standardized sequences h in the sense that

h(n)<=f(n), n>=l.

If [ is the maximal solution of (1) with ]’(1) 0, then we write f T(G). So T transforms
arrays G into sequences f according to (2). Furthermore for arrays G and H, and
a,b>=O,

(3) T(aG + bH) >- aT(G) + bT(H),

where the addition and scalar multiplication of arrays and sequences is componentwise.
We are also interested in the values of r for which the minimum in (2a) is achieved
for given G and n, and we write

S(n; G) {r: f(n) f(n, r)}, n>_2.

* Received by the editors May 8, 1980 and in revised form October 30, 1981.
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Now if $(n) $(n G) S(n H) is nonempty for n => 2, and a, b > 0, then

(4) $(n)=$(n;aG+bH), n>=2

and equality holds in (3). Thus T is linear on suitable cones of arrays.
Generalized superadditive sequences may be defined similarly. Indeed, if h is

such a sequence with respect to the array G, then -h {-h(n): n -> 1} is a generalized
subadditive sequence with respect to -G {-g(n, r): 0 < r <= In/2]; n >= 2}. Notice also
that, it we replace min by max in (2a), then - is the maximal solution of (1) where
g(n, r) is replaced by -g(n, r).

This terminology extends that of Hammersley and Grimmett [5], who, motivated
by a problem in the growth of random objects [6], were chiefly concerned with the
case where g(n, r) is independent of r. In this case, Hammersley considers the inequality
in the context of cooperative phenomena (see [4] and the references to his work given
there) and establishes in [3] a generalization of the limit theorem for subadditive
sequences (see also [2], [8]). Morris 19] also examines an example of this kind in some
work on sorting.

However, the generalized subadditive inequality arises naturally in the wider
sense of (1) in various combinatorial settings: for example, in the design ot electrical
circuits [10], [11], in the packing ot multicolored graphs [12], [13] and in a problem
in game theory [7]. Maximal solutions are then important in providing upper bounds
in these problems. Moreover, Hammersley and Grimmett devote the latter part ot
their paper [5] to the study ot one special case when g(n, r) does depend on r as well
as n, namely g(n, r)= g(n)+ Cr.n-r where c 2 log n and 8,j is Kronecker’s 8. There
is in addition, some resemblance between (2) and equations occurring in control theory
(with feedback). With the possibility of further applications also in mind, it seems
useful to allow this more general dependence and so to extend the terminology in
this way.

We begin, in 2, by recalling the known results when g(n, r) is independent ot
r, and by showing that the general case may sometimes be reduced to this special one.
In 3 and 4, we consider cases (occurring in the applications mentioned above) in
which g(n, r) is independent of n, and linear in both n and r, in the latter case obtaining
explicit expressions for the maximal solutions of (1). If h is a subadditive sequence,
that is g(n, r)= 0 in (1), then it is a standard result [8, Chapt. 7] that the limit

h(n)
lim

exists with - =< =< . This result also holds under weaker conditions on g(n, r) (see
[2], [3]). A general question of interest is: how does the asymptotic behavior of a
generalized subadditive sequence h satisfying (1) depend on the array G? We find
that for several of our explicit maximal solutions/ of (1), the limit

lim
[(n)

n-, n log n

exists and is finite. We also show in 5, that for g(n, r) n + kr, this limit is robust in
that it remains unchanged if (2a) holds only for n > rn for some m _>-1. This is ot
particular interest in some ot the combinatorial applications where it may be possible
to improve on the upper bounds given by (2a) for small values of n, simply by inspection.

2. The ease g(n, ’) |ndelendent o ’. The following theorem is essentially due
to Hammersley and Grimmett [5] who used part (iii) in establishing Harding’s conjec-
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ture [6]. They confined attention to the case where, for n >- 2, S(n; G) contains only
one integer r, and they did not consider the properties of ]" T(G).

THEOREM 1. Let g(n, r) g(n) be independent of r, and let f T(G).
(i) If g is decreasing, then 1 is in $(n G), n >-2.
(ii) If g is increasing and convex, then In/2] is in S(n G), n >-2, and f is also

convex.
(iii) fig is increasing and concave, then p(n) is in $(n; G), n >=2, where, forp >=0,- 0<q<2p-1

(5) 0(2p + q)
q, 2p_ _-< q _< 2"

(iv) If g is increasing and nonnegative, then f is increasing.
Moreover, if the monotonicity (resp. convexity, concavity) in (i) (resp. (ii), (iii)) is

strict, then there is only one r in S(n G), n _-> 2.
Proofs of generalizations of parts (ii) and (iii) concerning k-partite divisions of n

with k_->2 are given in [1]. These differ from those in [5]; they turn more on the
properties of f, and do not restrict S(n; G), although the cases when $(n; G) is
restricted may be deduced from them. The results of [1] are substantially more general
than those given in Theorem 1. The class of g(n, r)=g(n) for which [n/2] is in
S(n;G), n _->2, is exactly described. Also if g is independent of r, then T in effect
transforms sequences into sequences, and some consideration of this is given in [1].

Occasionally it is possible to reduce cases when g(n, r) depends on r to those
where g(n, r) is independent of r. Suppose that

(n)= min g(n,r)=g(n,s), n>-2,
O<r<--[n/2]

where s is in $(n; t), n =>2. Then it is easily seen that T(G)= T(t) and s is in
S(n; G), n >-2.

3. The case g(n, r) independent of n. The following is an analogue of Theorem
1. An example of parts (ii) and (iii) occurs in [7].

THEOREM 2. Let g(n, r)= g(r) be independent of n in the range of definition:
n_->2r>0.

(i) If g is increasing, then 1 is in $(n G), n >- 2.
(ii) If g is decreasing and concave, then [n/2] is in $(n G), n >-2, and 1 is in

S(2p + 1; G), p >-0. Also T(G) is concave.
(iii) If g is decreasing and convex, then or(n) and p(n) are in $(n G), n >- 2, where

(6) tr(2+q)=q, 0<q_-<2, p_->0

and p(n) is given by (5).
Moreover, if the respective properties of g hold strictly, then the only r in S(n G),

n >- 2, are those given above.
Proof. We shall write f= T(G).
(i) It is straightforward to verify that in this case [ is given by

f(n)= (n -1)g(1), n >- l,

and that 1 is in $(n; G) (compare [5, p. 274]).
(ii) It is convenient to write f(0)= g(0)= 0 so that we may then also write

f(1) =/(0) +]’(1) + g(0)= ]’(1, 0).

With this convention, 0 is in S(1; G). Also [n/2] is in S(n; G) for n 2 and 3. Now
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suppose that In/2] is in $(n; G) or 1 <= n < m or some m > 3, and take 0 < r <= Ira/2],
so also r =< m r. Then

f(m, r)=f(r)+f(m -r)+ g(r)= f([])+f([r +12]) + g([]) +f([-])
(7)

m-r+l] +

Now if at least one of r and m-r is even, then

[]+[ 2 r]=[], [r.__l]+[ 2 ]=[’
so on rearranging (7) and using the inductive hypothesis, we have

(8a) f(m, r)>f([]) +f([ m’’’+ l m-
+ -g([’ 2 ])

m

since g is concave,

[m;r] <= [], r<_[] +r [m +

If r and rn-r are both odd, then

[] [m-r+l] [] [r+.l] [m-r] [m+l]+
2 2

+
2 2

so again rearranging (7) and using the inductive hypothesis, we have

\caj/ \t 2 1....]) g([m;r]) +g(r)

f(m, []) + g([mr]) + g(r)

r+l m-

since g is concave and decreasing,

m-[m;r]__<[], r=<[] [. 2 r..]+r<=min([r___l],[m;r])+[].
Thus Ira/2] is in $(m; G). It follows, by induction, that [n/2] is in $(n;G), n >-2.
Hence r is in $(m; G) if and only if equality holds in both (8) and (9). It is now easy

-g(min (Jr ___1], Ira2-- r]))
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to see by induction on p that 1 is in S(2 + 1; G). Another inductive proof shows that

f is concave (compare [10, p. 167]).
If now g is strictly concave, equality holds in (9) only if r [m/2] or [(m r)/2]

[m/2]. But in the latter case, r 1 and m is odd; furthermore in this case, equality
holds in (8a) only if 1 is in S([(m + 1)/2]; G). A further inductive argument shows
that 1 is in S(n G) only if n 2 + 1 for some p => 0. Now it follows that S(n G) is
as stated.

(iii) The proof will again be by induction. It is readily verified that r(n) is in
S(n; G) for n =2,3. Suppose that tr(n) is in S(n; G) for 2<=n<m for some m>3,
and take O<r<=[m/2]. Let p=>l be the integer such that 2<m=<2/1, so that
tr(m) rn- 2. There are three cases to be considered.

First, suppose that 0 < r < 2 < rn r < m. Then tr(m r) rn r 2, so

f(m, r) f(r) +f(m r 2) +/(2) + g(m r 2) + g(r)

(10a) =>/e(m 2) +/(2)- g(min (r, m-r-2))+g(m-r-2)+g(r)
f(m, tr(m )) g(min (r, rn r 2)) + g(m r 2) + g(r) g(m 2)

(lla) >=f(m, a-(m)),

since g is decreasing.
Second, suppose that 0 < r < 2-1 < rn r < 20 < rn Then tr(m r) rn r 2-1

tr(m 2-1) rn 20 and tr(2) 2-1, so

f(m, r) f(r) +f(m r 2p-1) +/(2-1) + g(m r- 2-1) + g(r)

(10b) >=f(m-2P-1)+f(2-l)-g(min (r, m-r-2-l))+g(m-r-2P-1)+g(r)
f(m 2) + 2/(2-1) + g(m 2) g(min (r, rn r 2-1))
+g(m-r-2-l)+g(r)

=f(m 2) +/(2) + g(m 2)- g(min (r, rn r- 2-1))
+ g(m r 2-1) + g(r)- g(2p-1)

f(m, o-(m )) g(min (r, m r 2-1)) + g(m r 2-1) + g(r) g(2-1)
(llb) >=f(m, a’(m)),

since g is decreasing.
Third, suppose that 2-1 < r _-< m r =< 20 < m. Then r(r) r 2-1, r(m r)

m r- 2-1 and r(2-1) 2, so

f(m, r) f(r 2-1) +f(m r 2-1) + 2f(2-1) + g(r 2-1) + g(m r 2-1) + g(r)

(10c) >-f(m -2)+f(2)-g(2-l)+ g(m -r-2-l)+ g(r)

f(m, r(m )) g(2-1) + g(m r 2-1) + g(r) g(m 20

(llc) >=f(m,o-(m)),

since g is convex. It follows from these three cases that o,(m) is in S(m; G). Further-
more r is in S(m; G) if and only if equality holds in both (10) and (11).

If 20 < m =< 3.2-1 and r p(m) 2-1, the second case applies, and equality holds
in (10b) and (llb). If 3.2-1 <m _-<2+1 and r=p(m)=o-(m), the third case applies
and equality certainly holds in (10c) and (llc). This shows that p(m) is in S(m; G).

If g is strictly convex, strict inequality holds in (l 1 c) unless r m-20= or(m).
Also g is strictly decreasing, so strict inequality always holds in (lla); also strict
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inequality holds in (1 lb) unless r m 2p or(m) or r 2p-1 p(m). Thus S(m; G)
{p(m), cr(m)}, m >=2.

4. The case g(n, r) linear in n and r. In this section, we obtain some explicit
expressions for the maximal solutions of (1) in some cases where g(n, r) is linear in
n and r for 0 < r _-< In/2]; n >= 2. Thus let h (n), n >= 1, be the sum of the coefficients in
the binary expansion of n and let H(n) and J(n), n _->2, be given by

n-1

(12a) H(n) Y h(i), n >= 1,
i=1

(12b) J(2p +q)=p2p+q(p+2), O<=q<=2p, p>-O.

Then, as an application of earlier results, we have:
THEOREM 3. Let g(n, r)=an +br, O<r<-[n/2]; and let f= T(G).
(i) a < 0 < b, then S(n G) {1}, n -> 2, and ]’ is given by

a
(13) f(n)=-(n(n + l)-2)+ b(n -1), n >- l.

(ii) If b<O<a, then S(n; G)={r: p(n)<-r<-[n/2]},n >=2, where p(n) is given by
(5). Further f is given by

(14) f(n) aJ(n)+ bH(n), n >= 1.

Proof. (i) Let g(n, r)=-n; g2(n, r)= r, O<r<-[n/2]; Gi= gi(n, r): O<r<-[n/2]};
f T(Gj), ] 1, 2. So G (-a)G1 + bG2. By Theorems 1 and 2, S(n G1) S(n G2)
{1},n>=2. By (4), S(n; G)={1}. It is easy to verify by induction that fl(n)=
-1/2(n(n + 1)-2); f2(n)= n-l, n >= 1. Also equality holds in (3) (with a replaced by
-a), so f(n) is given by (13).

(ii) Let g(n,r)=n; g2(n,r)=-r, O<r<-[n/2], so G=aGI+(-b)G2. By
Theorems 1 and 2, p(n) and [n/2] belong to both S(n; G1) and S(n; G2), n >=2. It is
easy to verify by induction that [a(n)=J(n); f2(n)=-H(n), n>=l, and (compare
Theorem 4 below)

S(n; G)= {r: p(n)<-r<-[n/2]}, S(n; G2) {r: r(n) -< r _-< [n/2]}, n_>2

(where r(n) is given by (6)). By (4),

S(n G) S(n G) f’l S(n Gz) l r" o(n) < r < [] } n>2=

Also equality holds in (3) (with b replaced by -b), so f(n) is given by (14).
In the limiting ease when b 0, the behavior of [ T(G) in Theorem 3 is given

by Theorem 1; if a =0, it is given by Theorem 2 (see also [1], [7], [9]). However if
a and b have the same sign, the behavior is more complicated. The ease when a > 0
and b ka for some integer k >_-0 arises in several combinatorial applications [9],
[12], [13], and fortunately we can obtain an explicit solution for .f as in Theorem 4
below. Similar behavior is observed if k is nonintegral, and it would be interesting to
generalize Theorem 4.

Let k be a fixed nonnegative integer, and let a(p) a, p >_- 1, be given by:

(15a) a 1, 1 <=p <=k + 1,

(15b) ap+l ap + a_, p > k.
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Note that, taking k =0, a0(p) 2"-1, and Theorem 4 reduces to a known result
(compare (12), (14) and [1], [9]); taking k 1 gives an interesting occurrence of the
Fibonacci numbers as the sequence a l(p), p => 1.

THEOREM 4. Let g(n, r)= n + kr, O<r<=[n/2], where k is a fixed nonnegative
integer, and let f T(G). Then for p > k + 1, 0 <= q <- ap-k,

(16)

and

S(ap +q; G)= r’ max (ap-k-, q)--<r<--min ap-k, ap-k-l+q,
2

(17) f(ap + q) pap ap+k + (p + 1)q,

where ap, p >= 1, is given by (15).
Proof. Once again the proof is by induction. It is easy to verify that (16) and (17)

hold for p k + 2 (and q 0 or 1). Suppose (16) and (17) hold for k + 1 <p < m,
where rn > k + 2. Then in particular, using (15b),

S(am G) S(am- + am--; G) {am--},

f(a,,,) f(a_ + a__; G)= (m 1)am_-a,.+_ + mam--i mare -a.,+.

Thus (16) and (17) are satisfied for p rn and q 0. Suppose they hold for p rn and
0 -<_ q < ] where ] > 0. For 0 < r < [(a., +/)/2], let

h(r) =f(a,,, +j, r + 1)-f(a. +], r).

Then by the inductive hypotheses and (17) (note that (17) is also valid for p=0;
q=0or 1),

h(r)=p(r)-p(am +f-r- 1)+ k,

where p(r) is the integer greater than k such that apr)<=r<apr)/l, etc. Since p(r)
increases with r, so does h(r), and f(a,, +, r) attains its minimum at any value of r
where h (r) 0.

If 0<] <am-k-1 (SO that rn > 2k +2), then p(a,_k_) rn -k- 1 and p(am +j-
am_k_-l)=m-1, so h(a,,,_k_x)=O. Furthermore, h(r)=O if and only if p(r)=
m-k-1 andp(am+j-r-1)=m-l,i.e.,

max (a.,-k-, ]) _--< r < min (a.,-k, a.,-k-1 +]).
Thus (16) holds for p m; q ]. Furthermore by the inductive hypotheses and (17),

f(am +]) f(a., + ], am-k-l)

(m-k 1)a.,-k-l-a.,-1 +(m 1)a,.-1-a.,+k-1 + mj + a., +] + ka.,-k-

m(am-k-1 + am-l) + (am am-k-1 am-l)- (am-1 + am+k-l) + (m + 1)]

mare- a,,+k + (m + 1)],

using (15b). Thus (17) holds for p m, q ].
Very similar calculations show (subject to the inductive hypotheses) that if

a,,-k-1 <=] <a,-k (SO that rn > 2k + 1), then (16) and (17) hold for p m; q =].
If rn > 2k + 1 and ] am-k, we have

h(am-k)=m-k-(m-1)+k=l, h(am_k-1)=m-k-l-m+k=-l.
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Hence (17) holds for p m; q . Furthermore,

f(am + am-k)=f(am + am-k, am-k)

(m k)am_k am + mare am/k + am + am-k + kam-k

mare- am+k + (m + 1)am-k,

using (17) and (15b). Thus (17) also holds for p m; q =].
Finally if k + 2 < rn -< 2k + 1 and ] 1 am-k, we have

h(1)=k+l-(m-1)+k>O.

Hence S(am + 1; G) {1} {am-k}, so (16) is valid for p m; q =j. Furthermore,

f(am + 1) f(am + 1, 1) mare am+k + am + 1 + k

mam--am+k +m + 1,

since am rn- k. Thus (17) is also valid for p m, q ]. It now follows by induction
that (16) and (17) hold for all stated values of p and q.

5. Robustness of the asymptotic behavior. It is easy to see that if H(n) and J(n)
are given by (12), then

H(n) 1 Y(n)
lim

2’
lim 1.

,-.oo n log 2 n ,-.o n log2 n

Thus, if f is given by (14),

lim f(n) a +
b

,-.oo n log2 n "If a,p>-l, is given by (15) and y is the unique root of xk+l--xk--1 =0 larger
than 1, it is routine to verify that ap+l/ap --) 3/, so that (log ap)/p-log y as po.
Hence if f is given by (17),

(18) lim
f(n) 1

,-.onlogn log7"

We shall now see that (18) remains valid if f is a maximal generalized subadditive
function for g(n, r)- n + kr, subject to different initial conditions from those in (2a).

THEOREM 5. Let k >-0 and m >- 1 be integers, and h {h(n): n _-> 1} be a sequence
satisfying

h(n)=minlh(r)+h(n-r)+n+kr’O<r<=[]}, n>m.

Then

h(n) 1
lim
n-,o n log n log ,

where y is the largest real root of xk+l--xk 1 =0.
Proof. Let f be the sequence given by (17), and put f(0)=0, so that by

Theorem 4

(19) f(x)+f(y)+x + y + kx >=f(x + y)

for any nonnegative integers x and y. Extend f to a function defined on all nonnegative
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real numbers by taking to be linear on the intervals [n, n + 1], n _-> 0. Then it follows
by linearity, first in x and then in y (noting that/ is convex on [0, )), that (19) is
valid for all x, y _-> 0. Furthermore (18) and some simple estimates give

lim
.f(x) 1

x-.o x log x log y"

A simple inductive argument shows that

where t=min{h(n)/n" l<=n<-m};=max{h(n)ln" l<=n<=m}. The theorem now
follows easily.

M. J. Pelling has observed that Theorem 5 remains valid even if k is not an integer.
Example. Bilinear arrays G arise in various graph-packing problems (see [12],

[13]). For integers rn => 3, n -> 1, let ,,(n) be the class of edge-colored graphs F with
n colors such that

(i) every complete graph on m vertices contained in F has exactly two colors,
(ii) for any pair of colors, there is a complete graph on rn vertices contained in

F colored with these two colors.
Let p* (n) be the minimal number of edges in a graph in ,(n).

For O<r<=[n/2], let H,,r be a graph on r(m-2)+2 vertices, constructed as
follows. There are two distinguished vertices v and v2, joined by n-r edges, one
each of the last n-r colors; the remaining vertices are divided into r disjoint sets V,
1 <- <= r, each containing rn 2 vertices; each vertex in V is joined to Vl, v2 and each
other vertex of V by an edge of color i. Taking F to be the disjoint union of H,,r, a
graph in c, (r) colored with the first r colors, and a graph in ff, (n- r) colored with
the last (n -r) colors, F belongs to the class c, (n). Hence

p(n) <- p*(r) +p*(n r)+ n r + (1/2m(rn 1)- 1)r

=p(r)+p*(n -r)+ n + kr,

where k rn(rn- 1)-2. Since p* (1)= 0, an upper bound for p*(n) is given by (17).
It should be noted however that this bound is not precise. For example, (17) gives
p3* (3) =< 7, whereas it may be seen directly that p3* (3) 6. Theorem 5 gives

1
lim sup ,p 3* (n). _<
,-. n log n log ),

where y 1/2(1 + x/), but no lower bound has been obtained for the lim inf.
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Abstract. In this paper, we consider the parallel solution of recurrences, and linear systems in the
regular algebra of Carr6. These problems are equivalent to solving the shortest path problem in graph
theory, and they also arise in the analysis of Fortran programs. Our methods for solving linear systems in
the regular algebra are analogues of well-known methods for solving systems of linear algebraic equations.
A parallel version of Dijkstra’s method, which has no linear algebraic analogue, is presented. Considerations
for choosing an algorithm when the problem is large and sparse are also discussed.
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1. Introduction. A basic problem in applications of graph theory is that of finding
shortest paths in a weighted graph. This problem arises in finding the shortest or least
cost path in transportation problems, in solving minimum cost flow problems, in finding
the critical (i.e., longest) path in scheduling problems, and in finding adversary routes
through nuclear fuel-cycle facilities [13], [23].

While there are several versions of the shortest path problem [8], we will deal
with the problem of finding the shortest paths in definite graphs G from one node to
all others, where the path length used is the sum of the weights of the arcs in the
path. A digraph G(V, A) is a set V of nodes and a set A of arcs which are ordered
pairs of nodes. Assume that the nodes are numbered from 1 to n so that V
{1, 2,..., n}. Each arc (i, ])cA has an associated length, 8i,j. By defining
l<-_i<-n and 8,j oo for (i,1):A, we have the n by n distance matrix D [Si.i]. If a
graph G contains no cycles the sum of whose arc weights are less than or equal to
zero, then we say that G is definite.

Although extensive work has been done on sequential algorithms for solving the
shortest path problem, little work has been done [4], [6], [19] on parallel algorithms
for this problem. Levitt and Kautz [19] discuss an iterative algorithm due to Hu [12]
which has been tailored to a cellular array machine. Chen and Feng [4] discuss a
version of Ford’s algorithm [9], [10, pp. 130-133] for an associative processor machine.
Dekel and Sahni [6] present a method for cube connected and perfect shuffle com-
puters. Here, however, we treat the shortest path problem in a more general way,
using the regular algebra of Cart6 [2]. Furthermore, we will assume that:

(i) any number of processors may be used at any time, but we will give bounds
on this number;

(ii) each processor may perform either a comparison or any of the four arithmetic
operations in one time step; and

(iii) there are no memory or data alignment time penalties.
If p processors are being used, then we denote the computation time as Tp unit

steps. Thus T1 is the time required by a serial machine. We define the speedup of a
computation using p processors over the serial computation time as Sp-- TI/Tp <-1.

Carr6 [2], has shown that the shortest path problem, as well as many other
problems, can be posed as linear systems of the form x Ax + b in a regular algebra.
He gives the examples of the scheduling algebra of Cruon and Herv6 [5], the two

* Received by the editors August 8, 1980. This work was supported in part by the National Science
Foundation under grant US NSF MCS75-21758, and by the U.S. Department of Energy.

" Division 2113, Sandia Laboratories, Albuquerque, New Mexico 87185., Department of Computer Science, University of Illinois, Urbana, Illinois 61801.
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elements from boolean algebra, and a stochastic communication problem (Kalaba
[16], Moisil [20]). Triangular linear systems, or recurrences, in a regular algebra also
arise in the analysis of Fortran programs [17]. Consequently, it is important to solve
efficiently such recurrences on a parallel computer.

In addition to considering the solution of linear systems in a regular algebra, we
will present a parallel version of Dijkstra’s algorithm [7] which is applicable only to
graphs with positive arc weights. Furthermore, considerations for choosing an
algorithm when the graph is sparse, i.e., has a large number of infinite entries in the
distance matrix, are discussed.

1.1. Notation. We follow the convention that capital letters denote matrices,
lower case letters denote vectors, and lower case greek letters denote scalars. Except
in the cases where we state time and processor bounds, the symbols + and are
taken to represent the generalized addition and generalized multiplication operations
of the regular algebra. In the statement of the time and processor bounds, the symbols
+ and will take on their normal meaning. We will frequently omit the symbol
when it is clear that a generalized product is to be taken. We will also use the Y. and
II notations for the generalized sum or product ot a set of items. Unless otherwise
stated, log n [log2 n for any positive number n.

1.2. The regular algebra. For convenience, we restate the algebra of Carr6. We
start by defining a semiring (S, +, ) which satisfies the following properties:

(i) commutativity

(ii) associativity

(iii) distributivity

(iv) idempotency

c+#=#+a

cxB=Bxa;

+(# + r) ( +#)+r

a x (# x r)=( x#)x r;

x(# + ,) ( x#)+( +);

for c,/3, 3’, in S.
The set S has a unit element e such that

X’ -’O

and a null element 9 satisfying

c +0 =c, axO=O,

for all c $. Furthermore, we have the law of multiplicative cancellation

(v) ifa0andcx/3=aythen/3=y.

We define for the semiring (S, +, ) the order relation <-

c -</3 if and only if c +/3 c.

1.3. Extensions to matrix oleratiolaS. We now extend the definitions of the
regular algebra to matrices all of whose elements belong to the set S. The definitions
of matrix addition, matrix multiplication and matrix transposition are analogous to
those in linear algebra. Note that matrix addition is idempotent,

A+A =A.
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We define a square rn by m unit matrix I [ei,j] with ei, e if =j and eia 0
if #/’. Note that IA A1 I for any m by m matrix A. The null matrix N, all of
whose elements are 0, satisfies

A+N=A, AN=N.

The partial ordering for matrices is easily extended:

A _-< B if and only if ai,j <= fli.i for all i,/"

In particular, it follows that

A_-<B if and only ifA+B=A.

The shortest path problem can now be stated as a linear system in the regular
algebra. Let G(V, A) be a graph with distance matrix D. Let the vector b represent
an initial labeling of the nodes V (for the vector b, 3i is the initial label on node i).
The shortest path problem is equivalent to solving the linear system x Dx + b in the
regular algebra [2]. For the single source problem the vector b is given by/3s e
where s is the source node, and/3 0 otherwise.

2. Solution o[ recurrences. In this section we study the solution of systems of
the form

(1) x Lx +f,

where the matrix L is a strictly lower triangular matrix. These systems arise in the
analysis of Fortran programs, and are also used in methods for solving general systems

x=Ax+b.

2.1. The column sweep algorithm. The most fundamental of all algorithms for
solving recurrences in the regular algebra is the column sweep algorithm. The solution
of x Lx +f, where

(2) L

0 0 0

A2,a 0 0

A3,1 A3,2 0 19

is given by

X

]-1

(3) , ba, i Y Ai.,i + bi, 2, 3,..., n.
i=1

Rewriting the system (3) as column operations we get the

COLUMN SWEEP ALGORITHM.

1. Set x <--f.
2. Fori=l, 2,...,n-1

x <-- x + eili (in parallel)

In the algorithm, l represents the ith column of the matrix L. A sequential
algorithm for solving recurrence (1) requires n2-n operations, i.e., Tx n2-n. On
the other hand, the column sweep algorithm can be performed in 2(n- 1) time steps
using at most n 1 processors. This gives a speedup of n/2 + O(1) over the sequential
algorithm with a corresponding efficiency of roughly .
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2.2. The product form of the solution. In this section, the solution x of (1) is
formed as a sum of products. Each product involves a power of the matrix L multiplied
by the vector f.

LEMMA 1. Let L be strictly lower triangular, i.e., L has the form given in equation
(2). Also, let

R T

where R is upper triangular of order n i, i.e., L is lower triangular with null diagonals
in its lower half.

Proof. From the definition of matrix multiplication and the facts that 0 + O O,
O a O for all a S, and that L is null on the main diagonal, each multiplication of
Li-1 by L introduces another diagonal of null elements into the product. [q

COROLLARY 1. L" N.
LEMMA 2. TheproductLiL, <-_], +] <n can be formed in log (n -i-i)+ 1 steps

using at most p (n ]) processors, where
k k(k + 1)(k + 2)

p(k)= E E j=
i=1 j=l 6

Proof. This result also follows from the definition of matrix multiplication. Since
L has null diagonals and L has ] null diagonals, the longest dot product formed is
of length n -/’. This establishes the time bound. The processor bound is established
by counting the number of multiplications needed to compute the product. This is
the stated processor count since all of the multiplications can be formed simul-
taneously. [3

The product form of the solution is found by substituting for x in the right-hand
side of (1), its equivalent, Lx +f. Thus,

x =Lx +Lf+f.
After n 1 such substitutions, we obtain

x =L"x +L"-Xf+ .+Lf+f.
From Corollary 1, L"=N so

(4) x L"-f+ L"-zf+"" Lf +f.
Furthermore, (4) can be written in the form

(5) x (I + Ln/2)(I + Ln/4) (I + L2)(I + L)f.

Heller’s algorithm [11 for solving triangular systems of linear algebraic equations,
can now be applied.

ALORIWHM 1 (product form of solution for recurrences).
1. Set Xo - f.
2. For 0, , u log (n/4)

Xi+l <’" (I + L2i)xi,
L2’/_L2L2’.

3. x (I + L"/2)x,+x.
THOgV.M 1. Algorithm 1 can be performed in parallel in log- n + 3 log n + 1 steps

using at most n3 processors.
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Proof. Heller has already shown that Algorithm 1 can be performed in log2n +
3 log n + 1 steps. The formation of xi+l and x requires only O(n 2) processors whereas
the formation of L2’+1 requires O(n 3) processors. In particular, the largest number of
processors are required in forming L2. From Lemma 2, this number is

p(n 2) -(n -2)(n 1)n <-n 3

processors 1-1

2.3. Product of elementary matrices solution. The method presented in this
section is an analogue of Sameh and Brent’s Algorithm I [22]. It is superior to
Algorithm 1 above since it takes approximately half the time while using significantly
fewer processors to solve the recurrence (1).

DEFINITION. M is an elementary matrix, if it is of the form,

0

0 N

0
N i+x,i 0

N
tZn,i

M. has all null entries except in column below the main diagonal.
LEMMA 3. LetM andM be elementary matrices, then MiM N if <= . Further-

more if > then P MM has all null elements except in column ] below the ith row.
Proof. M. has its first rows all null and M has all null elements except in column

below the main diagonal. Thus if =</’ all inner products of rows of Mi with columns
of M. must be null, i.e., MiMe. N. If > then the only nonnull inner products of
P MM. occur when the inner products of rows + 1, + 2, , n of M are taken
with column ] of M.

LEMMA 4. Let M, M2, M, M+ be elementary matrices. Then the product

(6)
(I + m.+l)(I +m.)... (I +M)(I +M1)(I +M2) (I + m/.+l)

(I +m/+)(I +m.) (I +M1).

The proof is by induction on ].
Basis step. For ] 1, we have

(I + M)(I +M) I +M1 +M+m.
From Lemma 3 and idempotency

I +M+M1 +M I+Mx +Mx I +M,

establishing the basis.
Induction step. Assume that the assertion holds for index , and let

M (I + M.)(I +M_x) (I +M2)(I +MI).

From the inductive hypothesis we have

(I +M+a)(I + Mi) (I + Ma)(I +Mx)(I +M2) (I + Mi+x)

(I +M,.+)M(I + M,.+).
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Furthermore,

(7) M(I +M.+1) 3///+ M.V/.+I.
By repeated applications of Lemma 3 we obtain

M.+ M/.+1,

hence (7) becomes

Consequently,

m.(I + m/+1) M +M.+1.

(it + Mi+1)Mi(I +Mi+1) (I +M.+1)(M/, + .M/.+ 1)
2M,. +M,.+M +M+I+M+I

M,. +M,.+M +M,.+I
Mj + M/.+I(Mj + I)o

Since I is an element of the expanded sum of M., then due to idempotency, we have

( +M+)M(+M,.+) M,. +M+M,. ( +M+)M,
establishing the lemma. El

In a similar fashion, it can be shown that

(I + M1)(I +M2) (I + mi+l)(I + mi+l)(I +Mi) (I +M1)
(8)

(I + Mi+I)(I +M/) (I + M1).

Let

(9)

Since

(I + L)* (I + M,-I)(I +Mn-2)’’" (I + M2)(I +M1).

(I +L)= (I +M)(I +M2) (I + M,,-2)(I + Mn-1),

from Lemma 4 and (8) we see that

(10) (! + L)*(I + L) (I + L)* (I + L)(I + L)*.

We now introduce a lemma of fundamental importance to what follows.
LEMMA 5. The vector x solves the system x Ax +f if and only if x solves the

system x x +Ax +f.
Proof. If x Ax +f then adding x to both sides and using idempotency gives

x+x =x +Ax +f, x =x+Ax +.
If x x +Ax +f then

(11) x +Ax +f<-Ax +,
i.e., either x x or x Ax +fi Since x x is redundant, x Ax +fi ]

The following result was originally given by Carr6 [2], but we state and prove it
in terms of elementary matrices.

THEOREM 2. Let x (I +L)*f, then x satisfies x =Lx +f.
Proof. From Lemma 5, x Lx +f is equivalent to x (I + L)x +f, or

x (I + L)(I + L)*f+f= (I + L)*f+f.
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From (9) f is an element of the expanded sum of (I + L)*f, thus x (I + L)*f satisfies
().

From Theorem 2, we can write the solution x of (1) as

x (I + L)*/= (I + M,,_)(I + M.-2) (I + M2)(I +M)f,
which motivates the following algorithm.

ALGORITHM 2 (solution of recurrences in product form).
1. Set (I+M)()=I+Mi, i= 1,... ,n-1;f()=f.
2. For ] 0, 1,. , u log (n/4)

Form (I +M,.) (i+) (I +M2i+1)(i)(I +M2i)(i)

in parallel for 1, 2,. , n/2+- 1.
Form f(i+l) (I + M1)(i)f(i).

3. Set x (I + M)()f().

Algorithm 2 is a direct analogue of Algorithm I of Sameh and Brent [22] for
triangular linear algebraic equations. Hence, their results ((22, Thm. 2.1]) apply. The
solution x to the recurrence (1) can be found in

r =1/2log2 n +log n +3

steps using no more than

(15)31024 2)
O

n3
"n n O(n _--<7.+O(n 2)

processors.

2.4. Limited parallelism. In this section we present two methods which are
analogues of those of Hyafil and Kung [15] for solving the recurrence (1). These
methods are used when the number of processors p is fixed.

The first method utilizes the algorithm decomposition applied to the column
sweep algorithm:

X(1) f, X
(i+1) (I 3t-Mi)x (i), 1, 2," ", n 1.

It is easy to see that

(I + Mi)x

Thus, given p processors, the product (I + Mi)x (i) can be formed in 2 [(n i)/p] steps.
Since Tp(n)=Y.i"-_l 2[(n-i)/p] we have from Hyafil and Kung [15] that

2

--+ 2- n+--2.
P P

This method is most practical when p < n.
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then (1) can be written as,

The second method uses the problem decomposition principle. Let

X fl
L2,2 N x2

x= f=

Lm,2 L,., x

Xl Lx,xXl +fl,

X2 L2,1X1 + L2,2x2 -[- f12,

x,= ,L,, +f,.
1=1

This leads to the following algorithm.

ALGORITHM 3. Recurrence solver with limited number ofprocessors.
For 1,. , m

Set f(i)__ _11 Lidxi.
Form xi (I + Li,i)*f(i) using Algorithm 2.

Hyafil and Kung have shown that for p [nr], 1 < r < 3, and taking

then

O(n log n)
To(n) <= O(nl-r/31og2n)

for 1 < r < ,
for 23- < r < 3.

3. Banded recurrences. In this section, we take the matrix L of (1) to be banded,
i.e., of the form

(2)

L1
RI

N

L2
L3

N

Rk- Lk
where Li is a strictly lower triangular matrix of order m, 1, 2,.. , k, and Ri is an
upper triangular matrix of order m,/" 1, 2,..., k- 1.

3.1. Unlimited parallelism. We can show that the time and processors required
for solving (1) are the same as given by Sameh and Brent [22]. The proof is exactly
as that of their Theorem 3.1. Before this can be proved, however, we need to establish
the following.

LEMMA 6. Let L be a strictly lower triangular 2n by 2n matrix given by

(13) L
L2
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where R is n by n and upper triangular. Let f be a 2n-vector correspondingly partitioned
as

fV (fT,
Thus, the solution of he linear recurrence

x (12, + L)x +f(14)

is given by

(15) x
X2 G Y2

where

and

G (/, + L2)*R,

Yi (In + Li)*fi, 1, 2.

Proof. From the structure of L and Theorem 2, we see that

xl (I, +L)*f y.

Also, from (13) and (14) we have

x2 Rx + (I,, + L2)x2 +f2.
From Theorem 2, we have

X2- ([n +LE)*[Rxl +f2] Gyl + Y2,

proving the lemma. [3
Now we state the main result.
THEOREM 3. The linear recurrence

x (I + L)x +f,

where L is an n by n strictly lower triangular matrix (12), i.e., n kin, is obtained in
(2+logm) logn-1/2 (logm)(l+logm)+3 time steps requiring less than m(m +l)n/2
processors.

Proof. Let fT= (f, f,..., f). The algorithm of Lemma 6 can be generalized
to yield a scheme which is exactly similar to that of Sameh and Brent [22, Thm. 3.1],
as follows.

ALOORITI-IM 4. Banded recurrences.
1. Set y 0) (I +L)*fl, and

[r_(o) (o)
,-1, Y ]=(I+L,)*[R_I,f], i=2,3,... ,n/m.

2. For/" 1, 2,. ., v log (n/m)- 1,
Set r 2m.

Set GIj/x) 1 2, 1, andGtJ) _(i) 2r2i+1 -2i

(i+)=[Y2{)- 2{)__ ] ./=1 2
n

Y G{2)__1 y + y{) "’ 2--;"

Upon termination, y{+) contains the solution vector x.
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3.2. Limited parallelism. In this section we will assume that m < p << n, where p
is the number of processors available. If p m we can use the column sweep algorithm
to solve the recurrence in 2(n 1) steps. We will develop a faster algorithm for p > m
along the same lines as the algorithm of Kuck and Sameh 18, Thm. 2.3.13], for solving
banded triangular systems of linear algebraic equations. Our results are summarized
by the following theorem.

THEOREM 4. Given p processors, m <p << n, a linear recurrence with the matrix L
of the form (12) can be solved in time

(16) Tp 2(m- 1)+z
p(p+m-1)

where

m
2m 2 + 3m)p -(2m2 + 3m + 5)

(17) max
1.2m (m + 1)p 2m.

This yields a speedup and efficiency proportional to (p/m) and (1/m), respectively.
Proof. To motivate the approach, consider a recurrence of the form

z=+g of orders=q+p(p-1)

equations with q rap,

Zl o. L1 Zo gl

(18) Z2 R1 L2 z1 + g2

Rp-1
p

Here, L1 is of order q, Li(i> 1) is of order p, and Ri(O<-i<-p 1) contains nonnull
elements only on its top m super diagonals, i.e.,

(19) Ri= N

in which/ is upper triangular of order m. The system (18) can be expressed as

Z1 Rozo + L1Z1 + gl,

Z2 RIZ1 + L2z2 + g2,

Zp Rp_1Zp- + Lpzp + gp.

From Theorem 2, we get that the zis can be written as

zi (I + L.)*[R/-IZ/-1 + gj], / 1," ", p,
(20)

zi ((I + Li)*Ri_)zi_ + (I + Li)*gi.

Therefore, we define

(21) hi (I + Lx)*(Rozo + gl),

(22) [Gi-1, hi] (I + L)*[R_,

or

i=2,3,...,p.
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Using a single processor, (21) can be evaluated in rl 2m2p steps. Using a single
processor to evaluate each of the p- 1 systems, (22) can be evaluated in

’2 [ (2m2 + m)p-(2m2+3m -1)]
steps.

Kuck and Sameh [18] have shown that the choice of q mp keeps the difference
in time for evaluating (21) and (22) as small as practically possible. Thus the evaluation
of (21) and (22) can be done in at most r3 max {zl, 7"2} steps.

We now see from (20), (21) and (22) that z is given by

Zl h, z h + Gg-lZ-x, 2, 3, , p.

Since only the last rn columns of Gg are nonnull, by using all of the p processors, each
z can be computed in 2m time steps. Thus, z2, z3, , zp are all obtained in time

r4 2m(p- 1),

and hence the recurrence z + g can be solved in time

I m
(2m + 3m)p -(2m + 3m + 5),

7" 7"3 q" 7"4 max

2m(m + 1)p 2m.

Partition the recurrence x (I + L)x +f of n equations and bandwidth rn + 1 into
the form

xo
X1 I + V1 Xl +

U I+

where I + Vo is of order m, and I + V, > 0 (except possibly for I + V) is of order s,
i.e., k [(n-m)/s], and each U is of the form (19). Then, the solution vector x is
given by

(23) Xo (I + Vo)*fo,

(24) xi (I + V)*(fi + Uixi-), 1, 2,..., k.

Equation (23) can be evaluated in 2(m- 1) steps using the column sweep algorithm
since p > m. The k equations in (24) can be solved one at a time using the algorithm
developed for solving recurrence (18). Hence using p processors, the recurrence (12)
of order n and bandwidth m 1 can be solved in time

Tp 2(m -1) + r
p(p+m-1)

where r is given by equation (17).

4. Linear systems x = Ax + b. In this section, we will deal with the general, linear
system

(25) x Ax + b.

In 1.3, we saw that the solution of the shortest path problem can be obtained
by solving the system (25). Due to the form of (25), the n by n matrix A has, in
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general, its only null elements on the main diagonal. The matrix A is called sparse if
it has a small proportion of nonnull elements. If we let nA be the number of nonnull
elements of A, then we say that A is sparse if na << n 2.

We reiterate the assumption that the matrix A is definite, that is, the associated
graph G has no cycles the sum of whose arc weights are less than or equal to zero.
Now we present two direct methods and two iterative methods for solving the system
(25). Since the Matrix A is definite, the iterative methods can also be posed as direct
methods. We also discuss the special case when all of the arc weights of the underlying
graph G are positive. The section is concluded with a comparison of the methods
when the matrix A is sparse.

4.1. Elimination methods (Carr6 [2, 7.2, 7.3]). The method of generalized
Gaussian elimination was first proposed by Cart6 [2], [3]. We state the method and
give time and processor counts for a parallel implementation.

ALGORITHM 5. Parallel Gaussian elimination.
For k 1, 2,..., n-l,

Set oli, Ol i, k Ok,/ + ci.i in parallel for i, j k + 1, k + 2, , n # j.

The resulting upper triangular system can be solved using any method of 2. The
reduction of the matrix A to upper triangular form can be accomplished in 2(n- 1)
steps using at most (n 1)2 processors.

The added time and perhaps, added processors necessary to solve the resulting
linear recurrence of Gaussian elimination can be avoided, by using the generalized
Jordan elimination method of Carr6 [2, 7.3].

ALGORITHM 6. Parallel Jordan elimination.
For k 1,2,. , n-l,

Set ai,j ai,k Otk.j if" oli.il in parallel for 1, , n

i=ai,kXflk+fli ]=k+l,k+2,...,n;i#].

Note that upon termination, the vector b contains the solution x. Clearly, Algorithm
6 can be performed in 2(n- 1) steps using at most n2+ 1 processors. Thus, we see
that by using an additional 2n processors over Gaussian elimination, we can solve
the system (25) in the same time as it takes to do the elimination step of Gaussian
elimination.

4.2. Iterative methods. In this section we present two iterative methods for
solving the system (25). They correspond to the Jacobi and Gauss-Seidel methods for
the iterative solution of linear algebraic equations. The methods of Bellman [1] and
Moore [21] are sequential versions of the generalized Jacobi method. Ford and
Fulkerson’s [10] sequence of scanning the arcs in Ford’s method [9] is a sequential
version of the generalized Gauss-Seidel method.

The system (25) can be solved using the generalized Jacobi method

(26) x(k)=Ax(k-1)q-b.

Since the graph G associated with the distance matrix A is assumed to be definite,
from Carr6 [2, Thm. 6.1], with an initial guess of a null x(, we see that x (n x.

We observe that the matrix-vector product Ax(k-) can be formed in parallel in
log n + 1 steps using at most n 2 processors. Thus a single iteration requires log n + 2
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steps and at most n 2 processors. The overall algorithm can be accomplished in no
more than n (log n + 2) steps using n

9-
processors.

In our context, the generalized Jacobi method can be considered as a direct
method. Since x (n) is the solution to the system (25), we can write it, by repeatedly
using (26), as

(27) x(")=Anx+A"-lb+A"-2b+. +Ab+b.

Since x was chosen to be null, (27) simplifies to

(28) x" A"-Ib +An-2b +... +Ab + b,

which can be evaluated in parallel using the following algorithm.

ALGORITI-IM 7. Direct Jacobi method.
Set x0 b.
For 0, 1, ., log (n/4)

xi/l (! +A2’)xi (we can also terminate whenever xi/ x)
A2,+1 =A2,A2,

x (1 + A"/2)x+t (if necessary).

This is the method proposed by Dekel and Sahni [6], for cube connected and
perfect shuffle computers. By summing the time counts for Algorithm 7, and observing
that the maximum number of processors occurs during the formation of A2’/1, we get
the following theorem.

THEOREM 5. The solution to the system (25) can be obtained in no more than
2 log2 n + 2 log n 1 steps using n 3 processors.

We will now discuss a parallel implementation of the generalized Gauss-Seidel
method. We begin by observing that the matrix A of the system (25) can be written
as

(29) A=L+U.

Consequently, (25) becomes

(30) x (L + U)x + b,

which leads to the generalized Gauss-Seidel iteration

X
(k+l) LX (k+x) + Ux (k) + b.

Solving for x (k+x) yields

(31) x (k+x) (I + L)* Ux (k) + (I + L)*b =- Mx (k) + C.

From Sameh and Brent [22, (2.16)], we get that the iteration matrixM and vector
c can be formed in 2X-log2 n +O(log n) steps using at most n3/6+O(n 2) processors.
Thus, the solution x can be found by the generalized Gauss-Seidel method in n log n +
O(n) steps using at most n3/6 + O(n 2) processors.

Carr6 [2] has shown that the number of iterations required by the generalized
Gauss-Seidel method is not greater than the number required by the generalized
Jacobi method. It is thus likely that for many problems, the overall work for the
generalized Gauss-Seidel method will be less than that of the generalized Jacobi
method, when used in an iterative fashion. This potential saving in time has a substantial
cost in additional processors.

When used as a direct method, the generalized Gauss-Seidel scheme would use
Algorithm 7 applied to the matrix M and vector c of (31). Note that an additional
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log2 n + O(log n) operations are required to form the matrix M and vector c. Hence,
for the generalized Gauss-Seidel method to be more efficient than the generalized
Jacobi method, Algorithm 7 applied to the matrix M and vector c must take at least
25% fewer iterations than the same algorithm applied to the original matrix A and
vector b. Consequently, one would prefer the generalized Jacobi method for solving
the system (25).

4.3. Dijkstra’s method. We now consider the special case when all of the arc
weights of the associated graph G are positive. In the regular algebra this means that
the elements of the matrix A of the system (25) satisfy a,i > e for all and . Due to
this added assumption, it is easy to see that there an be no linear algebraic analogues
for algorithms tailored to these problems.

Dijkstra’s method [7] is such an algorithm, iterative in nature with no linear
algebraic analogue. In Dijkstra’s method, nodes of the graph G are separated into
two classes, temporary and permanent. All nodes start out temporary and become
permanent one at a time. The algorithm terminates once all nodes have become
permanent.

Let mode [.] be an array of bits used to indicate whether a given node is temporary
or permanent. When mode [i] 0, then node is temporary. If mode [i] 1, node
is permanent. If we wish to solve the system (25), where a,i > e for all and L then
Dijkstra’s algorithm can be stated as follows.

ALGORITHM 8. Parallel Di]kstra’s algorithm.
The vector b is overwritten by the solution x.
Initialize: mode [i] 0, 1, 2,..., n.

For i= 1, 2,..., n 1

(32) Find such that/3i Y’. /3k,
mode [k]=0

(33) mode []] 1.

For all k such that mode [k] 0

(34) k Ok -t" j X Og], k.

We observe that for each iteration, line (32) can be done in log (n + 1- i) steps
using n- processors. Overall, line (32) requires. log n log

i=2 2

operations and at most n- 1 processors. Similarly line (33) requires one operation
each iteration, and line (34) can be performed in parallel at each iteration using two
operations and n- processors. The overall work for a parallel version of Dijkstra’s
method is n log n + 2n-3 steps using at most n- 1 processors. Compared with n
iterations of the generalized Jacobi method, Dijkstra’s method requires essentially
the same time, but far fewer processors (n- 1 vs. n2). Thus, for dense matrices A,
Dijkstra’s method appears to be the iterative method of choice.

4.4. Sparse matrix considerations. When the matrix A of the system (25) is large
and sparse, that is the number of arcs nA in the graph G is much less than n 2, direct
methods are impractical. Unless the matrix A is banded or has a special structure,
undesirable fill-in of the matrix A will occur. Since the economization of storage for
large sparse matrices is essential, iterative methods must be used.
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Not all iterative methods are appropriate for this problem. The generalized
Gauss-Seidel method requires the formation of the iteration matrix M (I +L)*U.
This matrix in general will be dense and hence too costly to store. We will thus restrict
ourselves to a discussion of the generalized Jacobi method and Dijkstra’s method.

Let q be the maximum number of nonnull elements in any row of A. In order
to compare the two algorithms, we will use a cost function which is the product of
the number of processors and time. For dense matrices, we see that Dijkstra’s method
has a cost of

(n 1)(n log n + 2n 3) n 2 log n + O(n2).
Similarly, the generalized Jacobi method has a cost of n 3 log n + O(n 3) which is about
n times greater than that of Dijkstra’s method.

For sparse matrices, the generalized Jacobi method requires n log q + 2n steps
and nA n n (q 1) processors. Dijkstra’s method still requires n log n + 2n 3 steps
and n 1 processors. So, the cost for the generalized Jacobi method becomes

n(q 1)(n log q + 2n) (q 1)n 2 log q + O(qn2),
while the cost of Dijkstra’s method remains the same. When the generalized Jacobi
method requires the full n iterations, it is more cost effective than Dijkstra’s method
if (q- 1)log q < log n. In general, the generalized Jacobi method requires a fraction
of n iterations. Let k represent the number of Jacobi iterations required for a given
problem. Then if k (q 1) log q < n log n, the generalized Jacobi method is the superior
algorithm. A similar tradeott between Dijkstra’s method and a version of Ford’s
method was found by Hulme and Wisniewski [14] for sequential algorithms.
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ON THE EXPONENT OF A PRIMITIVE, NEARLY
REDUCIBLE MATRIX. II*

JEFFREY A. ROSSt

Abstract. A nonnegative matrix is called nearly reducible provided it is irreducible and the replacement
of any positive entry by zero yields a reducible matrix. The purpose of this article is to investigate the
exponent 3,(A) of an n n primitive, nearly reducible matrix A. Our principal result is that 3,(A)_-_
n + s(n 3), where is the length of a shortest circuit in the directed graph associated with A. It is an easy
application of this result to find gaps in the exponent set of n x n primitive, nearly reducible matrices. We
also show that for integers n, k satisfying n _-> k- _-> 5 there exists an n x n primitive, nearly reducible
matrix with exponent k. The proofs are carried out by means of directed graphs.

Key words, exponent, primitive nearly reducible matrix, minimally strong directed graph

1. Introduction. Let A be an n n nonnegative matrix. Then A is reducible
provided there exists a permutation matrix P such that

[B 0]PAP=
C D

where B and D are square (nonvacuous) matrices. The matrix A is irreducible if it is
not reducible. The importance of irreducible matrices in the study of nonnegative
matrices, especially the Perron-Frobenius theory, is well known [2], [13]. If A is an
irreducible matrix, but any matrix obtained from A by changing a positive entry to
zero is reducible, then A is said to be nearly reducible. Thus the nearly reducible
matrices are the minimal irreducible matrices, and for this reason it is natural to
investigate their properties [3].

Let A be an n n irreducible matrix. The number h (A) of eigenvalues of A of
maximum modulus is called the index of cyclicity of A. If h(A)= 1, then A is said to
be primitive. The index of cyclicity of A is dependent only on the zero-nonzero pattern
of A, and this is reflected in the following equivalent condition for primitivity [13,
p. 41-42]: The matrix A is primitive if and only if there exists a positive integer k
such that Ak is a positive matrix. The least such integer k is called the exponent of
A and is denoted y(A). It clearly suffices to consider only matrices of O’s and l’s
when investigating primitive matrices and their exponents.

With each nonnegative matrix there is associated in a natural way a directed
graph; this association and some properties of directed graphs will be given in 2.
The associated directed graph reflects the zero-nonzero pattern of the matrix, and
determines some of the properties of the eigenvalues of the matrix. In particular, it
determines the index of cyclicity and, in the case of a primitive matrix, the exponent.

Let A be an n n primitive matrix of O’s and l’s. Then y(A)= 1 if and only if
A is positive. Wielandt [14] stated and Holladay and Varga [8] proved that y(A) <-
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(n 1)2+ 1, with equality if and only if there exists a permutation matrix P such that

pAp

0 1 0 0
0 1

0 0
0 0

Dulmage and Mendelsohn [6], and later Denardo [5], proved that

(1.1) y(A) <- n + s(n 2),

where s is the length of a shortest circuit in the directed graph associated with A.
Exponents of particular classes of primitive matrices have also been investigated.
Lewin [11 gave a tight upper bound on ),(A) when the matrix A is doubly stochastic.
Brualdi and this author [4] showed that if A is nearly reducible, then 6-< 3,(A) -<
n 2- 4n + 6, and both the upper and lower bounds are attained for every integer n -> 4.
In addition, matrices attaining the upper bound were characterized. Other bounds for
3,(A) can be found in [5], [6], [7], [8] and [10].

In this paper we use graph-theoretic means to investigate the exponent of a
primitive, nearly reducible matrix, extending the work in [4]. Our main result is an
improvement of (1.1) when the matrix A is both primitive and nearly reducible. In
particular, we show that in this case /(A) <= n + s(n 3). In addition, matrices meeting
this bound (which is not always attainable) are characterized. We also obtain results
on the existence of gaps in the exponent set of primitive, nearly reducible n x n
matrices.

2. Minimally strong digraphs. Let D (X, U) be a directed graph (digraph)
whose set of vertices is X and whose set of arcs is U. For x, y X, a path 7r from x
to y is a sequence (Xo, x,..., x) of vertices with k _-> 0 such that x x0, y x, and
(xi, xi+) U for 0, 1, , k 1. The arcs (x, xi+), 0, 1,. , k 1, are the arcs
of zr and need not be distinct; the length of zr, denoted l(r), is k. The initial vertex
of r is x0, the terminal vertex is x, and x,..., x_ are the internal vertices of zr. A
path (x,x+,... ,xi) with O<-_i<=]<=k is a subpath of r. If k ->_1 and Xo=X, then zr
is a circuit; a circuit of length 1 is a loop. An arc of D which is not an arc of the
circuit zr but joins two vertices of zr is called a chord of r. The distance from x to y
(in D), denoted do (x, y), is the length of a shortest path from x to y (where do (x, y) oo
if there does not exist a path from x to y). A path (Xo, X,’" ,x) is elementary
provided x # xi for 0 -<_ < ] -< k. A circuit (Xo, x, ., x_, x0) is elementary provided
xi xi for 0 _-< < =< k 1. The digraph D is said to be strongly connected (or strong)
if for each pair of vertices x, y there is a path from x to y and a path from y to x. A
strong digraph D is minimally strong if each digraph obtained from D by the removal
of an arc is not strongly connected. We denote by D the digraph with vertex set X
and arc set U {(x, y): there exists in D a path of length k from x to y}.

Let A =[ai] be a nonnegative n x n matrix. Let Xa ={x,..., x,} and define
U {(x, xi): ai 0, 1 -<_ i, ]_<- n}. The digraph D(A) (X, Ua) is the digraph
associated with A. Note that given a digraph D (X, U) on n vertices x,..., x,,, we

Dmay associate with D an n x n matrix A(D)= [a] defined by aii 1 if and only if
(x, xi) U. Then D(A(D))D. It is well known [13, p. 20] that A is irreducible if
and only if D(A) is strong. It follows that A is nearly reducible if and only if D(A)
is minimally strong. Let d be the greatest common divisor of the lengths of the
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(elementary) circuits of D(A). Then [13, p. 49-50] h(A)= d. Thus, we say a digraph
D has index of cyclicity h (D) equal to the greatest common divisor of the lengths of
its elementary circuits, and D is primitive if h (D)= 1. We also define the exponent of
a primitive digraph D, denoted y(D), to be the exponent of A(D). Letting A(D)k

(k) I)a we have a > 0 if and only if there exists an arc from x to x in O k. Thus T(D)
is equal to the least integer k such that for any ordered pair of (not necessarily distinct)
vertices x, y there exists in D a path from x to y of length k.

We now briefly discuss properties of minimally strong directed graphs. We refer
the reader to [1] and [12] for further details. The following properties are readily
established.

LEMMA 2.1. Le D (X, U) be a minimally srong digraph and let Y X. Then
the following properties hold:

(2.1)

(2.2)

(2.3)

(2.4)

D has no loops.

If the digraph Dy induced on Y is strong, then Dy is minimally strong.

A circuit has no chords.

ff (x, y) U, then (x, y) is an arc of every path from x to y.

+ (x) atIn a strong digraph D each vertex x has indegree 6,(x) and outdegree 6o
least one. A vertex x is called an antinode if 6,(x)= 6,(x)= 1; otherwise, x is called
a node. Suppose D is minimally strong and zr (Xo, xx,"’, Xk) is a path with k _-> 2
whose initial and terminal vertices are nodes and whose internal vertices are antinodes.
Letting Y {xl, , Xk-x}, we say r is a branch provided Dx-y is strong (in [12] we
call this a superfluous branch; here all branches are superfluous). By (2.2) of Lemma
2.1 we know that Dx-v is minimally strong, and we write Dx-y D -r. We say
D-Tr is formed from D by removing the branch or, or D is formed from D- zr by
adding the branch zr. Every minimally strong digraph which is not an elementary
circuit contains a branch [1, p. 32]. In fact, the following stronger result is proved
in [12].

LEMMA 2.2. Let D be a minimally strong digraph which is not an elementary
circuit, and let p be a branch of D. Then there exists a branch 7r ofD such that p and
r do not lie on a common elementary circuit ofD.

COROLLARY 2.3. LetD be a minimally strong digraph which is not an elementary
circuit, and suppose D contains an elementary circuit of length s. Then there exists a
branch zr ofD such thatD 7r contains an elementary circuit of length s.

Let D be a minimally strong digraph. If a branch is removed from D, the resulting
minimally strong digraph either is an elementary circuit or contains a branch. Thus
one may continue to remove branches from the resulting digraphs until an elementary
circuit is obtained. The number of branches which must be removed to obtain an
elementary circuit is an invariant of the digraph ([1], [12]) and is denoted by/z(D).

Now let D be a minimally strong digraph which is not an elementary circuit.
Suppose there exists a sequence Do, Dx,..., D, D of minimally strong digraphs
which satisfy

(2.5)

(2.6)

Do is an elementary circuit.

Di is formed from Di-1 (i 1,...,/z) by adding the branch
7’/" (X i-1

o, x, , Xk,) such that for 2,..., , we have Xo x,
i--1and x k, X , where 1 =< s -< r -< k_a 1.
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In this case we say the digraph D is special. Note that for 1,...,/- 1, the path
ri is a branch ot Di but not a branch ot D. Also, notice that/ =/ (D).

For a minimally strong digraph D, let (D) denote the number of branches o
D. The proofs of the following two lemmas can be found in [12].

LEMMA 2.4. Let D be a minimally strong digraph which is not an elementary
circuit, and let r (Xo, Xl, , Xk) be a branch ofD. Then either every branch
contains a subpath which is a branch of D, or there exists a branch p (y0, y l, , yl)
of D---Tr such that no subpath of p is a branch of D but every other branch oD
is a branch o) D. In the latter case Xo yi and Xk yj where 1 <= <- <- 1.

LEMMA 2.5. Let D be a minimally strong digraph which is not an elementary
circuit. Then 3(D >- 2, with equality if and only ifD is special.

Now let D (X, U) be an arbitrary digraph, and let Y
_
X with Y . Let y X

and form the digraph D Y ((X Y) LI {y }, Uy), where (u, v) Uy if and only if one
ot the following holds.

(2.7)

(2.8)

(2.9)

u, v X- Y and (u, v) U.

u 6 X- Y, v y, and there exists w 6 Y such that (u, w) U.

u y, v X- Y, and there exists w Y such that (w, v) U.

We say D Y is the contraction of Y (in D). The following fact is easily proved.
LEMMA 2.6. LetD (X, U) be a strong digraph, and let Y

_
X with Y # f. Then

D Y is strong.

3. Small exponents. In [4] it is shown that if D is a primitive, minimally strong
digraph, then y(D)-> 6, and for each n >= 4 there exists a primitive, minimally strong
digraph on n vertices with exponent six. Here we show that for n >-5, each of the
integers 6 through n + 1 may be achieved as the exponent of a primitive, minimally
strong digraph on n vertices.

Let D (X, U) be a primitive digraph, and let x X. Then there exists an integer
f with the property that for every vertex y X there exists a path from x to y of
length f. The least such integer f is called the reach of x and is denoted by fo (x). The
following two lemmas can both be found in [6].

LEMMA 3.1. Let D (X, U) be a primitive digraph and let x X. If p >= fo(x),
then ior any y X there exists a path of length p from x to y.

LEMMA 3.2. Let D (X, U) be a primitive digraph. Then y(D
max {fo (x): x X}.

We now are ready for the main theorem of this section.
THEOREM 3.3. Given integers n >=5 and k >=6 with k <-n + 1, there existg a

primitive, minimally strong digraph Gn,k on n vertices with Y(Gn.k)= k.
Proof. We first show, using induction on k, the existence of the primitive minimally

strong digraph Gk-l,k on k-1 vertices with y(Gk_x,k) k. Then for each n >=k-1
we will be able to add n- k + 1 vertices and 2(n- k + 1) arcs to Gk-l,k in a way to
obtain a primitive, minimally strong digraph G,,k with y(G,,k)= y(Gk-.k)= k.

It is easily verified that the digraph G5,6 of Fig. 1 is a primitive, minimally strong
digraph on 5 vertices with y(Gs,6)= 6.

Suppose k 2i + 2 is even (i >= 2). Let Gi (Xi, Ui) be the digraph of Fig. 2. Then
Gi is primitive and minimally strong. We have G5,6 G2, so by the inductive hypothesis
we may assume that y(Gi) 2i + 2 k.
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FIG.

x. x2 Xl Yi-Ixi-i Yl Y2 Yi

FIG. 2. The digraph

Let the digraphs Ei (Y, V)and F(Zi, W) be those illistrated in Fig. 3 (i->2).
Thus we have

Yi=XiU{xi+l}, Vi UiU{(xi, xi+l), (Xi/l, Xi)}, and

z, =x, u {y,+}, w, u, u {(y,, y,+), (y,+, y,)}.

Both Ei and F are primitive and minimally strong. We show by induction that
T(E,) T(F) k + 1.

Z

xi+I x. x x2 Xl Yl Y2 Yii-I Yi-I

xi xi-i x2 Xl Yl Y2 Yi-i Yi Yi+l

FIG. 3. The digraphs Ei (top) and Fi (bottom).



400 JEFFREY A. ROSS

In Ei there exists only one elementary path from Xi+l to yi, and this path has
length 2i + 1 k- 1. There is no path in E from x/l to yi of length k, and hence by
Lemma 3.1, ]’E,(Xi+l)=> k + 1. From applying Lemma 3.2 to Gg and using the inductive
hypothesis, it follows that there exists a path of length k in Gi, hence in E, from xi
to any vertex of Xi. Thus there exists a path of length k + 1 from x/l to any vertex
of X. Also, the path (Xi+I, Xi,,X1, Z, Yl, X1, X2,’’" ,Xi+I) is a path of length
2i + 3 k + 1 from Xg+l to Xi+l, SO fEi(Xi+l) k + 1. Now let x e Xg. It follows from
applying Lemmas 3.1 and 3.2 to G that there exist paths of length k and of length
k + 1 in Gi, hence in E, from x to any vertex of Xi. Since there exists a path from x
to x of length k, there exists a path of length k + 1 from x to Xi/l. Thus for each
x e X, we have f.,(x) <_- k + 1. Hence it now follows from Lemma 3.2 that y(Ei) k + 1.
In a similar manner one may show that fF, (Xi)= k + 1 and y(F)= k + 1.

We now continue the induction to show that y(G+l)=k +2=2(i+ 1)+2. The
only elementary path in G+I from xi+l to y+l has length 2i + 2 k, and there is no
path of length k + 1 from X+l to y+l in Gi+l. Hencef6,+l(X+x)->-k + 2. Using arguments
similar to those above, since /(Ei) ,(F/) k + 1, we have that f6,+(xg+l) k + 2 and
f,+l(x)-<-k + 2 for any other vertex x of G+I. It now follows from Lemma 3.2 that
’(G+I) k + 2. Thus by taking Gk-l.k Gg for k 2i + 2 and Gk-l,k Ei for k 2i + 3,
we have that Gk-l.k is a primitive, minimally strong digraph on k- 1 vertices with
y(G-I.) k.

Let >_- 2. For k 2i + 2 and n >_- k, let G,,. (X UX’_/1, U U U’_+ ), and for
k 2i + 3 and n _>- k, let G, (Y UX_+I, V U U,_’+1 ), where

={(x;,xl) (xX’,,_+ --{xl, x., ., x,,_+}, and U’,,_+ 1, x):]= 1, n-k + 1}.

The digraph Gn,k is illustrated in Fig. 4 (in which [(k 1)/2]). It is straightforward
to verify that for n >_- k 1 >_- 5 the digraph Gn,k is a primitive, minimally strong digraph
whose exponent is k. ]

xE -i

""x’ y

xl
n-k+1

Yi-I Yi

FIG. 4

COROLLARY 3.4. Given integers n >-5 and k >-6 with k <-n + 1, there exists an
n n primitive, nearly reducible matrix A with 3,(A) k.

4. An upper bound. It is shown in [4] that if A is an n x n primitive, nearly
reducible matrix, then 3,(A)-<-n + (n- 2)(n -3), and matrices for which equality holds
are characterized. In this section we generalize this result, obtaining an upper bound
on 3,(A) depending on the length of a shortest circuit of D(A). Let s(D) denote the
length of a shortest circuit in a strong digraph D, and for integers a, b, let (a, b) denote
their greatest common divisor.
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THEOREM 4.1. Let A be an n x n primitive, nearly reducible matrix of O’s and
l’s, and let s s(D(A)). Then

(4.1) T(A) <= n + s(n 3),

with equality if and only if there exists a permutation matrix P such that

pAp

-0 1 0 0 0
0 0 1 0 0

1 0 0 1 0

0 0 0 0 1
0 1 0 0 0

where row s of PAP’ has the entry 1 in the first column. In particular, if (s, n 1) 1,
then y(A) < n + s(n 3), and if (s, n 1) 1, then there exists an n x n primitive, nearly
reducible matrix with exponent n + s(n 3).

In order to prove Theorem 4.1, we shall first prove some useful lemmas concerning
digraphs.

LEMMA 4.2. Let D be a minimally strong digraph which is not an elementary
circuit. Suppose there exists at most one branch zr olD for which s(D r) s(D). Then
D contains exactly two branches, one a branch zr for which s(D rr)= s(D), the other
a branch p for which s(D p) > s (D). In particular, D is special.

Proof. The proof is by induction on/z =/z (D). The result holds if/x 1 since all
such digraphs are special. So assume/z > 1. It follows from Corollary 2.3 that there
exists a branch zr of D such that s(D 7r)= s(D). Let D’=D 7r, and suppose that
D’ has two distinct branches r’ and r" such that s(D’---zr’)= s(D’) and s(D’-.. r")=
s(D’). It follows from Lemma 2.4 that some subpath z of r’ or 7r" is a branch of D.
However, since s(D’) s(D), it now follows that s(D -) s(D). Since zr, this is
a contradiction. Now/z (D’) =/z (D)- 1, so by induction D’ has exactly two branches,
a branch a for which s(D’--.a)=s(D’) and a branch p for which s(D’.--p)>s(D’).
Also, D’ is special. Since no subpath of a can be a branch of D, it follows that p and
zr are the branches of D, and we know s(D zr)= s(D) and s(D-.-p) > s(D). Finally,
since (D)= 2, by Lemma 2.5 we conclude that D is special.

LEMMA 4.3. Let D be a primitive, minimally strong digraph. Suppose that for any
branch a of D, either s(D a)> s(D) or every circuit in D--a has length divisible by
s(D). Then D is special, and its two branches zr and p satisfy

(4.2) s(D-p)>s(D).

(4.3) Every circuit in D r has length divisible by s(D).

Moreover, D contains a unique circuit of length s(D).
Proof. It follows from Corollary 2.3 that there exists a branch r (Xo, xl, , Xk)

for which (4.3) holds. Now let tr be any path from Xk to Xo in D---zr, and suppose
/(tr) c. Then (zr, tr) is a circuit of length c + k. Let g=(c + k,s), where s s(D).
Since zr is a branch of D, there exists a path h in D -zr from Xo to Xk with, say,
l(A) =/. Then s[/+ c since (,, tr) is a circuit of D zr.

Now let/3 be any elementary circuit of D. If zr is not a subpath of/3, then g[l(/3)
since sll(fl). Suppose that zr is a subpath of/3, so/3 (zr, z) where z is a path in D r.
Letting l(’)= d, we have s[] + d since (A, -) is a circuit of D---r. Hence sld-c, and
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from this it follows that gld + k, that is, gl/(/3). Thus every elementary circuit of D
has length divisible by g, and we conclude that g 1 since D is primitive. It now
follows that every elementary circuit of D of the form (zr, ’) has length coprime to s.

Suppose now that there exists another branch zr’# zr for which every circuit of
D -zr’ has length divisible by s. Since zr is a path of D r’, there exists in D
an elementary circuit of the form (zr, ’). But this circuit has length coprime to s,
contrary to assumption, so zr is the unique branch of D satisfying (4.3). By assumption,
any other branch of c of D satisfies s(D tz)>s(D). It now follows from Lemma
4.2 that there exists a unique branch p # zr for which (4.2) holds, that p and r are
precisely the branches of D, and D is special. Since D is special and contains a unique
branch t9 for which s(D "-.t9)> s, one now sees that D contains a unique circuit of
length s. I3

One should note that it is quite possible to find primitive, minimally strong
digraphs which satisfy the hypotheses of Lemmas 4.2 and 4.3.

Let D (X, U) be a digraph and let x, y X. We say x and y are connected in
D if there exists a sequence of vertices (Xo, x1,"’, Xk) with k => 0 such that x x0,

y=Xk, and either (xi, xi/l) U or (xi/,x) U for i=0, 1,... ,k-1. This is clearly
an equivalence relation, and the equivalence classes are the connected components
of D.

A somewhat stronger form of the following lemma is stated and proved in terms
of matrices in [13, p. 43].

LEMMA 4.4. Let E be a strong digraph with index o]" cyclicity h. Then ]:or each
integer ] >-1, the digraph Ehi has h connected components. Moreover, each connected
component is strongly connected and primitive. In particular, for every integer
is strongly connected and primitive whenever E is.

The following lemma is evident.
LEMMA 4.5. LetE be a strong digraph with index o]" cyclicity h. If (Xo, x, , Xh)

is any path in E, then ]:or each integer ] >- 1, the vertices Xo, , Xh- are all in different
connected components oj Eh, and Xo, xh are in the same component.

LEMMA 4.6. Let D (X, U) be a primitive digraph and let x X be a vertex on
a circuit oj length s=s(D). Let k=max{do(y,x):yX} and let d=
max {do,(x, y): y X}. Then

(4.4) y(D) <= k + sd.

Proof. The proof of this lemma closely follows the proof of Theorem 1 of [6], so
we shall be brief. Let y X and let ly do (y, x), so ly -< k. Since x is a loop vertex of
Ds, there exists in D a path of length exactly d from x to any vertex in X. Hence in
D there exists a path of length lr + sd from y to any vertex of D, so fo (Y) <- lr + sd <-
k + sd. The inequality (4.4) now follows from Lemma 3.2. Iq

LEMMA 4.7. Let D be a primitive special digraph with lz (D)>= 2 and let s s(D).
Suppose the branches p and zr (Xo, Xl,’", Xk) Of D satisfy (4.2) and (4.3). Then
(D--zr) has s connected components A, As which are strongly connected. Let

(4.5) D* (... ((Ds,A1),A2)...*As).

ff s >= 3 and D* is not an elementary circuit, then y(D) <= n 1 + s(n 3).
Proof. Since D---zr still contains a circuit of length s, it follows from (4.3) that

h(D ,r)= s. The first conclusion now follows from Lemma 4.4. Since D is strong,
it follows from Lemma 2.6 that D* is strong. By Lemma 4.5, each vertex on a circuit
of length s is in a different component of (D--zr). Moreover, these are loop vertices
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in (D r) since in D-r there is a path of length s from each one to itself. For
1,..., s, let aiAi be a loop vertex.
Since D is special, let Do, Dr,’’ ’, D, D be a sequence of minimally strong

digraphs satisfying (2.5) and (2.6). This sequence can be chosen so that p is a path
of Do and r zr,. Since /x(D)->_2, D zr D,_ Do. Since Do is an elementary
circuit of length s, which by Lemma 4.3 is the unique circuit of size s in D, it now
follows that the elementary circuit of Dt containing rl has at least 2s vertices, and
hence that zrt has at least s + 1 internal vertices. Thus there exist s consecutive internal
vertices of r which by Lemma 4.5 are all in different components of (D rr). Hence
IAi]-> 2 for every i= 1,..., s.

It follows from Lemma 4.5 and the definition of h(D) that for each 1,..., s,
there exists an integer ti with 0 =< ti < s such that do-=(x, Xo) ti (mod s) for every
x Ai. Furthermore {t: 1,..., s} is a complete set of residues (mod s), and for
each 1,..., s, there exists a vertex vA such that do_=(v, x0) ti. For each

1,. , s, let be the contraction of A in D*. Since the length of the elementary
o, (0,) .circuit tr of D containing 7r is greater than s, it now follows that

Suppose now that D* is not an elementary circuit. Since D* is strong, there must
exist a vertex x of D* such that /6o.(x)>=2. We have seen that x for any

1,..., s, so x must be an internal vertex of r. Choose p such that do.(p, x)=
min {do.(, x)" 1, ., s}. Again, l(tr) > s implies that 6+o, (x) 2, and the terminal
vertices of these arcs are an internal vertex z of zr and r for some r 1, , s. Since
(l(tr), s)= 1, r p. Now let q be such that do.(z, q)= min {do.(z, i): 1,..., s}.
This defines q uniquely; since (l(tr), s) 1, q p, and since we also have s => 3, q # r.
It now follows that in D there exists a path from ap to any vertex which avoids either
ar or aq. Since Ial_->2 and Ia]_->2, it follows from Lemma 4.6 that y(D)=<
n-l+s(n-3).

Suppose D- (X, U) is a primitive, minimally strong digraph with a branch 7r for
which h(D---r) h > 1. Let At,"’, Ah be the components of (D -zr). A vertex
x Ai (i 1, ., h) is an exit vertex if in D there is an arc from x to either an internal
vertex of zr or to a vertex in some Aj with j # i.

Let D- (X, U) be a primitive digraph and let pt,"’, Pk be the distinct lengths
of the elementary circuits of D. For each ordered pair of vertices x, y we define a
nonnegative integer rx.y as follows" rx.y is the length of a shortest path from x to y
which for each 1,..., k contains a vertex of some circuit of length pi. Note that
rx,x 0 if for each 1,. ., k, x is a vertex of an elementary circuit of length p. Let
r(D) max {rx, y: x, y X}. An ordered pair of vertices x, y has the unique path property
if every path from x to y of length at least rx, consists of some path zr from x to y
of length rx.y augmented by elementary circuits each of which has a vertex in common
with zr.

Now let pl," Pk be relatively prime positive integers and let F(pt," ", Pk) be
the largest integer which cannot be expressed in the form atpt +"" / akPk where
at," ak are nonnegative integers. It is well known [9, p. 6] that F(pl," ", Pk) is
finite and that when k 2, F(pt, p2)= ptpE-pl-p2. The following is due to Dulmage
and Mendelsohn [6].

LEMMA 4.8. Let D be a primitive digraph for which pl,’", Pk are the distinct
lengths of the elementary circuits. Then

(4.6) y(D) <-F(pl, Pk) + r(D) + 1.

If the ordered pair of vertices x, y has the unique path property, then

(4.7) F(p, pk)+ rx.y + l_--<y(D).
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We are now prepared to prove the main theorem. We restate it and prove it in
terms of digraphs.

THEOREM 4.9. Let D (X, U) be a primitive, minimally strong digraph on n
vertices, and let s s (D ). Then

(4.8) y(D)<=n+s(n-3),

with equality if and only ifD is isomorphic to the digraph Ds., of Fig. 5. In particular,
/f (s, n- 1)# 1, then ,(D)< n + s(n-3), and if (s, n- 1)= 1, then Ds, is a primitive,
minimally strong digraph on n vertices with exponent n + s(n 3).

2 s

3 s-I

4 s-2

FIG. 5. The digraph D

Proof. The proof is by induction on/z =/x (D). If/z 1, then D is isomorphic to
a digraph of the type shown in Fig. 6, where we may assume p < n-s so s(D)= s.
Also, since D is minimally strong, p => 1, and since D is primitive, (s, n -p) 1. Clearly
r(D) r/1,, n -p + n -s 1. The vertices s + 1 and n have the unique path property,
so by Lemma 4.8,

y(D) F(n -p, s) + r(D) + 1 n + s(n 2 -p) <- n + s(n 3),

with equality if and only if p 1, if and only if D D,.,. This proves the theorem
when/z 1.

p+l

p+2

n-i s+2..

p+3 s-2

Fo. 6
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Now suppose/z(D)-> 2. We must show that y(D)<=n 1 +s(n-3). Suppose first
that D contains a branch r such that s(D zr)= s(D) and D---zr is primitive. Let k
equal the number of internal vertices of r. By the inductive hypothesis we have

(4.9) ),(D zr) <- n k + s(n k 3) <- n + s(n 3)- 3k.

Since D- zr has paths between any two vertices of all lengths y(D 7r) and greater,
it follows that y(D) <- y(D zr) + 2k. Combining this with (4.9), we have y(D) <-
n +s(n-3)-k_-<n-l+s(n-3).

Hence we may assume that the removal of any branch 7r from D yields a digraph
D--zr with either s(D .--zr)> s(D) or D ,r not primitive. By Corollary 2.3 there
exists a branch zr with s(D zr)= s.(D) so we have h(D zr)= h > 1. First assume
that h rs s, so h < s and his. By Lemma 4.4, (D---r) has h connected components,
each strongly connected and primitive. It follows from Lemma 4.5 that (D--zr) has
at least s/h loop vertices in each component.

Suppose s/h => 3. Let A be any connected component of (D---7r), and let y A
be an exit vertex of D. Let x A be a loop vertex ofD such that dos(x, y) is minimum.
Since A contains at least two other loop vertices, it now follows that for any vertex
z e X, there exists in D a path from x to z of length at most, hence exactly, n- 3.
We may now apply Lemma 4.6 to conclude that y(D) -< n 1 + s(n 3).

Suppose now that s/h 2. If there exists more than one circuit of length s in
D -zr, then by Lemma 4.5 some component A of (D r) contains at least three
loop vertices, and the result follows as above. So we may assume D zr contains
exactly one circuit of length s, and now by Lemma 4.5 each component of (D -7r)
contains exactly two loop vertices. Let tr (Xo, x x, , x-l, Xo) be the circuit of D zr
of length s. Since/z(D) => 2, there exists a vertex of tr, say X-l, such that 6_(x-1) -> 2.
Thus there exists a vertex x rs Xo with (xs-1, x) an arc of D--zr. By (2.3) of Lemma
2.1 the vertex x is not a vertex of tr. Let A be the component of (D zr) containing
Xo, so we also have x e A and, by Lemma 4.5, Xh A. Since tr is the only circuit of
D-r of length s and h s/2, it follows from (2.4) of Lemma 2.1 that the shortest
path from x to a vertex of tr has length at least s/2 + 1. Hence in D---r there exists
a path of length s from Xh to X’ e A where Xo, Xh, X, and x’ are all distinct. In particular
we can now conclude that if y is an exit vertex of A, either d(o-.,r(Xo, y) -< IAI- 3 or
d(D--,r)S(Xh, y) _--< IAI- 3. Without loss of generality assume the former. In D there exists
a path from any vertex z to Xo of length at most n- 1. Since Xo is a loop vertex of
Ds, and each component of (D---r) contains at least two vertices, in D there is a
path from Xo to any vertex of length n-3. Therefore y(D)-<_n-l+s(n-3) by
Lemma 4.6.

Thus we are left only to consider the case when the removal of any branch zr
from D yields a digraph D r with either s(D 7r) > s(D) or h(D zr) s(D). In
this case D satisfies the hypotheses of Lemma 4.3, so D is special, and its branches
p and zr satisfy (4.2) and (4.3). Moreover, D contains a unique (elementary) circuit
of length s s(D). For the remainder of this proof we shall consider D to be such a
digraph.

We first suppose s-> 3, and let zr (Xo,’’’, Xk) and -= (Yo, ", Y), where - is
the branch of D--zr which is not p. By (2.6) we have Xo =yj and Xk Yi where
1 <_-i _-<] <_-l-1. Let a (y,..., yj) and let B (a, r), so B is an elementary circuit
of length l(/)_-> s + 1 with l(/) coprime to s. We consider two cases. First assume that
] <_- s 2. Since (I([3), s) 1, in D there exists an elementary circuit connecting the
vertices of ft. However, fl contains ]-i + 1 < s vertices of (D---zr), so the digraph
D* defined by (4.5) is not an elementary circuit. It follows from Lemma 4.7 that
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y(D)<=n-1 +s(n-3). Now assume that ]-i>=s-1, so s consecutive vertices of/3
are vertices of D--7r. None of yi," ", yj lies on a circuit of D of length s since D
has a unique circuit of length s containing p and tz(D)=>2. Since (l(/3), s)= 1, in D
there exists an elementary circuit containing y,. ., yj and the internal vertices of rr.
This elementary circuit " passes through every component of (D---7r)s, but does not
contain any loop vertices of Ds. For some p {1,..., k- 1} and q {i,..., ]}, there
exists an arc {xp, yq) of sr. Let A be the connected component of (D- 7r) which
contains yq, and let a A be a loop vertex. Since s => 3 and sr contains no loop vertices,
there exists in D a path from a to xp which avoids at least two loop vertices. If some
arc with initial vertex x has terminal vertex in X-A, then the digraph D* defined
by (4.5) is not an elementary circuit, and by Lemma 4.7, y(D) <= n 1 + s(n 3). Thus
we may assume that all arcs of D with initial vertex xp have terminal vertex in A.
Now s => 3 and the fact that ( contains no loop vertices imply that there exists a path
in D from a to any vertex other than xp which avoids xo and at least one loop vertex.
So max {dos(a,x): x X}<=n-3, and by Lemma 4.6 we have y(D)<=n-1 +s(n -3).
The proof of the theorem when s -> 3 is now complete.

Suppose now s 2; we wish to show that y(D)-<_ 3n-7. Let 2, pa,’", pt, q be
the distinct lengths of the elementary circuits of D, where 2[pi for 1,. ., t, and q
is odd. Clearly F(2, pa,..., p,, q)=F(2, q)= q-2. By (4.6) of Lemma 4.8, y(D)<=
F(2, p, p,, q)+ r(D)+ 1, or

(4.10) y(D) _-< max {q 1 + rx, y" x, y X}.

Let r be the elementary circuit of D of length 2 and let fl be the elementary circuit
of D of length q. If one of x, y is a vertex of o- and the other is a vertex of fl, then
rx,y<=n-1. In this case q-l+rx,y<=n+q-2<=2n-4<3n-7 since n=>4. If one of
x, y is a vertex of r and the other is not a vertex of/3, then a shortest path from x
to y which contains a vertex of /3 need not use an internal vertex of r. Hence
r,,y =<2(n-2). Also, since /z(D)>2= and D is special, r and/3 have no vertices in
common, so q <-_ n-2. Thus q- 1 + rx,y <- 3n-7. Now if one of x, y is a vertex of
and the other is not a vertex of o-, a similar argument shows again that q- 1 + r,, _-<
3n- 7. Finally, suppose neither x nor y is a vertex of either cr or/3. There is a path
a from x to a vertex v of r of length at most n- 3. If a contains a vertex of fl, then
since there is a path from v to y of length at most n- 2, we have rx. -< 2n- 5 and
q-l+r,.y<=3n-8. If a does not contain a vertex of fl, then l(a)<-n-q-2. Now
there is a path from v to a vertex u of/3 of length at most n- 3, and a path from u
to y of length at most n-4. Thus r,,y<=3n-q-9, and q-l+rx,y<=3n-lO. It now
follows from (4.10) that y(D)=< 3n- 7. This completes the proof of the theorem.

5. Gaps in the exponent set. In this section we apply Theorem 4.9 to show that
there exist gaps in the exponent set of primitive, minimally strong digraphs on n
vertices (primitive, nearly reducible n x n matrices). Our methods will be similar to
those of Dulmage and Mendelsohn [6]. For simplicity, we shall state and prove the
results in terms of digraphs. Our first result is Theorem 4.2 of [4], now an easy
corollary of Theorem 4.9.

COROLLARY 5.1. LetD be a primitive, minimally strong digraph on n vertices. Then

(5.1) y(D)<=nZ-4n+6,

with equality if and only ifD is isomorphic to the digraph Dn-2,n.
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Proof. Suppose that D has an elementary circuit of length n. Then by (2.3) of
Lemma 2.1, D contains no other arcs, and hence is not primitive. This contradiction
shows that D has no elementary circuit of length n.

If s =s(D)= n-1, then since D is primitive, D also contains an elementary
circuit of length n, a contradiction. So s =< n 2, and n + s(n 3) =< n + (n 2)(n 3),
with equality exactly when s n-2. Thus by Theorem 4.9 the inequality (5.1) holds;
in addition, equality holds in (5.1) if and only if D D,-2,,. I-!

COROLLARY 5.2. Let n be an integer at least six. Then there exists no primitive,
minimally strong digraph D on n vertices such that either

n2-Sn+9<y(D)<n2-4n+6, or n2-6n+12<y(D)<n2-5n+9.
Up to isomorphism, there exist either zero or one primitive, minimally strong digraphs
on n vertices with exponent n-- 5n + 9, according to whether n is odd or even. Further-
more, there exist either one or two nonisomorphic primitive, minimally strong digraphs
on n vertices with exponent n-6n + 12, according to whether n 1 is or is not a multiple
of three.

Proof. Since the proof is straightforward, we leave it to the reader to check many
of the details. Let D be a primitive, minimally strong digraph on n vertices with

(5.2) n2-6n + 12 -< ,(D) < n2-4n +6.

If s s(D)<=n-4, then by Theorem 4.9, /(D)<-n-6n + 12, with equality if and
only if D Dn-4,n. However, Dn-4,n is primitive exactly when 3 n 1.

So we assume that s-> n- 3. We saw in the proof of Corollary 5.1 that s-< n- 2.
However, if s n -2, then we saw that D Dn_,, and /(D)= n-4n +6. Thus
s-< n- 3, and henceforth we shall assume that s n- 3. If D contains a circuit of
length n- 1, then D -Dn-3,n. The digraph Dn-3,n is primitive exactly when 2In, and
it follows from Theorem 4.9 that in this case 3,(D)= na- 5n + 9.

We are left only to consider primitive, minimally strong digraphs on n vertices
all of whose elementary circuits have length n- 3 or n- 2. First consider the digraph
Hn of Fig. 7. This digraph has r(H,)= r-4,,-2 n, and since the vertices n- 4, n- 2
have the unique path property, it follows from Lemma 4.8 that /(H) na-6n + 12.

n-5

FIG. 7. The digraph Hn.

All other primitive, minimally strong digraphs on n vertices which have all their
elementary circuits of length n- 3 or n- 2 are shown in Fig. 8. If D is isomorphic to
one of the digraphs (i), (ii), or (iii), then r(D)= rn-3,,-2 n- 1. Since in each case the
vertices n- 3, n- 2 have the unique path property, it follows from Lemma 4.8 that
y(D)=n2-6n+ll. If D is isomorphic to one of the digraphs (iv) or (v), then
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n-5 n-6

n-4

n-3 n-i

n-2 1

n-3 n-4

(i) (ii)

i i-i

i+l n-i

i+2 i+3

2 i

n-5 n-4

(iii) i=l n-6

n-4 n-4

n-5
n-3

n-5

n-6 n-
i n-2

(iv) (v)

FIG. 8

r(D) l’n_l.n_ --n-2. Again the vertices n- 1, n- 1 have the unique path property,
and by Lemma 4.8 we see that y(D)= n2-6n + 10.

We summarize the results of this section by listing all primitive, minimally strong
digraphs on n _>-6 vertices with exponent at least nE-6n + 12.

Digraph Exponent

D._2,. n 2 4n + 6

D.-3,. (for n even) n2-5n +9
H. n2-6n +12
D.-4,. (for 3,t’n- 1) n2-6n + 12



EXPONENT OF A PRIMITIVE, NEARLY REDUCIBLE MATRIX 409

6. Concluding remarks. We conclude this paper by discussing some open prob-
lems concerning the exponent of a primitive, nearly reducible matrix, and concerning
the exponent of a primitive matrix in general. In 3 we saw that there exists an n n
primitive, nearly reducible matrix with exponent k whenever 6 <_-k-<_ n + 1. On the
other hand, in 5 we saw that for n _>-5, hence for all positive n, there does not exist
an n n primitive, nearly reducible matrix with exponent n2-6n + 13. These results
lead to the following problems.

Problem 6.1. For n_->5, what is the least integer e(n)_->6 such that no nn
primitive, nearly reducible matrix has exponent e(n)?

That for n _-> 5 there exist gaps in the exponent set of n x n primitive matrices
was shown by Dulmage and Mendelsohn [6]. Hence we may also ask the following.

Problem 6.2. What is the least positive integer el(n) such that no n x n primitive
matrix has exponent el(n)?

Some of the difficulty in the proof of Theorem 4.9 arose in the effort to characterize
equality in (4.8). Primitive matrices for which equality holds in (1.1) have not been
characterized. Dulmage and Mendelsohn [6] have noted that if (s, n)- 1, then the
digraph K, of Fig. 9 is primitive with s(Ks,) s and T(K,) n + s(n -2).

s+l s-i

s+2

n-i

n 2

FIo. 9. The digraph

s-2

Problem 6.3. Characterize the primitive digraphs on n vertices with shortest
circuit length s and exponent n + s(n- 2).

When (s, n)= 1, it is not always the case that Ks, is the only primitive digraph
on n vertices with shortest circuit length s and exponent n + s(n-2). For example,
the digraph of Fig. 10 is primitive on 10 vertices, has shortest circuit of length 3, and

FIG. 10

has exponent 34= 10+ 3(10-2). Notice that the elementary circuits of this digraph
have lengths 3, 6, and 10, and F(3, 6, 10) F(3, 10) 17. This example is not unique;
using the same technique, it may be possible to construct a primitive digraph on n
vertices with elementary circuits of length s pa <p2" <pt n and exponent
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n +s(n-2). In this case F(pl,’’ ", pt)=F(pl, Pt). One may check that as long as
F(p,..., p,) =F(s, n), pilsn for 1,..., t, and s +pt-1 <n, then a primitive digraph
on n vertices with elementary circuits of lengths p,..., pt may be constructed in a
manner similar to the digraph of Fig. 10. However, this sort of construction always
yields a digraph which is an elementary circuit on n vertices with some chords. Based
on this, we may ask a simpler question than Problem 6.3.

Problem 6.4. If D is a primitive digraph on n vertices with s(D)= s => 2 and
y(D) n + s(n 2), does D contain an elementary circuit of length n ?

In Problem 6.4 we required s -> 2. Let D be a strong digraph on n vertices which
contains a loop, so D is primitive and y(D)-< 2n- 2. If y(D)= 2n- 2, then D need
not contain an elementary circuit of length n. In particular, the digraphs Bi,, of
Fig. 11, 1,.. , n- 1, may have exponent 2n’--2, but only BI., has an elementary
circuit of length n.

Problem 6.5. Let D be a strong digraph on n vertices which contains a loop, and
suppose D is not isomorphic to B., for 2,..., n- 1. If y(D)= 2n-2, does D
contain an elementary circuit of length n ?

n

n-1

i+2

i+l

FIG. 11. The digraph

Note added in proof. A system of gaps in the exponent set of. primitive matrices,
Illinois J. Math., 25 (1981), pp. 87-98, by M. Lewin and Y. Vitek, has recently come
to the author’s attention. In this paper it is conjectured that e(n)>=(n2-2n +4)/2.

REFERENCES

[1] C. BERGE, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
[2] A. BERMAN AND R. J. PLEMMONS, Nonnegative Matrices in the Mathematical Sciences, Academic

Press, New York, 1979.
[3] R. A. BRUALDI AND M. B. HEDRICK, A unified treatment ofnearly reducible and nearly decomposable

matrices, Linear Algebra Appl., 24 (1979), pp. 51-73.
[4] R. A. BRUALDI AND J. A. Ross, On the exponent of a primitive, nearly reducible matrix, Math. Oper.

Res., 5 (1980), pp. 229-241.
[5] E. V. DENARDO, Periods of connected networks and powers of nonnegative matrices, Math. Oper.

Res., 2 (1977), pp. 20-24.
[6] A. L. DULMAGE AND N. S. MENDELSOHN, Gaps in the exponent set of primitive matrices, Illinois

J. Math., 8 (1964), pp. 642-656.
[7] B. R. HEAP AND M. S. LYNN, The index of primitivity of a nonnegative matrix, Numer. Math., 6

(1964), pp. 120-141.
[8] J. C. HOLLADAY AND R. S. VARGA, On powers of nonnegative matrices, Proc. Amer. Math. Soc.,

9 (1958), pp. 631-634.
[9] J. G. KEMENY AND J. L. SNELL, Finite Markov Chains, Van Nostrand, Princeton, NJ, 1960.

[10] M. LEWIN, On exponents of primitive matrices, Numer. Math., 18 (1971), pp. 154-161.
[11],Bounds for exponents of doubly stochastic primitive matrices, Math. Z., 137 (1974), pp. 21-30.
[12] J. A. Ross AND C. LUCCHESI, Superfluous paths in strong digraphs, submitted.
[13] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[14] H. WELANDT, Unzerlegbare, nicht negativen matrizen, Math. Z., 52 (1950), pp. 642-645.



SIAM J. ALl3. DISC. METH.
Vol. 3, No. 4, December 1982

1982 Society for Industrial and Applied Mathematics

0196-5212/82/0304-0001 $01.00/0

REARRANGEABLE NETWORKS WITH LIMITED DEPTH*

NICHOLAS PIPPENGERt AND ANDREW C.-C. YAO

Abstract. Rearrangeable networks are switching systems capable of establishing simultaneous indepen-
dent communication paths in accordance with any one-to-one correspondence between their n inputs and
n outputs. Classical results show that f(n log n) switches are necessary and that O(n log n) switches are
sufficient for such networks. We are interested in the minimum possible number of switches in rearrangeable
networks in which the depth (the length of the longest path from an input to an output) is at most k, where
k is fixed as n increases. We show that I(n 1+1/k) switches are necessary and that O(nl+I/k(log n)Ilk)
switches are sufficient for such networks.

1. Introduction. An (m, n )-network G V, E, A, B) comprises an acyclic direc-
ted graph with vertices V and edges E, a set of m distinguished vertices A called
inputs and a set of n other distinguished vertices B called outputs.

A request is an ordered pair (a, b) comprising an input a and an oatput h. A
route is a directed path from an input to an output. A route satisfies a request (a, b)
if it is from a to b.

An l-assignment is a set of requests, no two of which have an input or output
in common. An l-state is a set of routes, no two of which have a vertex in common.
An/-state satisfies an/-assignment if it contains a route satisfying each request in the
assignment.

An n-connector (also known as a rearrangeable n-network) is an (n, n)-network
that has an n-state satisfying each of the n! n-assignments. The size of a network is
the number of edges in it. The depth of a network is the maximum number of edges
in any route in it.

Let f(n) denote the minimum possible size of an n-connector. An information-
theoretic argument (due to C. E. Shannon) shows that f(n) f(n log n) (see Pippenger
[4]; f(...) means "some function bounded below by a strictly positive constant
times. "). A classical construction (due to D. Slepian, A. M. Duguid and J. LeCorre)
shows that f(n)=O(n log n) (see Pippenger [3]; O(...) means "some function
bounded above in absolute value by a constanttimes... ").

Let fk (n) denote the minimum possible size of an n-connector having depth at
most k. We shall be interested in the behavior of fk(n) as n grows while k remains
fixed. The case k 1 is trivial: fl(n)= n 2. For k 2, a probabilistic argument (used
by de Bruijn, Erd6s and Spencer [1] to solve a problem of van Lint [2]) shows that
f2(n) O(n3/E(log n)1/2). For odd k _-> 3, the classical construction referred to above
shows that fk(n) O(rtl+E/(k+l)).

In 2 we shall show (by adapting an argument due to Pippenger and Valiant [5])
that fk(n)= I(nXX/k). In 3 and 4 we shall show (by a probabilistic argument) that
fk(n)= O(n+/k(log n)I/k).

2. Lower bound. An n-tree is a (1, n)-network with inputs A={a}, outputs
B {b,..., b,} and, for 1 <_-]-<_n, a unique route Rj satisfying the request (a, bj).

If T is an n-tree, let

A(T)= E E do,
_j<n vR

* Received by the editors June 6, 1981.
f Computer Science Department, IBM Research Laboratory, San Jose, California 95193.
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley,

California 94720.
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where do denotes the number of edges directed out of the vertex v.
PROPOSITION 2.1. ff T is an n-tree of depth at most k >- 1, then

A(T)>=kn 1+1/k.

Proof. The proof is by induction on k. The case k 1, A(T)-n 2 is trivial. If
k >_-2, let d be the number of edges directed out of the input and let T1,. , Td (with
n 1,""", nd outputs, respectively) be the subtrees into which these edges are directed.

We have

A(T) dn + , A(Th) >=dn + , (k 1)n+l/(k-1),
l<__h<=d l<_h<__d

by inductive hypothesis. Since nl +...+nd =n and (k-1)O 1+1/(k-1) is convex in 0,
we have

E
l<:h<=d

Straightforward calculus shows that

1+1/(k-1)

which completes the induction.
An n-shifter is an (n, n)-network with inputs A={al,..., aN}, outputs B

{b 1, , b, } and, for 1 -</’ <- n, a state satisfying the assignment
{(al, bj/l),’’’, (aN, b./,)} (addition is modulo n).

THEOREM 2.1. Any n-shifter of depth at most k has size at least kn 1/1/k.
Proof. Let G (V, E, A, B) be an n-shifter of depth at most k. Let Ri, be the

route from input ai to output b./i in the state that satisfies the assignment
{(al, bi/),...,(a,,bi/,)}. By identifying common initial segments, the routes
R.I, , Rg., can be assembled into an n-tree Ti of depth at most k, for which

A(Ti) > kn l+l/k

by Proposition 2.1 For 1 <= i-< n, 1 =</" =< n and e e E, let Ix(i,/’, e) be 1 if the edge e
is directed out of a vertex on R,. and 0 otherwise. For any and/’, we have

and by summing over j, we have

Z (i,],e)>= Z d,
eE vRi,i

Z Z tx(i,], e) >-_ Z Z do >-A(T)>-_kn +l/k.
<=i<--n eeE <--i_n vRi,

Y Z Z Ix(i,j,e)>=kn 2+1/k.
l<--i<--n l<-j<=n eE

On the other hand, since the routes R 1,j, , R,,i have no vertex in common, an
edge e can be directed out of a vertex on at most one of them. Thus, for any f and
e, we have

E Ix(i,],e) <-1.
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By summing over/’ we have , lz(i,i,e)<--n,
l]<--_n l<--_i<=n

and by summing over e we have., Y ., p(i,j,e)<--n #(E)
eeE <=]<--n

# (" ’) means "the cardinality of. "). Comparing this with (2.1) gives

@(E)>kn x+l/k

as claimed. I3
COROLLARY 2.1. Any n-connector of depth at most k has size at least kn 1+Ilk.
Proof. An n-connector is an n-shifter. D
3. Couplers. A set {Xx,. , Xr} is an x-packing of a set A if X1, ’, Xr are

mutually disjoint x-element subsets of A. An x-packing
@(A)/16 (or, equivalently, #()-> @(A)/16x).

If G is a network and X a set of inputs of G, let G(X) denote the set of outputs
of G reachable through routes from inputs in X.

An (/,/)-networks G=(V,E,A,B) is an (l, x, y )-coupler if, for every tight x-
packing {Xx,..., X} of A, there exists a tight y-packing {Y1, Ys} of B
such that, for every 1 _-</" -< s, there exists 1 <- <- r such that Y. _c G (Xi).

If G is an (/, m )-network and H is an (m, n )-network, let GoH denote an
(l, n)-network obtained by identifying the outputs of G with the inputs of H in any
one-to-one fashion (to become vertices that are neither inputs nor outputs of G oH).

LEMMA 3.1. If G is an (l, x, y)-coupler and H is an (l, y, z)-coupler, then G oH
is an (l, x, z )-coupler.

Proof. The proof is immediate.
An (m, m)-network G is a strong (m, x, y)-coupler if, for every m/2 <- <- m, each

(l, /)-network obtained from G by deleting m -l vertex-disjoint routes (together with
all edges incident with vertices on these routes) is an (l, x, y)-coupler.

LEMMA 3.2. If G is a strong (m, x, y )-coupler and H is a strong (m, y, z )-coupler,
then G H is a strong (m, x, z)-coupler.

Proof. The proof follows from Lemma 3.1. [21
LEMMA 3.3. Let X denote the number of successes among n trials that succeed

independently with probability p. Then

(3.1) (X> 2np) <_- (1/4)
"p

and

(3.2)

((" ") means "the probability of... ").
Proof. For (3.1), we may assume p < 1/2, for otherwise (X> 2np) 0. If

J0 ifX=<2np,
Y / 1 if X > 2np,

then (X>2np)= g’(). If Z Tx-2"p (where T > 1 is a parameter to be chosen
later), then <- Z and so 8’() <- g" (Z). Thus it will suffice to estimate g’(Z).
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Since X is the sum of n independent random variables that assume the value 1
with probability p and the value 0 with probability 1-p, Tx is the product of n
independent random variables that have expected value pT + 1-p. Thus,

g’ (Z) (pT + 1 p)nT-2nr’.

Choosing T 2(1 -p)/(1 2p) and using the inequality 1 + 0 <=e yields (3.1). A similar
argument yields (3.2). 13

PRoeosi:orq 3.1. If
tn

512x In rn <= y =<-,
then there exists a strong (m, x, y)-coupler of depth 1 and size at most 32my/x.

Proof. Let
16y
X

and let G (V, E, A, B) be the random (m, m)-network K",,,(p) (an (m, m)-network
of depth 1 in which each of the m2 potential edges is independently present with
probability p). We expect m2p 16my/x edges in E, so

4(E)> < -<-
-4’

by Lemma 3.3. Thus, it will suffice to show that

(G not a strong (m, x, y)-coupler)-<,1-.
There are at most 4" (/,/)-networks F obtained from G by deleting m-l vertex-

disjoint routes (together with all edges incident with vertices on these routes). It will
thus suffice to show for m/2 <= <= m and F K,t(p) that

1
(F not an (1, x, y)-coupler)=<4"+

There are at most <-m" minimal tight x-packings {X1,... ,Xr} (where
r Ill 16x of the inputs of F. Thus, it will suffice to show that

1
(F not an (I, x, y)-coupler for ) =<

We shall consider each set Xi in turn. For each set Xi, we shall attempt to construct
a set Y containing y outputs, disjoint from all previously constructed sets Y1, , Y-
and satisfying Y F(Xi). If we show that

(no Y. for X) =< (e2-)
then the probability of fewer than s [l/16y] successes among r trials will be at most

2r[ (e2-)Y] < 2[ (e2-) Y]
/2

=< [4 (e2-)Y]//32x -< [4 (e2-) y]
<= 4" <= 4" e -"y/a56x < 4" e

"/64x

1--2" In

--4"+ira".
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To construct Y., we shall consider each output of F that is not in Y1U. U Y_I
in turn (there are at least l-sy =>//2 >-m/4 such outputs). For each such output, we
shall attempt to find an edge joining it to an input in Xi. The probability of finding
such an edge is

1_ (l_p)X => l_e_pX =>p__x
2

(using 1-0-<e- <--1-0/2 for 0<-0 <-- 1). Thus, we expect at least (m/4)(px/2)=2y
successes and the probability of fewer than y successes is at most (2/e)y, by Lemma
3.3. E

COROLLARY 3.1. If

and

5121nm <-x

then there exists a strong (m, x, xk-)-coupler ofdepth k -2 and size atmost 32(k -2)rex.
Proof. The proof follows from Lemma 3.2 and Proposition 3.1. E
4. Upper bound. An (n, n)-network is an (a, b)-partial n-connector if, for every

a-assignment P, there exists an (a- b)-assignment Q_P and a state satisfying Q.
If Q and H are (n, n)-networks, let GIIH denote an (n, n)-network obtained by

identifying the inputs of G with the inputs of H in any one-to-one fashion (to become
the inputs of G[IH) and identifying the outputs of G with the outputs of H in any
one-to-one fashion (to become the outputs of GI[H).

LEMMA 4.1. If G is an (a, b)-partial n-connector and H is a (b, c)-partial n-
connector, then GIIH is an (a, c )-partial n-connector.

Proof. The proof is immediate. E
LEMMA 4.2. Let L be an l-element set and let be a collection of subsets of L

such that if Y andX
_

Y, then X . If contains more than

2-2 (2/x)
(2x)-element subsets ofL, then it contains a tight x-packing ofL.

Proof. Let Y be a random uniformly distributed (2x)-element subset of L, then

(Y )> 2-2.
Let be a maximal x-packing contained in . If is not tight, then

<
=16

and

(4( Ugh) >x) <-2 16 <__2-2x.
Thus, there exists a (2x)-element set Y @ for which 4 (Y ’1U) <- x. Then Y U
contains an x-element set that can be added to g to yield a larger x-packing, contra-
dicting the maximality

PROPOSITION 4.1. If
512k(2 In 2n)k-1 <-m <-n,
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then there exists an (m, m/2)-partial n-connector of depth k and size at most 64(k 1).
n(2m In 2n)1/k.

Proof. Set

x [(2m In 2n)X/k].
Then 512 Into =<x and Xk-l<=m/16, and by Corollary 3.1, there exists a strong
(m, x, x k-1)-coupler G of depth k 2 and size 32(k- 2)mx.

Let

8x

and let H=(V, E,A,B) be the random (n, n)-network K.,m(q)oGoK"*,.(q). We
expect 2nmq 16nx edges in K..,. (q) and K"*,. (q) together, so

(=(E)-> 32(k 1)nx) --< (1/4)
16nx

by Lemma 3.3. It will thus suffice to show that

(I-I not an (m, m/2)-partial n-connector)<-1/4.
There are at most nZ"*/4 m-assignments P. Thus, it will suffice to show that

(I-I not an (m, m/2)-partial n-connector for P) <- n -z"*.
We shall consider each of the m requests in P in turn. For each request (a, b),

we shall attempt to construct a route, vertex-disjoint from all previously constructed
routes and satisfying the request (a, b). If we show that

1
(no route for (a, b))<- 4,4n

then the probability of fewer than m/2 successes among m trials will be at most

2"*(4)
"*/2

-zm--n

The probability that there is no route for (a, b) is the probability that there is no
route in the random network l=Kx,(q)oFoKt,x(q), where m/2<-l <-m and F is an
(1, x, xk-1)-coupler. Let denote the random number of outputs of Kl,(q) reachable
through routes from the input of K,(q), let rt denote the random number of outputs
of Kl,l(q)oF reachable through routes from the input of K,t(q)oF and let " denote
the random number of inputs of K,x(q) from which the output of Igl,(q) is reachable.
Then

(no route) <- (no route It/>-x k-x, " >- 2x) + (rt <xk-1)+( <2X)

_-<(no route [rt ->x -a, " > 2x) +(rt= <x’-alc>2x)+(<2x)=

+(" <2x).

The random variables and " have expected value lq >= mq/2 4x, so

(<2x) (" < 2x) < =16n 4
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by Lemma 3.3. Furthermore,

(noroute It/>x k-x, >2X)<(I--xk-)/( )
\//\/2X2X

1
<- e -2xt/l e-2X k/, ____< e-4 In 2n

16n 4"

Thus, it will suffice to show that (r/<xk-ll2x)<= 1/16n 4.
Let c6’ be the collection of subsets X of the inputs of F for which (F(X)) < x k-.

Since F is an (l, x, xk-)-coupler, contains no tight x-packing and thus, by Lemma
4.2, contains at most

(2x)-element subsets. Thus,

1
(r <xk-I>2X)<2-2’

--16n 4,

as was to be shown. [3
COROLLARY 4.1. /f

b 512k (2 In 2n)k-1,
then there exists an (n, b )-partial n-connector of depth k and size at most

256k(k 1)n (2n In 2n)/k.

Proof. The result follows from Lemma 4.1, Proposition 4.1 and

., 2_/k 1
<-4k

1<oo (1-2/k)
(using e- __< 1 0/2 for 0 <_- O <_-- 1). [3

LEMMA 4.3. There exists an (a, O)-partial n-connector of depth 2 and size 2an.
Proof. Consider K,,, oKa,,. [3
THEOREM 4.1. There exists an n-connector of depth k and size at most

256k (k 1)n (2n In 2n)Ilk + 2(512)kn (2 In n)k-.

Proof. The result follows from Lemma 4.1, Corollary 4.1 and Lemma 4.3; an
(n, 0)-partial n-connector is an n-connector. [3
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GOSSIPING WITHOUT DUPLICATE TRANSMISSIONS*

DOUGLAS B. WESTf

Abstract. n people have distinct bits of information, which they communicate via telephone calls in
which they transmit everything they know. We require that no one ever hear the same piece of information
twice. In the case 4 divides n, n _-> 8, we provide a construction that transmits all information using only
9n/4-6 calls. Previous constructions used 1/2n log n calls.

The original gossip problem asks for the minimum number of calls permitting a
complete passage of information from each person to every other in some group. The
answer of 2n-4 for n >-4 has been demonstrated in numerous ways, e.g., [1], and
the optimal solutions have been characterized [2], [3]. In [5], we added an additional
requirement, that no one hear his own original piece of information in the course of
the calling scheme. This is impossible to achieve if n if odd, but if n is even, 2n-4
calls still suffice, and [5] characterized these solutions.

Next we can prohibit anyone hearing any given piece of information more than
once. This implies that no-one hears his own information. If n -= 2 mod 4, then whether
it is ever possible to transmit all information under this restriction remains an open
question. (n 6 or 10 can be shown impossible without much difficulty.) For 4 divides
n, H. W. Lenstra et al. [4] provided an inductive construction that succeeds. If
n/4 -k mod 4, they divide the people into three groups of size n/4 + k, n/4 + k and
n/2-2k, each divisible by 4. Forming n/4 mini-groups of four people with two from
one group and one from the other two, they perform three calls on each. This is done
so that in each of the three large groups, all n pieces of information are known by
exactly one person. Then they perform induction. If f(n) is the number of calls used,
this gives f(n) 3n/4 + 2f(n/4 + k) +f(n/2 2k). This is satisfied by f(n) n log n.
(That is exactly the solution if n is a power of 2.)

In this note, we provide an explicit construction for n _->8, using only 9n/4-6
calls. It would be nice to show this is optimal. The best current lower bound is 2n -3
for n > 8, as remarked in [6].

The construction. We begin by dividing the people into n/4 groups of 4. In each
group, we perform four calls in a square so that each knows all four tidbits from his
group. Label the points xo for 1 <-i <-n/4, 1 <= <-4.

Arrange the squares around a circle, with two points on the inner ring and two
on the outer, as in Fig. l a. We will leave the outer points as they are, knowing 4
pieces of information, until the end. The points on the inner ring will accumulate
n -4 pieces in such a way that they can then be matched to the outer points.

Label the points in the ith square Xil, xi2, xi3, xi4, so that Xil and xi2 are on the
inner circle, x1,1 and x,/4,1 will be special points. We perform in order the calls
(xt,2, x2,1), (x1.2, x3,1),"’", (x,2, x,/4-,1) and, also in order, the calls (Xn/4,1, Xn/4--1,2),
(x,/,,,t, xn/4-2,2), , (x,/4,1, x2,2). (See Fig. lb.) In each sequence, four additional bits
of information are involved on each call. For 1 < k < n/4, afterwards Xk, knows all
information in {xij: <- k, 1 <-/" <- 4} and Xk,2 knows all in (xij: => k, 1 <- / -< 4}, x t,t and
x,/4,2 still know the four bits they began with, while x,2 knows everything except

* Received by the editors June 8, 1981. This research was supported in part by the National Science
Foundation under grant MCS-77-23738 and by the Office of Naval Research under contracts N00014-76-
C-0330 and N00014-76-C-0688.

" Mathematics Department, Princeton University, Princeton, New Jersey 08544.
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(a)

(c) (a)

FIG.

{Xn/4,j} and Xn/4,1 knows everything except {xlj}. Note that four points x l,2, Xn/4-1,1,

X./4, and x2,2 already know n -4 pieces of information.
In the third phase, Xk-l, and Xk/x,2 call each other, for 2 <-k <-n/4-1. (See Fig.

lc.) The former knows the "lowest" 4(k- 1) pieces of information and the latter the
"highest" 4(n/4-k) pieces. Together they now know all but {Xk#: 1 <-/<--4}.

Finally, the two inside points, knowing all but {Xk#}, are matched with the two
outside points, knowing only {Xk#}, for 1 <--k <=n/4. This completes the construction.

It is easy to see that no pair of points both knowing any given piece of information
ever speak to each other, so there are no duplicate transmissions, and at the end
everyone knows everything. Summing up the number of calls used in each of the four
stages, we have n + 2(n/4- 2) + (n/4- 2) + n/2 9n/4- 6 total calls.
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ON THE COMPUTATION OF THE COMPETITION
NUMBER OF A GRAPH*

ROBERT J. OPSUT’

Abstract. This paper examines the problem of recognizing competition graphs (niche overlap graphs),
a notion introduced and studied extensively by Cohen [Food Webs and Niche Space, Princeton Univ. Press,
Princeton, NJ, 1978]. Beginning with an acyclic digraph F (V, A), define its competition graph K(F)=
(V, E) by (x, y) E if and only if there exists a w such that (x, w)e A and (y, w) A. A graph, G, is a
competition graph if there exists an F such that G K(F). Roberts [Lecture Notes in Mathematics 642,
Springer-Verlag, New York, 1978, pp. 477-490] studied recognizing competition graphs and, equivalently,
computing an arbitrary graphs competition number, k(G). The competition number, which he showed to
be well defined, is the smallest k such that G LI Ik is a competition graph. In this paper we settle a question
posed by Roberts and show that recognizing competition graphs is NP-complete by reducing it to R-
CONTENT as defined by Odin [Nederl. Akad. Wetensch. Proc. Ser. A, 80 (1977), pp. 406-424]. We also
give bounds on k(G) in terms of R-Content (G) and compute k(G) for the class of line graphs using a
technique similar to that in Roberts.

1. Competition graphs. Suppose F is a food web, a digraph (V, A), where V is
a collection of species in an ecosystem and there is an arc from x to y if x preys on
y. Following a common assumption in the ecological literature we shall assume F is
acyclic. Corresponding to F is a competition graph or a niche overlap graph, G
(V, E), defined as follows: take the vertices of G to be the same species as those of
F and connect x and y with an edge if and only if there is a species w such that (x, w)
and (y, w) are in A, in other words if and only if x and y have a common prey. In
connection with his studies of competition among species, Joel Cohen [1966], [1977],
[1978] has studied the following problem. Given a competition graph G (V,E),
what is the smallest k so that we can assign to each vertex x of V a box B(x)
(generalized rectangle with sides parallel to the coordinate axes) in Euclidean k-space
so that for all x # y in V,

{x,y}sE iff B(x)f’)B(y)# .
This smallest k is called the boxicity of G. The concept of boxicity was introduced by
Roberts [1969], and has since been studied by Gabai [1974], Trotter [1979], Cozzens
[1981], and Cozzens and Roberts [1981], [to appear].

Cohen has observed that almost all competition graphs arising from actual
ecosystems have boxicity 1. In studying this observation, Roberts [1978] studied the
problem of recognizing competition graphs. This is the question we study here. We
shall improve upon some of Roberts’ results, give a counterexample to one of his
conjectures, and show that the problem of recognizing competition graphs is an
NP-complete problem. We shall also show that the problem of recognizing competition
graphs is tractable for large families of graphs, in particular line graphs.

2. The competition number. Let us note that in an acyclic digraph there is at
least one vertex which has no arc out of it (out-degree 0). Hence a necessary condition
for a graph to be a competition graph is that some vertex competes with no other,
i.e., there is a vertex which is isolated. It turns out that if enough isolated vertices are

* Received by the editors June 18, 1981, and in revised form August 3, 1981. This research was
supported by the U.S. Air Force Office of Scientific Research under contract AFOSR-80-0196A to Rutgers
University.

t Energy Information Administration, Department of Energy, Washington, DC 20461.
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added to any graph, it becomes a competition graph. Therefore graphs of arbitrarily
large boxicity are competition graphs and hence Cohen’s finding becomes even more
significant.

To see that adding isolated vertices is sufficient for any graph G (V, E), let
e ILl, We build a food web F on V t.J{x: c E} by orienting an arc from the
endpoints a and b of a to x. Then it is easy to see that G Ie is the competition
graph for F, where G t.J Ie means G plus e isolated vertices. Following Roberts [1978]
we can now define the competition number of a graph, k(G), as the smallest k such
that G Ik is a competition graph. The problem of characterizing the class of competi-
tion graphs reduces to finding k(G) for all graphs. Roberts was able to give some
results on competition numbers. We restate some of them here. Let n(G)= V(G)I
ande(G)=lE(G)l.

PROPOSITION 1. If G is a graph without triangles (cliques of size 3), then k (G) >-

e(G)-n(G)+2.
A graph G is called a rigid circuit graph if G does not have Z,, a circuit of length

n, n > 3, as a generated subgraph.
PROPOSITION 2. Every rigid circuit graph has k(G)<-1 with equality if and only

if G has no isolated vertices.
COROLLARY 3. Every interval graph (a graph of boxicity <_-1) has k(G)<-_ 1.
PROPOSITION 4. IfG is connected, n (G) > 1, and G has no triangles, then k(G)=

e(G)-n(G)+2.
Roberts also developed a heuristic algorithm which gives a bound, m, on k(G)

by constructing a food web whose competition graph is G (_J I,,. The algorithm works
on an ordering P (Vl, v2,’" ’, v,) of the vertices of G. He conjectured that this
bound, minimized over all orderings of the vertices, was sharp.

We improve upon Proposition 1 in 3 and obtain other useful bounds. In 4,
we describe Roberts’ algorithm and then present a counterexample to his conjecture.
Section 5 deals with the intractability of computing k(G) while in 6 we show that
for line graphs k (G) is easily calculated. (The line graph, G, for a graph G* has vertex
set E(G*) with two vertices in G adjacent if and only if the corresponding edges in
G* have a vertex in common.)

3. Bounds. In this section, we derive simple bounds on k (G) which will be useful
later. We improve upon Roberts’ result as stated in Proposition 1. Let (G) be defined
as the least number of cliques which cover the edges of G. Then for triangle-free
graphs e(G)= i(G) so we could write the inequality as k(G)>=i(G)-n(G)+ 2. In this
form we will show that the proposition remains true for arbitrary graphs. The proof
is similar to the one Roberts gave for Proposition 1.

PROPOSITION 5. For any graph G, k (G) >- (G) n (G) + 2.
Proof. Let n n (G), (G), and k k (G). Suppose that G t.J Ik is a competition

graph with corresponding food web F. According to Corollary 10.1a of Harary,
Norman, and Cartwright [1965], we can assign the integers 1, 2,..., n /k to the
n + k vertices of F so that every vertex gets a different integer and every arc goes
from a lower number to a higher number. In particular, it follows that the vertex
labeled 1 has no incoming arcs and the vertex labeled 2 has at most one incoming
arc. Consider the set P={3,4,...,n+k} and for each jP the set Kj=
{x" (x,/’) A (F)}. Then, since G (.J Ik is the competition graph for F, each Kj is a clique
of G. Furthermore, [_JpE(K) must cover E(G). Hence i(G)<=lPl=n+k-2 or
k (G) >- i(G) n (G) + 2. Q.E.D.

Roberts went on to prove that if G is connected, triangle-free and nontrivial
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(]V(G)I> 1) then the bound is sharp. Unfortunately this result does not hold in the
general case as can be seen by taking G to be K,, the complete graph on n vertices.
For k(G)= 1 while i(G)-n(G)+2= 1-n +2=3-n.

We can also get an upper bound on k(G) involving i(G) by refining the method
we used to show that k(G) is well defined.

PROPOSITION 6. For any graph G, k (G) <- (G).
Proof. Let i(G) and Kx, K2,"" ", gi be a collection of cliques which cover

E(G). Build a food web F on the vertices of G t3I as follows: let the additional
isolated vertices be labeled xi, j 1, ., and include an arc from the vertices in Ki
to xi. Then F is acyclic and G t_J I is the competition graph for F. So by the definition
of k(G),k(G)<-_i=i(G). Q.E.D.

For any graph H, O(H) is defined to be the smallest number of cliques that cover
the vertices of H. Let the open neighborhood of v in G be denoted by

N(v) {x e V(G): {x, v}eE(G)}.

PROPOSITION 7. For any graph, k(G) >-min O[N(v)].
Proof. Let k k (G) and F be a food web such that F is a competition graph for

GIk. Let the vertices of Ik be labeled X l, X2,’’’,Xk. Consider F’=F---
{x l, x2," ", xk}. Since F’ is acyclic there exists a vertex, z, such that the outdegree of
z in F’ is 0. Hence all the arcs from z in F must go to the vertices in Ik. But this
implies that N(z) _K, [.J K2 [.J [,.J Kk where Kj {w" (w, xj)eA(F)}. Hence the Ki’s
form a clique covering of the vertices of N(z). Therefore, mino O[N(v)]<-O[N(z)] <-
k. Q.E.D.

4. Roberts’ algorithm and a eounterexamlfle. As mentioned above, Roberts
[1978] developed an algorithm which gives a bound, m, on k(G) by constructing a
food web whose competition graph is G I,. The algorithm operates on the ordering
of the vertices of G, P (Vx, v2,’’ ", v,). Here, we will describe the algorithm, and
then show the resulting bound is not sharp. In order to describe the algorithm we will
need some notation. N(v), the closed neighborhood of v, is defined as:

(v) {x V(G). {x, v}E(G)}U{v}.

We will also use N(v) for the subgraph generated (induced) by this get of vertices.
Additionally, GAa will denote the subgraph generated by vertices of G other than
a, less the edges of N(a).

The basic idea is that we build up a food web F in stages, one corresponding to
each vertex v of G. At each stage, we have a list Ai of vertices of G which could be
used as prey in the food web. We use up vertices in A first, and then add new vertices
not in G as prey to account for the competitions of vj. At the stage corresponding to
v, we consider a covering of the edges of N(v) by cliques. Corresponding to each
clique K in this covering, we add arcs from vertices in K to a common prey taken
from either A or added as a new vertex. This accounts for all competitions in K. In
later stages the competitions accounted for in N(v) are ignored. At the last stage, we
count up the number of new vertices added. If there were m, we have a food web
whose competition graph is G [.J I,,.

The details of each step are now outlined.
Step O. Set G G, A QS, ] 1. Let F have vertex set V V and arc set

BI=.
Step 1. Calculate i(N.(v)) h, where N(vj) is the closed neighborhood of vi in O,

and let K, , Kh be an edge covering of/V.(v) with v K for s 1, , h.
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Step 2. If A , add arcs from the vertices in K,, s 1,..., h, to a different
vertex a, of A until either all the cliques K,..., Kh have been accounted for, or
you run out of vertices in A.

Step 3. If A or A was exhausted by Step 2, add arcs from the vertices of
the remaining cliques, KIAI+I,"’" Kh, to new isolated vertices, one for each of the
remaining cliques. Set A+x {v} and go to Step 5.

Step 4. If A was not exhausted by Step 2, let A+ equal those vertices of A.
not used in Step 2 plus v.

Step 5. Let F.+x have vertex set V+ V. kJ all vertices added in Steps 2 and 3,
and arc set B+ BU all arcs added in Steps 2 and 3.

Step 6. If /= n, output food web F+. If not, set G+I GAv, ] =/" + 1, and go
to Step 1.

An illustration of the algorithm is given in Fig. 1.
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The proof that the construction does produce a food web whose competition
graph is G t.J I,, where m is the number of vertices added, can be found in Roberts
[1978]. Let us denote the number, m, of additional isolated vertices produced by the
algorithm by re(G, P). Then clearly k(G)<-m (G, P). Roberts conjectured that if we
looked at all the possible orderings of the vertices of G and let re(G) be the least
value of re(G, P), that re(G) would be equal to k(G). We now produce a counter-
example. Consider G and F as in Fig. 2. G D 11 is the competition graph for F and
hence k (G) 1.

b d
d e f

b

x
F

FIG. 2

However, no matter which ordering we choose for the vertices of G, m (G, P)>-2
and so m (G) _-> 2. To show m (G, P) _-> 2 for any ordering, suppose m (G, P) -<_ 1. Then
since i[N(b)] i[N(c)] i[N(d)] i[N(e)] 2 we must begin with a or f. Without loss
of generality let us begin with a a. We must add one isolated vertex to cover the
competitions of a, A2 becomes {a }, and G2 GAa is shown in Fig. 3. Since i[N2(d)]
i[N2(e)] 3, we must choose b, c, or to avoid adding any more new vertices. Again
without loss of generality choose a2 b. Then a is used to account for N2(b), A3 {b}
and G3--G2Ab is shown in Fig. 4. However, now, no matter which vertex we choose
for a3, i[N3(a3)] 2 and so the algorithm requires that we add another vertex. Hence
m (G, P) -> 2 for any ordering P.

b _d d

c e .
G2 G

3

FIG. 3 FIG. 4

5. NP-ompleteness. In this section we show that the problem of determining
whether a graph is a competition graph is NP-complete. This result implies that there
is little hope for finding an efficient (polynomially bounded) algorithm for this problem
or for computing k (G) for G an arbitrary graph. For a definition of NP-completeness
and its ramifications, see Garey and Johnson [1979]. The proof hinges on the fact
that deciding if for a given graph, G, i(G)<-_i is NP-complete. This was shown by
Odin [1976], who called i(G) the R-content of a graph, and by Ku, Stockmeyer and
Wong [1978]. Let us call the decision problem of recognizing a competition graph,
COMPETITION, and the problem of deciding if i(G)<-_ i, R-CONTENT.

THEOREM 8. COMPETITION is NP-complete.
Proof. It is clear that COMPETITION is in NP since given an acyclic digraph,

F, on V(G) we can check in polynomial time whether G is the competition graph
for F.

To show that COMPETITION is NP-complete, we reduce R-CONTENT to it.
Given a graph G (V, E) for which we are to decide if (G) -< i, consider a new graph
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-i’ G U IV K2,3 U Ii+2. (The unions are disjoint, K2,3 is the complete bipartite graph
with a bipartition of 2 and 3 vertices, and n. H means n disjoint copies of H.)

Our claim is that i(G)<-i if and only if G’ is a competition graph. Hence if we
had a polynomially bounded algorithm for COMPETITION, we could derive one for
R-CONTENT.

To see that if i(G)<=i, then G’ is a competition graph, form an acyclic digraph
F on V(G’) as follows.

Denote the vertices of G by xj,/" 1, , n and label the vertices of the/th copy
of K2.3 as in Fig. 5. Let K1, K2,’", Ki be a clique covering of E(G) which exists
since i(G) <= i. Denote the vertices of Ii/2 as Wl, w2, , w, ao, Co.

Now define the arcs of F as

IvI
A U {(aj, b), (a., ai_l), (a, xj), (b, d), (b, e), (bj, c_),

j=l

(ci, b), (cj, d), (d, e), (di, aj_), (e, c-1), (e, x)}

t_J J {(x, w)).
xiK

One can easily check that F is acyclic and that G’ is the competition graph for F.

a

dj

’c

FIG. 5

To see that if G’ is a competition graph then i(G)<-i, note that i(G’)=
i(G)+IVI" i(K2,3) and that i(K2,3)=6. If G’ is a competition graph then by the
definition of k(G’), k(G’)= 0. By Proposition 5,

Oi(a’)-lV(a’)l/2

=[i(a)/lVI i(K,3)]-[[vl+lvI IV(K,3)l+i +2]+2

i(G)+ 61 vl-I vI- 51vl-i- 2 + 2

=i(G)-i

or i(G) <_- i. Q.E.D.
COROLLARY 9. The computation of k(G) for arbitrary G is NP-hard.
Proof. Determining whether a graph G is a competition graph is equivalent to

asking if k (G) 0. Q.E.D.

6. Line graphs. Despite the result of Corollary 9, the computation of k(G) is
tractable for large families of graphs. We have seen simple formulas for rigid circuit
graphs and connected, triangle-free graphs. In this section we show that when G is
a line graph, the computation of k(G) is also tractable. For the proof we will need
some classical results whose proofs can be found in Harary [1969]. A claw is a g,3,
and "claw-free" means a graph does not have a claw as a generated subgraph.
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LEMMA 10. For each vertex, v, of a line graph, O[N(v)]-< 2. In particular, a line
graph is claw-free.

LEMMA 11. Any generated (induced) subgraph of a line graph is a line graph.
THEOREM 12. I G is a line graph, then k(G)<-2, with equality if and only if for

all vertices, v, of V(G), O[N(v)]= 2.
Proof (by induction on V(G)I). It is clear that when [V(G)I 1, then k(G)<= 1.

So let us assume that IV(G)I n and that for all line graphs on fewer vertices the
theorem holds.

Case 1. There exists a vertex, v, such that O[N(v)] 0, i.e., v is an isolated vertex.
Then G---v (the subgraph generated by all the vertices except v) is also a line graph
and so by the induction hypothesis k (G v) 2. Let F* be a food web on V(G v) U
12 where 12 {a, b } such that (G v) U I2 is the competition graph for F*. Let F* be
the food web on V(G)U{b} with the following arcs:

A (F) A(F*) {(x, a)" (x, a) A (F*)} U {(x, v)" (x, a) A (F*)},

i.e., replace a with v. Then it is clear that F is acyclic and G 11 is the competition
graph for F. So k (G) -< 1.

Case 2. There exists a vertex, v, such that O[N(v)] 1.
Let N(v)={xx, x2,"’,x}. (sO since O[N(v)]:O.) Since G is claw-free,

O[N(xj)---N(v)]<=l. For otherwise if y,z N(xj), y, zC:N(v) and {y,z}C:E(G), then

xi, y, z, v form a claw in G. Now let G’=G{v, xx, x2,’" ,xs-x}. Then by Lemma
11, G’ is a line graph and in G’, O[N(xs)]<= 1. Hence by the induction hypothesis there
exists a food web F* such that G’U Ix is the competition graph for F*. Let I1 {a}.
Construct a food web F on V(G U I1) by defining

A(F)=A(F*)-.-{(w, a)" (w, a)6A(F*)}l.J{(w,x_)" (w, a)A(F*)}
s-1

U U {(xi, xi-x), (y, xi_,.)" y eN(xi)"N(v)}
j=2

[..J {(X1, U)} I,.J {(y, ))’y

t_J {(v, b)} U {(x, b)" x eN(v)}

i.e., replace a with x_, use xi- to account for the competitions of xi not in N(v),
use v to account for the competitions of Xl not in N(v) and add vertex b to account
for the competitions in N(v). Hence G Ix is the competition graph of F and since
F is acyclic, k (G) _-< 1.

Case 3. For each v, O[N(v)] 2.
Let G* be such that G is the line graph of G*.
Choose any vertex v and let v correspond to the edge {c, fl} in G*. Let N(v)=

{x x, x2," , x, y,. , y,} where x corresponds to edge {c, 6i} and Yr corresponds to
{/3, r,}. Then N(x).l(v) is the clique K {w" w {6i, err} for some ot}. In particular
in G’=G’--{v, xx,... ,x_}, O[N(x)]<=l. Since G’ is a line graph, the induction
hypothesis implies there is a food web F* whose competition graph is G’UIx. Let
the isolated vertex be labeled a. Then we can build a food web F on V(G U I2) where
I (b, c } with the following arcs:

A (F) A(F*) {(w, a)’ (w, a) e A(F*)} LI {(w, x_a): (w, a) e A(F*)}

s-1

tO {(w, xi-)" w xi or w Ki}
j=2
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U{(w, v)’ w =x or w K}

I.J{(x, b)" ] l, s}

t3 {(y, c)" r 1,..., p} t.J {(v, b), (v, c)}.

In other words, replace a with xs-1, have {xj} U Kj feed on x-l, {xl} t.J K1 feed on v,
and account for the competitions in N(v) with b and c.

It is easy to see that F is acyclic and G U 12 is the competition graph for F, so
k()_-<2.

By Proposition 7, since each vertex of G has O[N(v)]=2, k(G)>=2 and so
k(G) 2. Q.E.D.

Theorem 12 gives us a simple procedure to calculate k (G) for line graphs. Those
without a simplicial vertex, i.e., O[N(v)]= 2 for all v, have k(G)- 2. The other two
cases can be distinguished as follows, k(G)= 1 if and only if either (a) there is no
isolated vertex and there is a simplicial vertex in G, or (b) there is a unique isolated
vertex, w, and there is no simplicial vertex in G w. k(G)= 0 if and only if either
(a) there is a unique isolated vertex, w, and there is a simplicial vertex in G w, or
(b) there are two isolated vertices.

7. Further questions.
1. While we have given a counterexample to Roberts’ conjecture that k(G)=

re(G), is there another procedure that reduces computing k(G) to computing i(G)?
2. Cases 1 and 2 in the proof of Theorem 11 require only that O[N(v)]<=2 for

all v in G. Can the result be strengthened to state that if G is any graph with O[N(v)] <-2
for all vertices v of G, then k(G)-<2 with equality if and only if O[N(v)]= 2 for all
v ? The author conjectures that this is true.

3. Is there a characterization of food webs whose competition graphs have boxicity
-<_1? This might shed some light on Cohen’s findings.
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ALGORITHMS FOR TESTING THE DIAGONAL SIMILARITY
OF MATRICES AND RELATED PROBLEMS*

GERNOT M. ENGELt AND HANS SCHNEIDER

Abstract. A simple algorithm is presented for testing the diagonal similarity of two square matrices
with entries in a field. Extended forms of the algorithm decide various related problems such as the
simultaneous diagonal similarity of two families of matrices, the existence of a matrix in a subfield diagonally
similar to a given matrix, the existence of a unitary matrix similar to a given complex matrix, and the
corresponding problems for diagonal equivalence in place of diagonal similarity. The computational
complexity of our principal algorithm is studied, programs and examples are given. The algorithms are
based on the existence of a canonical form for diagonal similarity. In the first part of the paper theorems
are proved which establish the existence of this form and which investigate its properties.

1. Introduction. In this paper we present a simple algorithm for testing the
diagonal similarity of two square matrices with entries in a field :. Extended forms
of our algorithm decide the simultaneous diagonal similarity of two families of matrices,
the existence of a matrix in a subfield diagonally similar to a given matrix and, if : is
the real or complex field, the existence of a real orthogonal or unitary matrix diagonally
similar to a given matrix. Another modification of our algorithm tests the diagonal
equivalence of two rectangular matrices. There exist extensions for diagonal
equivalence which correspond to the extensions described above in the case of diagonal
similarity.

After the appropriate definitions ( 2), we develop the theory on which our
algorithm is based ( 3 and 4). We show that for A IF"", the set of n n matrices
with elements in :, there exists a canonical form for diagonal similarity. We denote
this form by AF, since it depends on a choice of a spanning forest F for the graph
G(A) of A considered as an undirected multigraph. Further, we give a simple
construction for a diagonal matrix X such that XAX- =At. and we write X
X(A, F, U) since X also depends on a choice of a set of representatives U for the
connected components of F or G(A). Thus, for A, B :"", the matrices A and B are
diagonally similar if and only if G(A)= G(B) and AF BF or, equivalently, HF is a
{0, 1} matrix where H A @)B is the Hadamard quotient defined in [1] or 3. Thus
we have the following simple procedure to test diagonal similarity of A and B"

(1) Check whether G(A) G(B).
(2) If so, choose a spanning forest F for G(A) and a set U of representatives

for the connected components of G(A).
(3) For H A (B, ompute X X(H, F, U).
(4) Check whether XHX- {0, 1}"".

A detailed description of the algorithm and a study of its computational complexity
is given in 5. In 6 we briefly indicate applications which are more fully described
in our technical report with the same title as this paper.

The relationship between cyclic products and diagonal similarity which is crucial
to our theory can be traced back as far as Fiedler-Ptik [4]. Theorems with proofs on
which algorithms may be based are given in [6], e.g. Theorem 3.17, though no actual
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algorithm is to be found in that paper. The cycles used in these papers are of a
restricted type which occur in the evaluation of determinants; i.e., an arc (i,/’) is
traversed only from to/’. In view of this, unless there is an irreducibility condition
on the matrix, any algorithm based on these results requires the determination of the
Frobenius block form of the matrix. For the special problem of diagonal similarity to
a unitary matrix an interesting algorithm of this type is to be found in Berman-Parlett-
Plemmons [1]. The use of general cycles to prove results on diagonal similarity occurs
in [6]. Though the proofs in that paper are geometric and existential, it is these features
which allow us here to develop constructive proofs and algorithms which do not
require the Frobenius block form. The corresponding tool is a spanning forest of an
undirected multigraph, which has already been mentioned and which is simple to
compute. Thus our algorithm appears to have computational advantages.

2. Definitions.
DEFINITION 2.1. Formally, a (simple, directed) graph G is a pair G (L E) of

finite sets with E _I I. The elements of I are called the vertices of G, and the
elements of E the arcs of G. We represent graphs in the usual way, see, e.g., Fig. 1,
where e (1, 2), etc.

e3
2

3

4 5

FIG.

Since this graph will be used as an example several times, we shall call it G*.
Although in Fig. 1 we use arrows to represent arcs, we give the symbols +/" and/"
somewhat different meanings in the text. A link in G is a triple A (i, f,e) where
(i,])E and e =+1.

If e +1, (e =-1) we call the start (end) and/" the end (start) of A. Intuitively,
we may consider (i,], +1) as the arc (i,/’) traversed from to ], and (i,],-1) as the
same arc, traversed from ] to i. Thus it is natural to represent (i, ], +1) by +/" and
(i,],-1) by]i.

A chain in G is a sequence a (A1,." ", At) of links in G for which the end of
Ap is the start of Ap+, p 1,..., s- 1. The start of a is the start of A 1, the end ] of
a is the end of At. We also say that a is a chain from to ]. Our notation for links is
immediately extended to chains, as we illustrate by means of examples from the graph
G* of Fig. 1"

Thus
a =3122, /3 =3122

respectively stand for the chains

((1, 3,-1), (1, 2, +1), (2, 2, +1)),

((1, 3,-1), (2, 1,-1), (2, 2, +1))

from 3 to 2. Observe that a traverses the arc (1, 2), while/3 traverses the arc (2, 1).
Thus the concept of chain formalizes the notion of putting a pencil on a vertex of a
graph represented as in Fig. 1 and moving it in or against the direction of a sequence
arcs to another vertex.
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Let ct (Ax,.. ", As) be a chain in G. We call a a simple chain if the starts of
A1,..., As are pairwise distinct. We call a a closed chain if the start and end of a

coincide. A simple closed chain is called a cycle.
If a =(A1,"" ,As) and /3 =(As+l,""" ,As+t) are chains such that the end of a

coincides with the start of/ then a/ denotes the chain (A1,’’’, As+,). If A (i,/’, +1)
--1is a link then A-1 (i, L-1) and if a is the chain above then a (A 1, A ). It

will also be convenient to regard as the empty chain from any vertex to itself.
DEFINITION 2.2. A subgraph of G (L E) is a graph G’ (I’, E’) such that I’

_
L

E’ _E. We write G’ G. Let F (I’, E’). We call F a forest if F has no cycles. A
maximal forest F contained in G is called a spanning forest, viz. F is a forest and if
F’ is a forest for which F___F’_ G then F’= F. It is well known that every graph
G (L E) has a spanning forest F (I’, E’) and that I’= I.

DEFINITION 2.3. A graph G (/, E) is connected if for each pair of vertices {i,/’}
there is a chain in G from to . (Observe that a graph with a single vertex is connected
since is a chain). A maximal connected subgraph of G is called a component of
G. A connected forest is called a tree, a connected spanning forest of G is called a
spanning tree of G. The components of a forest are trees.

For example, a component of the graph of G* of Fig. 1 is G2* ((4, 5}, {e6}). A
spanning forest of this graph has components G’ ({1, 2, 3}, {el, Ca}) and G2*.

Let G be a graph with components G1, ’, Gt. If i, is a vertex of G,, p 1,. ,
we call U {il, , i,} a set of representatives for G. If F is a spanning forest for G,
then U is also a set of representatives for F. For example U*= {1, 4} is a set of
representatives for (G* and) the spanning forest F*.

If F is a tree and i,/" are vertices in F, then it is easy to see that there is a unique
simple chain in F from to/’. If G is a graph, F a spanning tree for G and e (i,/’)
an arc of G which is not in F, (write e G\F) then there is a unique cycle 3’
(A,A,... ,A) such that (i,/’, +1) and (A,... ,A) is a chain in F. We call this
cycle the canonical cycle for e with respect to F.

3. Main theoretical results. Subsequently, = will be a field and =" the set of all
(n n) matrices with entries in =.

DEFINITION 3.1. Let A, B =". Then A is diagonally similar to B if there exists
a (nonsingular) diagonal matrix X in ="" for which XAX-1 B.

DEFINITION 3.2. Let A z--. Let (n) {1,.. , n }. We define the graph G(A)
(I, E) of A thus:

I=(n), (i,/)E ifai0, i,/=l,...,n.

DEFINITION 3.3. Let A :"" and let a (A1,’’’, As) be a chain in G(A), where
(i, f,, e,), p 1,. , s. Then the chain product r(A) is defined by

If is the empty chain, 7ro(A) 1. If a/3 is defined then ro(A) r(A)Tro (A) and
7r-l(A) r(A)-l. If a is a cycle we call zr (A) a cycle product, etc.

Example 3.4. Let

0 1 2 0 0

30 4 5 0
0 0 0
0 0 0 6

o0 0 0

Then G(A) G*.
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Consider the chains a 3 # 1 --> 2 --> 2, and / 3 # 1 # 2 --> 2. Then r(A)
-1 -1 -1

a13a12a22 and "/r(A) a 13a21a22.
DEFINITION 3.5. LetA :. Let F be a spanning forest for G(A) G. We define

the canonical form Av C C(A, F) of A (with respect to F) thus: For 1 <_-i, ] <_-n,

{01 if (i, j) C: G,
Cij if (i, f) s F,

rv(A) if (i,) G\F,

where 3’ is the canonical cycle for (i, ]) with respect to F.
DEFINrrION 3.6. Let F be a spanning forest for the graph G(A), where A s ="".

Let U {i, , it} be a set of representatives for G(A); cf. Definition 2.3. We define
a transforming matrix X =X(A,F, U) by xi=x(A), where, for/" in the component
Go of G(A), we denote by/3 the unique simple chain in F from ip U to ]. (Thus
xi 1 if/" s U, for then fl .)

Example 3.7. For the matrix A* of Example 3.4, and F* and U* as in Definition

0 1 1 0 0

0
4 0

A*F 0 0 0
0 0 0
0 0 0

X* X(A *, F, U)

1 0 0 0 0

0 2 0

O0 0 0 1
0 0 0

Note that X*A*(X*)-I=A*r. We now prove that this is true in general.
THEOREM 3.8. Let A sg:n,. Let F be a spanning forest for the graph of G(A) and

let U be a set of representatives for G(A). If AF is the canonical form ofA with respect
to F, andX X(A, F, U) is a transforming matrix, then XAX- AF.

Proof. Let C AF.
(i) If (i, f) G(A), then evidently cij O.

(ii) Let (i,/’) e s F, say e s Fp, 1 <_-p-<_ t. Let fli, flj be the unique simple chains
from ip to and/’ respectively. Then either fli fli(i --> f) or fli i(f --> i). Hence either

-1
xi xiaii or xi xja ii It follows that xiaqx- 1.

(iii) Let (i,) G\F. Then the vertices i, f belong to a common component Fp of
F. If fli, fli are defined as above, then we may write fli 8fl and/3 i, where the
chains fli and flj have no common link. Hence

"rr, A a i’rr l A
-1 A -1
r (A aizr, zr, (A xiaiix

The matrix AF is indeed a canonical form for A under diagonal similarity. This will
be shown in the next corollary.

COROLLARY 3.9. Suppose that A,B g:n. Let F be a spanning forest for G(A).
Then the following are equivalent.

(i) A is diagonally similar to B,
(ii) G (A) G(B) and AF BF.
Proof. (ii) ::> (i). By Theorem 3.8, A is diagonally similar to AF andB is diagonally

similar to BF. Hence A is diagonally similar to B.
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(i) => (ii). Let A be diagonally similar to B. Evidently G(A) G(B) and zrv(A)
rv(B) for all cycles 3’ in G. Hence by definition of AF, it follows that AF BF.

We state our next corollary in terms of the Hadamard quotient A(B of two
matrices A, B cf. [1].

DEFINITION 3.10. Let A, B :nn and suppose that G(A) G(B). Then the
Hadamard quotient H A@B is defined by

ai/bi if (i, ) G(A),
hij=

0 otherwise.

It is clear that YAY-I=B is equivalent to Y(A()B)Y- {0, 1}"". Also, a {0, 1}-
matrix is in canonical form. Thus, we obtain our chief theoretical tool as an immediate
application of Corollary 3.9.

COROLLARY 3.11. Let A,B g:"". Let Fbe a spanning forest for G(A), with U a
set of representatives for G (A). The following are equivalent.

(i) A is diagonally similar to B.
(ii) G(A) G(B) and A ()B is diagonally similar to a {0, 1}-matrix.
(iii) G (A) G(B) and (A (B)F is a {0, 1}-matrix.
(iv) G(A)=G(B) and i[X=X(A(B,F, U) then XAX-X=B.
Our algorithm is based on the equivalence of (i) and (iv) of the above theorem.

It rests on the computation of X =X(A E,F, U) and X(AB)X-. Even though
there may be other diagonal matrices Y such that YAY-= B, we emphasize that
either XAX-=B or else A is not diagonally similar to B. We now determine those
Y for which YAY- B.

THEOREM 3.12. Let A,B "". Let F be a spanning forest for G(A) with com-
ponents F1, , Ft and let Ube a set ofrepresentativesfor G(A). Let Y "" be diagonal.
The following are equivalent.

(i) YAY- B.
(ii) G(A) G(B) and, for Fp and ip U, yi yi,xi, where X X(A B,F, U).

-1
Proof. (ii) (i). Suppose Fp. Then ai 0 hence also bi 0 and so ygaiyi bi.

If ] Fp, then yiaiy yioxiaiixy io xiaiix bii.
(i) (ii). Evidently G(A) G (B). Since Fp, there exists a simple chain y from

ip to i. Let H AB. Then YHY- =XHX-. Hence yiov(H)y v(YHY-1)
v(XHX-1) xiov(H)x1. But Xip 1 and Xi v(H). Hence Yi YipXi.

COROLLARY 3.13. Let A, B " and suppose that A is diagonally similar to B.
Let F be a spanning forest for G(A) and U a set of representatives for G(A). The
X =X(H, F, U), where H =AB, is the unique matrix which satisfies XAX- =Band xi 1 for U.

The impact of Corollary 3.13 is this. If A is diagonally similar to B, then the
matrix X which is given by our algorithm and which satisfies XAX-1= B is in fact
independent of the choice of the spanning forest F. Another immediate corollary to
Theorem 3.12 is the following result, proved by a different method in [6, Prop. 2.3].

COROLLARY 3.14. Let A, B "" and suppose that A is diagonally similar to B.
Then the following are equivalent.

(i) YAY- B implies that Y cX(AB, F, U) where 0 # c .
(ii) G(A G(B is connected.

4. Applications.
4.1. Simultaneous diagonal similarity.
DEFINITION 4.1. Let P be an index set, and let A(), B) "", for p P. Then

the families {A(O)" p P}, {B(’)’p P} are simultaneously diagonally similar if there
is a diagonal matrix X "", XA(V)X-= B, for all p P.
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Our algorithm can easily be adapted to test for the simultaneous diagonal similarity
of finite families of matrices. There is no difficulty in proving the underlying theorem
when the index set P is infinite.

DEFINITION 4.2. Let {HP’p P} be a family of matrices in :"". We call the
family semiconstant i it satisfies the following condition:

For q, p P, and 1 </_,/" < n either h (p)ii hii(q) or h,!!P)t’..0Cq) =0.
In this case the supremum matrix $ S(H(p) p P) is defined thus"

For i,/" 1,. , n,

h p) if there exists p P for which h Ip) 0,
sq=

0 otherwise.
THEOREM 4.3. Let {AP)’p P}, {BP)’p P} be two families of matrices in

Then the following are equivalent.
(i) The families are simultaneously diagonally similar.
(ii) (a) G(A(P))=G(BP)), forp P.

(b) If Hp) =AP)()B (p), then {H(P)’pP} is a semiconstant family
matrices.

(c) Let S S(HP’p P} be the corresponding supremurn matrix, and let F be
a spanning forest off G (S). Then the canonical form SF {0, 1

-1Proof. (ii)::), (i). Let XSX-x{O, 1}"". Then either sj=xjx or sj=0, i,/"- (p)1, , n. Hence, for each p e P, h xix or h i O, i, ] 1, , n. It follows that
(p). -1b =xiaq xi i,f= 1, ,n.

(i) ::), (ii). Evidently G(A’))=G(Br’), for p P. By assumption there exists a
diagonal Y :’" for which YAPY-=Br’, for p P. Hence YHrY-={O, 1}"",
for p e P. Thus either h (p)i YY-I or h (P)i 0, 1 < i, /" < n. Hence {H(p)" p e P} is
semi-constant. Let S be the corresponding supremum matrix. It follows that YSY
{0, 1}, but then SF(YSY-X)F e {0,

In order to test whether SF {0, 1}"", we need merely to construct a transforming
matrix X X(S, F, U). Hence we have an effective test for simultaneous diagonal
similarity.

4.2. Diagonal similarity to a matrix with elements in a subgroup. It is easily seen
that all our previous results hold when z is a (multiplicative) Abelian group with 0,
viz. z\{0} is an Abelian group and 0c 0 cO for all c :. In our next theorem we
shall explicitly assume that : is an Abelian group with 0 and : will be a subgroup
with 0. As an example, z can be chosen to be a field and :1 a subfield, e.g., z is the
real field and :x the rational field. In another important example z consists of the
reals (rationals) and 1 of the nonnegative reals (rationals).

THEOREM 4.4. Let g: be an Abelian group with 0 and let 1 be a subgroup with
O. Let A g:". Then the following are equivalent.

(i) For some diagonal matrix X
(ii) AF
Proof. (ii) ::), (i). Trivial, since AF (XAX-X)v.
(i) ::), (ii). Suppose that XAX-x g:’". Then for every cycle 3’ of G(A) we have

zrv(Av) zrv(A) zrv(XAX-1)g:x. Since 0, 1 :x, it follows that Av :".
At this point it is appropriate to state an easy result that will be used in 4.3.

With the notation of Theorem 4.4, we observe that H :7" implies that X
X(H, F, U) g:’". The rest of the proof follows from Corollary 3.11.

THEOREM 4.5. Let and g:x be defined as in Theorem 4.4. Let A, B "". Then
the following are equivalent.
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(i) There is a diagonal matrix Y :’" ]:or which YA y-1 B.
(ii) (a) G(a) G(B).

(b) (a ()B)v {0,
(c) A ()B e ’".

(iii) Conditions (ii) (a), (b) hold and
(c) X(A(B,F, U):’" where, as usual, F is a spanning forest for G(A)

and U a set of representatives for G(A).
Thus our algorithm tests, for example, if two real matrices are similar by means

of a diagonal matrix with positive diagonal entries.

4.3. Diagonal similarity to a unitary matrix. We now prove results for real or
complex matrices related to those in [1]. We shall give necessary and sufficient
conditions for a complex matrix to be diagonally similar via a complex diagonal
similarity to a unitary matrix and for a real matrix to be diagonally similar via a real
similarity to an orthogonal matrix. Our results can be stated as one theorem, since a
unitary matrix with real entries is of course orthogonal. We call a matrix Ynonnegative
if all its entries are nonnegative and we write Y >-0.

THEOREM 4.6. Let :=R or :=C, and let A n,. Then the following are
equivalent.

(i) There exists a unitary matrix B : such that A and B are diagonally similar.
(ii) (a) A is nonsingular.

(b) YA- Y-a A *, ]:or some diagonal Y :" where Y >= O.
Proof. (i)::), (ii). Let B ZAZ- be unitary. Then (ii) (a) evidently holds. Let

Y Z*Z. Then Y -> 0. Since ZA-1Z-x (ZAZ-I)- B-x B* (ZAZ-X)*
(Z-X)*A*Z* it follows that YA- Y-a A*.

(ii) ::> (i). Let Z :"", where Z is diagonal and satisfies ZZ*= Y. It is easily
checked that ZAZ- is unitary.

By combining Theorems 4.5 and 4.6 we obtain a corollary on which an algorithm
may be based.

COROLLARY 4.7. Let : or : C, and let A ". Then the following are
equivalent.

(i) There exists a unitary matrix B : such that A and B are diagonally similar.
(ii) (a) A is nonsingular.

(b) G(A-) G(A*).
(c) ffX X(A-(A*, F, U), then X >- 0 andXA-X- A*.

The nonnegativity condition in (ii) (c) cannot be omitted in the above. For let, and let a, b : be positive numbers with a2- b2= 1. Let

A=
b a

Then XA-xX =A* where X=diag(1,-1), so that all other conditions in (ii) are
satisfied. But every real orthogonal matrix is of the form

with c2+d2= 1. Let 3’ be the cycle 1-,2 1. Then zrv(A)>0 and zr(C)-<_0. Hence
A cannot be diagonally similar to a real orthogonal matrix. The matrix A is diagonally
similar to the complex orthogonal (not unitary) matrix

c -id]B=
id c
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Indeed XAX-1= B where X =diag (1, i). The results of this subsection hold for all
fields IF with involution, viz. with an automorphism a- a. The elements in IF of form
qc7 play the role of the nonnegative elements.

/’In’4.4. Diagonal equivalence. Let A, B s IF the set of n x n’ matrices. We call A
diagonally equivalent to B if there exists a (nonsingular diagonal X s IF"", Y s IF"’"’ for
which XA y-1 B.

For A s IF""’ let

0,,,,, 0.,.,

where the orders of the 0 matrices are indicated by subscripts. Let B s IF X s IF""
Y s IF"’"’, where X, Y are diagonal. As observed in [6, p. 212], XAY-1 =B if and
only if ZA/Z-1= B /, where Z X Y. It follows that our theorems have analogues
for diagonal equivalence. The graph G(A/) is in fact the bipartite graph of A; cf. [6].
It follows that our algorithm can easily be extended to test for the diagonal equivalence
of pairs of matrices in IF the simultaneous diagonal equivalence of two families of
matrices, diagonal equivalence to a matrix in a subfield and diagonal equivalence to
unitary matrix, see [1, Thm. 1]. Since only 0-elements are introduced in going from
A to A/ the algorithms for diagonal equivalence are of the same complexity as those
for diagonal similarity. Further theoretical details are omitted.

5. The principal algorithm. Figure 2 is a structured narrative description of an
algorithm to calculate the canonical form and transformation matrix of Definitions
3.5 and 3.6. Figure 3 is a computer implementation of this algorithm in APLGOL
computer language [5].

Numbers are placed on the left-hand side of corresponding steps in the two listings.

PROCEDURE AFCANONICAL&FORM A;
1. INITIALIZE
BEGIN

[1] X(1,2,3,4,5,6,7 n)-i;
[2] FORESTI,2.3,4,5

END;
2. TRAVERSE FOREST
HLE FOREST IS NONEMPY DO

BEGIN
[4,5] Remove an element from FOREST and define TREE

to be a tis whose ont entry I this element;
3. TRAUERSE TREE

REPEAT
[6,71 Remove an element from TREE and set BRNCH

equal to t,hl element
[O] Search khe row indexed bg BRNCH

nonzero elements whose column index Is in FOREST.
Set BRANCHES equal to thl index

9 $F BRRNCHES ZS NONEHPTY THEN
BEGIN

t 0 X(BRNCHES)(BRNCHIBRNCHES) xX(BRgNCH)
Ill,t2] Remove Indices In BRRNCHES from

FOREST and place In TREEI
ENBI

[0’ Search the coluBn Indexed b BRRNCH for
nonzero e temenEs whose ro Index Is In FOREST
and se Branches equal o this Index

[9 IF BRNCHES S NONEHPTY THEN
BEGIN

10 X BRNCHES *X BRRNCH )+ BRgNCHES BRNCH
[ll,12 Remove Indices In BRNCHES

FOREST and place In TREEI
ENDI

[13] UNTil TREE fS EHPTYI
END=

[14] PrJn he diagonal of he transtorml matrix X(1,2,3
[15] Take he Hadamard produc of with o,,e outer produc o

-1 -t
X(1)...X(n) and X(I) X( to form

[16] Prln he canonical form
END PROCEDURE

FG. 2
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LROCEDURE AF*CANONICALFORM A,FOREST TREE,BRANCH
1
2 FOREST PX;
3 IdHILE eFOREST)#O gO

EGIN
4 TREE 1 tFOREST;
5 FOREST1 FOREST;

8EPEAT
BRANCH* 1 t TREE;

6 TREE1 TREE
7 1 TRAUERSE,A BRANCH; ];

1 TRAUERSE,A BRANCH ];
13 (JNTIL e TREE) 0;

END;
14
15, 16 QAFAxX../X;

END P_ROCEDURE
P_ROCEDURE E TRRUERSE UECTOR,BRANCHES;

[8,8 BRANCHES(UECTOR[FOREST]#O)/FOREST;
[9,9’] ZF (eBRANCHES)#O T_HEN

BEGIN
10,10 X[BRANCHES]X[BRANCH]xUECTOR[BRANCHES]eE;
11 11 TREETREE,BRANCHES;
12, 12 FOREST.(~FOREST(BRRNCHES)/FOREST;

END;
END P.ROCEDURE

FIG. 3

Computational complexity. If A is a n n matrix such that G(A) has com-
ponents then the execution of this algorithm results in 6n- 2t storage operations,
n- multiplications or divisions, and fewer then 2n + + n 2 but more then 4n + t- 1
logical operations. Table 1 provides a statement by statement accounting of the
complexity.

Steps 1 and 2 are not included in this accounting since the vectors X and FOREST
can be initialized prior to execution.

Logical operations are simplified by avoiding the concepts used in analyzing
directed graphs. The algorithm involves only straightforward pointer maintenance.
Backtracking and recursive executions is avoided. In addition this algorithm does not
require precomputation of the column numbers of the nonzeros in each row as is the
case in many algorithms in combinatorial matrix theory, e.g., the Duff-Reid
implementation of Tarjan’s algorithm for the block triangulization of a matrix [2].

TABLE

Statement Number of Number of Number of logical
number storage operations multiplications operations

or divisions

(3)
(4)
(5)
(6) n
(7) n
(13)
(9, 9’)
(10, 10’) n-t

(11, 11’) n-t
(12, 12’) n-t
(8, 8’) n-t

n-t

n

n _--< logical op <_- nXn n

Total 6n 2t n 4n + _-< logical op _-< 2n + + n
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6. Applications. We have applied the algorithm of 5 for finding the canonical
form under diagonal similarity to yield the tests shown in Table 2.

TABLE 2

Test Justification

Diagonal similarity of a pair of matrices

Simultaneous diagonal similarity of a
family of matrices

Diagonal similarity of a real matrix to
an orthogonal matrix

Extensions of the three algorithms
above to the corresponding algorithms
for diagonal equivalence

Corollary 3.11

Theorem 4.3

Corollary 4.7

4.4

The first of these algorithms is described in Fig. 4 in APLGOL notation. Detailed
descriptions of some other algorithms are contained in the authors’ technical report.

ROCEDURE A DIAGONALaSIMILARITYaTEST B,HF;
UERIFY G(A G(B)
F ,’,/, (AO (B,O [HEN
EGIN

COMPUTE THE HD6RD OUOTIENT FOR ND B.
HAB+B=O;

COMPUTE THE CANONICA FOR HF
HFCANONICAL FORM H;
ERIFY ALL THE ENTRIES OF HF ARE EITHER ZERO OR ONE

IF / HF 0 [HEN
ECZN

$NT OUT TNE $CONL OE TNE S$UL$TY TNSEORT$ON

N
LSE
T$CES RE NOT $CONLLY S$$L

N
LSE
D THE CRHS OF THE T$CES E UNEqUaL

ND OCEBURE
FIG. 4

REFERENCES

[1] A. BERMAN, B. N. PARLETT AND R. J. PLEMMONS, Diagonal scaling to an orthogonal matrix, this
Journal, 2 (1981), pp. 57-65.

[2] I. S. DUFF AND J. K. REID, An implementation of Tarjan’s algorithm for the block triangularization
of a matrix, ACM Trans. Math. Software, 4 (1978), pp. 137-147.

[3] G. M. ENGEL AND H. SCHNEIDER, Cyclic and diagonal products on a matrix, Linear Alg. Appl., 7
(1973), pp. 301-335.

[4] M. FIEDLER AND V. PTAK, Cyclic products and an inequality for determinants, Czechoslovak Math.
J., 19 (1969), pp. 428-450.

[5] R. KELLY AND S. J. WALTERS, APLGOL-2, A structured programming system for APL, IBM PaiD
Alto Sci. Rep. G 320-3318, 1973.

[6] D. B. SAUNDERS AND H. SCHNEIDER, Flows on graphs applied to diagonal similarity and diagonal
equivalence for matrices, Discrete Math., 24 (1978), pp. 205-220.



SIAM J. ALG. DISC. METH.
Vol. 3, No. 4, December 1982

1982 Society for Industrial and Applied Mathematics
0196-5212/82/0304-0005 $01.00/0

NEW METHODS FOR EVALUATING DISTRIBUTION AUTOMATION
AND CONTROL (DAC) SYSTEMS BENEFITS*

JOHN PESCHONt AND DALE ROSS"

Abstract. The decade ahead will be one of heightened concern for costs versus benefits to end users
of electric energy. More than in the past, the distribution planner will be concerned about investment costs,
operating efficiency and reliability of service. The advent of new dispersed generation, storage and control
technologies for distribution systems will change not only the alternatives available to the planner, but also
the planning methods themselves.

This paper summarizes the development of new distribution planning methods. In particular, methods
have been developed for both expansion planning and operations planning of radial distribution systems.
A particular application of distribution automation and control will be for temporary distribution system
reconfiguration during either forced outages or maintenance/construction-related outages. Remotely con-
trolled switches can be used to transfer load among radial feeders during construction, maintenance or
other service interruptionsmthereby reducing or preventing outages for many customers. This paper
describes computerized methods for evaluating the reliability benefits of such advanced distribution systems.

1. Introduction. Distribution reliability has traditionally been a major concern
of power system planning and operations. An EPRI report 1] suggests that reliability
considerations should be included in all distribution system planning due to the fact
that 98% of all customer interruptions are caused by trouble on distribution systems.
Recently CEA recognized the importance of this topic with the publication of an
engineering guide [2] on distribution reliability. A summary of present applications
of reliability evaluation in distribution systems was given at an IEEE panel session
on Distribution System Reliability [3], [4], [5].

The increased interest in distribution reliability is, in part, associated with the
increasing proportion of distribution systems that are operating at considerably higher
voltages than was the practice a decade or two ago. The move to a higher primary
voltage has been reported [3], [4] to increase the potential for more widespread
customer interruptions due to longer feeder lengths. In order to realize the advantages
of higher distribution voltages without degradation in reliability due to longer feeder
lengths, it is necessary to apply new approaches. One approach is to use automatic
sectionalizing under supervisory control, with the capability to close ties to other
feedersuthereby minimizing both the duration and extent of outages [5]. Some utilities
[4], [6] have established design criteria in which load area feed reliability requirements
are a function of load density. At low densities only single feed may be required; at
higher densities, dual feed may be required--with a normally open tie switch to a
second source; at even higher densities, automatic changeover to a second feed may
be required.

This paper discusses a recently developed [7] computerized model which can aid
planners in applying new approaches to achieving reliable electric power distribution
systems. The model, called SWITCH, optimizes the reconfiguration of radial feeder
systems during either emergency or planned outages. The SWITCH model can be
used by electric utilities for a variety of planning and operating problems, including:

Performing cost/benefit studies of proposed schemes for sectionalizing and
reconfiguration of radial distribution systems.

* Received by the editors June 18, 1981. Portions of this paper were presented at the 1980 Reliability
Conference for the Electric Power Industry, Madison, WI, May 1980, and at the 140th meeting of the
Edison Electric Institute Transmission and Distribution Committee, Oklahoma City, October 1979.

t Systems Control, Inc., 1801 Page Mill Road, Palo Alto, California 94304.
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Developing operating plans for the use of switches to reconfigure feeders during
planned outages (such as for maintenance or construction).
Performing comparative evaluations of the reliability of service provided in
different portions of a utility’s service area to different classes of customers.
Planning remote control systems and other future distribution automation
functions.

The capabilities of the SWITCH model have been demonstrated in a variety of
case studies. Some of the case study results point very positively to its usefulness:

Several SWITCH case studies indicated that automatic switching has the poten-
tial to reduce customer-hours of interruption by 20% to 90% depending on
the nature of the initiating fault.
The computational efficiency of the model is quite good--complex contingencies
can typically be evaluated using less than 30 sec. of computer time.

2. Overview ot the evaluating method (the SWITCH model). Given a geographic
area served by one or more substations having many radiating feeders, the planner
is interested in determining the merits of different sectionalizing and switching schemes.
A general procedure for doing this is depicted in Fig. 1. The procedure systematically
examines the effects of circuit reconfiguration to each of a set of selected component
outage contingencies. The set of contingencies can be either exhaustive or a statistical
sample from among all contingencies. By running through this procedure twice, one
can evaluate the reduction in outage consequences attributable to the switching
capability.

The key element of the general procedure is an optimization program. This
program, called SWITCH, determines how best to use the available switches to
minimize outage consequences. The objective of SWITCH is to obtain a sequence of
reconfigurations that minimize the number of unserviced customer hours/unserviced
energy during the period when a fault (contingency) is being isolated and repaired.
The energized network must satisfy:

demands of connected loads,
current capacities,
voltage limits.

A sequence of reconfigurations is found because the following general seven-step
scenario is assumed to apply to each fault occurrence. These seven steps are simulated
via the SWITCH procedure.

Step 0. The first protective device (e.g., sectionalizer, recloser) above the fault
trips, deenergizing all loads below the device.

Step 1. The fault is isolated using remotely controlled switches as follows" (a)
open remote switches below the fault; (b) if protective device can be
remotely controlled, then further isolate the fault by opening the first
remotely-controlled switch above the load and closing the protective
device. Loads between the protective device and remotely controlled
switch above the fault are not serviced.

Step 2. Loads that are both below the isolating switches of Step 1 and below the
fault can potentially be reconnected at this time using remotely-controlled
switches. The reconfiguration optimization algorithm (to be discussed
below) is used to determine the load to reconnect so as to satisfy the
current capacity and voltage limit constraints for the entire network. This

"below" means further from the source, while "above" means closer to the source.
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is the "Stage 1" reconfiguration of three reconfigurations that occur.
Step 3. The fault is isolated further using both manually and remotely-controlled

switches. Manually-controlled switches immediately above the fault and
below the fault are opened.

Step 4. Unserviced load-points can potentially be reconnected at this time using
remotely-controlled switches. The reconfiguration optimization algorithm
is used to determine which load-points can be reconnected and still satisfy
the system constraints. This is the "Stage 2" reconfiguration.

Step 5. Both remotely and manually-controlled switches are now employed to
reconnect load using the reconfiguration optimization algorithm. This is
the "Stage 3" reconfiguration.

Step 6. Following the repair of the fault, the network is returned to its initial
configuration.

Inputs:
’i

Feeder configuration
Switch-types and location
Loads and customers

Component outage rates and repair tim

Outage

Ico?nti__nge2c"-isr
.._1 Select contingencies

Switch

Find optimal reconfigurations
for contingency

No

Yes

Evaluate expected
consequences due
to contingency

Summarize
outage consequences

FIG. 1. General procedure for evaluating reliability benefits of manual or automatic switching.
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Figure 2 depicts how the number of customers on outage, for example, diminishes
with each step of the SWITCH procedure. The times Ti taken for each step are a
function of the speed with which the manually- and remotely-controlled switching
operations can be performed. In Fig. 2, the area between the "staircase" and the
"without reconfiguration capability" characteristic is the customer-hours saved by the
switching operations. If this and/or the corresponding savings in unserviced energy
are monetized--the SWITCH procedure is seen to be the basis of cost/benefit method.
The reliability benefits of manual and automatic switches can be compared with their
costs. If this is done for all selected contingencies, per Fig. 1, the total net benefit for
the distribution system can be estimated.

Number of
customers
unserviced NC To

/
NCT2

Without reconfiguration capability

NCT3

NCT4

NCT5

FIG. 2. Example of number of customers unserviced during switch procedure.

Time

3. Detailed logic within the SWITCH model. The benefits of advanced distribu-
tion control systems stem from their capability once a power outage has occurred to
reservice as many utility customers as is feasible as quickly as possible. Decisions must
therefore be made regarding:

which unserviced loads to transfer to energized feeders,
which unserviced loads to leave unserviced if it is not feasible to reservice all
unserviced loads.

The techniques for making these decisions are outlined below.

The reconfiguration optimization algorithm. As described previously, emergency
reconfiguration to a fault is assumed to take place in three stages. The basic optimiz-
ation problem to be solved in each stage is that of using the system’s switches (viz.,
those available in that particular stage) to perform a radial reconfiguration that
minimizes a weighted sum of the unserviced cutsomer-hours and the unserved energy
and that satisfies the emergency voltage and current constraints.
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Inputs:
Initial subtree
connected to source
List of unconnected nodes that potentially
can be serviced
Emergency constraints
Branch data
Switching times

Reconnect as many unconnected loads as poss-
ible using tie branches and form a spanning tree.

Generate tree list and evaluate initial tree. Put
solution on top of N-best list.

Yes
Exit

Pick best unmarked solution from N-best list
and identify as "active" network. Mark solution
on N-best list.

Determine the number of each type of candidate
(accept, transfer, shed) to be performed.

For each candidate performed, evaluate new tree
and insert on N-best list if appropriate.

Yes

Yes

No

Increase

Unmark, recalculate
and resort N-best list

Yes nodes

next stage

FIG. 3. The recon]iguration optimization algorithm.
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The algorithm that is used to perform the reconfiguration optimization (for a
given stage) is depicted in Fig. 3. The material below explains the logic depicted in
the figure.

The optimization algorithm starts with an initial radial reconfiguration that recon-
nects as many of the unenergized nodes as possible without regard to the constraints
on voltage or current. Before creating additional reconfigurations, the algorithm
computes an objective function value OBJ for the initial reconfiguration. That is"

(1) OBJ 3" VALINF+VALSW,

where VALINF is the value of the "infeasibility" of the initial reconfiguration and
VALSW is the reconfiguration value (i.e., a measure of the unserved energy/customer
hours resulting from this reconfiguration). VALINF is given by:

(2) VALINF max (0, -(Ii-/.))+max (0, --(Vk- V)),
jB k_N

where B is the set of all energized feeder branches in the reconfiguration and N is
the set of all served nodes. VALSW includes the terms in the unserviced energy/cus-
tomer-hours affected by the reconnection at this stage. Now the total (i.e., including
all stages) objective to SWITCH is to minimize

5

(3) Z [aNC, +/3UP,]T,
i=0

where
NCi number of customers without service during step i,
UPi unserviced power during step i,

Ti time it takes to reconfigure for step i;

c and/ are constants reflecting the importance the planner places on unserviced
customers-hours and unserviced energy, respectively. At a particular reconfiguration
stage, only two of the terms in (3) are optimized. For example, at Stage 1 where we
reconnect using remote switches following remote isolation (see Fig. 2) only the terms
with 1 and 2 are affected by the reconfiguration. For this case

(4) VALSW [aNC +flUP]T + [aNC +flUP]T.

Similarly, VALSW for Stage 2 contains terms with 3 and 4, and for Stage 3 it
contains terms with 4 and 5.

The constant 3’ in the OBJ function is used to ensure that a feasible solution is
obtained. The larger 3", the more the algorithm will concentrate upon eliminating
voltage and current constraint violations.

The value OBJ is assigned to the initial configuration, and it becomes the first
entry on an "N-best list" of reconfigurations. The N-best list is a list of the N-best
solutions found so far, where N is an input parameter to the algorithm.

Candidate branches. Once the starting conditions have thus been established,
the algorithm proceeds to alter the network by considering the energizing/deenergizing
of feeder branches on three "candidate branch" lists. (The total number of candidates
to be considered is a user input.) The three types of candidate branches are"

Load-transfer candidate. This is a branch which when energized will connect two
nodes that are already in the serviced network. It would be advantageous to energize
this type of branch if doing so enlarges the set of nodes and branches for which voltage
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and current constraints are satisfied. (Of course, whenever such a branch is energized,
a loop is formed and some branch in the loop must be deenergized in order to maintain
a radial configuration.)

Load-accept candidate. This is a branch which when energized will connect a
node in the already serviced network with one in the set of unserviced nodes. Obviously,
if this connection retains voltage and current feasibility, then it enlarges the set of
nodes that can be serviced.

Load-shed candidate. This is a branch which when deenergized separates two
nodes in the already serviced network--leaving one of them without service. It may
be necessary to disconnect some nodes in order to serve others with feasible voltages
and current.

In order to decide which candidate branches are the better choices, it is necessary
to establish some measure of the advantage obtained by energizing (or deenergizing)
each one. This measure is called the value of the branch. The value of a branch is in
turn computed from voltage and current margins, which are defined below.

Current and voltage margins. The most important variables for identifying candi-
date branches are current and voltage margins. The current margin at a node k is the
amount of additional load that can be added to the node without violating the current
constraints anywhere in the radial system. If there originally is a current constraint
violation in the path from the node k back to the source, then the current margin
will be negative and it will be equal to the amount of load that must be subtracted
from the node k so that the current constraints are satisfied in the path back to the
source. Mathematically, the current margin at node k is given by

MCk min {It -/.},

where Sk is the set of nodes in the path from k to the source;/ is the current in
branch (a (j), f), (a (/’) is the predecessor of node/" in the system or equivalently the
node above/’) and It is the maximum current allowed in branch (a (),/’). The current
margin for all nodes can be calculated recursively, starting at the source, by

MC. min {MC0.), It-/.}.
The voltage margin is similarly defined. It is the amount of additional load that

can be added to a node without violating any of the voltage constraints. If there is
originally a voltage constraint violation, then the voltage margin is negative and is
equal to the amount of load that must be removed from the node in order to satisfy
the voltage constraints. While the current margin at node k only depends on the
currents and current constraints in the branches in that path from node k back to the
source, the voltage margins are affected, in general, by the voltages and voltage
constraints in all nodes in the same limb as node k. Mathematically, the voltage margin
is given by

MVk- min {(V.- Y)/P,.k},
L

where L is the set of nodes in the limb containing k, V, is the voltage at node m,
_V is the voltage constraint and p, is the impedance of the path common to $ and
S (Sk denotes the path from node k back to the source). A recursive algorithm to
calculate voltage margin is described in [7].

The purpose of margins in the method is two-fold"
to specify how much additional load a node can accept without violating a
constraint,
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to specify how much load must be shifted to a different part of the network to
bring the network into feasibility.

Current and voltage margins can be used for both of these; however, voltage margin
is not very helpful for the second purpose. The problem with using voltage margin
to identify loads to transfer is that voltage margin will find the load to be subtracted
from a node to satisfy all the voltage constraints on a feeder. If there are two voltage
violations and the paths back to the source from the nodes violating these constraints
barely intersect, then the voltage margins obtained carry little information.

To obtain information for performing load transfers, a new margin concept is
introduced--the worst-node voltage margin. To define this, we first determine for each
limb a lower bound on the amount of current that must be transferred to cause
satisfaction of the voltage constraints, and we identify the node/’* at which this occurs.
Let

MV min {(V.- V_)/p},
N

j arg min {(V.- V_)/p.},
mNt

where Nt is the set of nodes on feeder and where p,, is the impedance from node
m to the source. Since it is not always possible to transfer load at the node where a
violation is taking place, we are interested in the amount of load that must be
transferred from other nodes to cause satisfaction of the voltage constraint at this
"worst node"/’. We therefore define the worst node voltage margin as the amount
of load in amps that must be removed from a node to cause satisfaction of the voltage
constraint at/’ or

MV (V y)/pi;k,

where is the feeder containing k and pj,* is the impedance of the path to the source
that is in common to nodes/’t* and k.

Other variables used in determining if a load transfer will improve feasibility are
the voltage at a node and the current flowing into a node. These quantities are useful
in determining if energizing a branch will result in a constraint violation at other
points in the network. The manner in which the various criteria are used is discussed
below.

Value ot a load-transter candidate. The value of a load-transfer candidate branch
(k, l) is a measure of the degree to which energizing that branch will:

improve the current margin at k,
not cause the current-carrying capacity of the branch to be exceeded,
improve the voltage at k and
improve the worst-node voltage margin at k.

Functionally, the value VLTkt is specified as:

(5)
VLTa aMc(MCt-Ik, MCt,) + ac(Ia-I,)

+ av(Vt -I(R +pt)- y) + aMv(MVt, MV),

where MCk and MVk are the previously defined margins, Ik is the total current
flowing toward node k from the source direction, V is the voltage at node l, Ik is
the current-carrying capacity of branch (k, l), Rk is the impedance of the entire path
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from node back to the source feeding that node. The functions aMC(" ), ac ("), av(" ),
aMy(" are used as follows (see [7] for details):

aMc(" establishes a value for the degree of current margin improvement.
ac(" establishes a value for the acceptability of the current loading on branch
(k,l).
ay(. establishes a value for the acceptability of the (estimated) voltage at node
l, once load has been transferred there from node k.
aMV(’) establishes a value for the degree of worst-node voltage margin
improvement.

Value of a load-accept candidate. The value of a load-accept candidate branch
(k, l) is a measure of the degree to which energizing that branch will:

provide an acceptable (i.e., positive) current margin at node l,
provide an acceptable (i.e., positive) voltage margin at node I,
load branch (k, I) safely within its current-carrying capacity and
provide an acceptable voltage at node k.

Functionally, the value is specified as"

VLAtc/= ac(I,l -I) + av(V -I,(R -pl)- V_ ),

where the functions ac(" and av(" are those discussed previously.

Value of a load-shed candidate. The value of a load-shed candidate branch (k, I)
is a measure of the degree to which deenergizing that branch will"

eliminate a poor current margin at node k,
eliminate a worst-node voltage margin at node k.

Functionally, the value is specified at:

VLStd ec (MCk) + ev(MVk, MV*k),
where the function ec(" establishes a value for the elimination of a negative current
margin at node k, and the function ev(" establishes a value for the elimination of a
negative worst-node voltage margin at k. These functions are defined in [7]. MCk and
MVk are the previously defined current margin and worst-node voltage margin.
MV*t_., is the voltage margin at the worst node within the feeder that contains node k.

Finding the best reconfiguration. Once all candidate branches have been
identified (that is, have been classified as either a load-transfer, load-accept or load-
shed type and have had their values computed), then ranked lists of each type are
prepared. These ranked lists then become the starting inputs to an algorithm that
forms successive emergency reconfigurations, examining each in sequence until conver-
genc to a best configuration has been obtained.

4. Sample results. The SWITCH evaluation procedure has been tested in a
number of case studies; one of these is summarized below (other cases are in [7]).
The study was of a large distribution system serving a 13 square mile area through a
substation with a load of 58 MW (the area therefore has an average load density of
4.5 MW/square mile). The substation serves 12,400 customers with an 80% residential
load in an urban area; the area also has some small industrial and commercial loads
and a large shopping mall.

One contingency that was selected for study was a fault on branch (CH01, CH02)
in Fig. 4. Assuming that automatic fault location equipment is installed in the system,
2.0 minutes time is taken for locating the fault, after which the remotely controlled
breaker is left open on branch (CH01, Feeder 2), causing nodes CH01, CH02, CH22,
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rco2

FIG. 4. The large distribution system with fault on arc 23.

KS06, KS07, KS08, KS09, KS10, KS14 and BN12 to be unserviced--resulting in
1651 unserviced customers and 128 kW unserviced load. Because the fault cannot be
further isolated, Stage 1 reconnection of load via remotely-controlled switches recon-
nects as many of the unserviced nodes as possible. In this case, nodes KS06, KS07,
KS08, KS09, KS10, KS14 and BN12 can be reconnected by using the remote switching
capability on branch (CH22, KS06) and branch (KS09, BN13). In this stage, node
CH01 remains unserviced due to the open breaker; nodes CH02 and CH22 remain
unserviced due to the fault and the lack of switching capability above node CH22.
Stage 1 has been completed and Fig. 5 shows the resulting configuration. The net
result obtained was that all but three nodes were reconnected using two remote
switches in 1.5 minutes thereby reducing the unserviced customers by 1491 (from
1651 to 160) and the unserviced load by approximately 100 kW (from 128 to 28 kW).

During Stage 2 (further isolation of the fault via manually operated switches)
node CH01 was reconnected after 157 minutes by manually isolating the faulted
branch (CH01, CH02) therefore reducing the unserviced customers by 80 (from 160
to 80) and the unserviced load by 6 kW (from 28 to 22 kW). Only nodes CH02 and
CH22 are left unserviced. These two nodes must be reconnected together because
there is no switching capability above node CH22 to allow them to be separated. The
SWITCH algorithm tries to reconnect them to node KS06 but the resulting configur-
ation is infeasible. Stage 2 has been completed and Fig. 6 shows the resulting
configuration. The net result obtained by SWITCH was that node CH01 was recon-
nected during the remote and manual isolation step. No new switching was performed
during the remote reconnection step.

During Stage 3 (remote plus manual reconnection) again nodes CH02 and CH22
are together reconnected to node CH03 but the resulting configuration is infeasible.
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FIG. 5. The large distribution system with fault on arc 23" after stage 1.

Since there are no other reconnection possibilities, Stage 3 is completed with no
changes to best configuration found in Stage 2. A configuration with all nodes serviced
cannot be found given the present switching capability. Therefore, 80 customers and
22 kW load are left unserviced for 180 minutes (the assumed fault repair time).

Table 1 gives a summary of the number and type of switches operated, the
switching time, the number of unserviced customers and the amount of unserviced
load for each reconfiguration stage for this case.

From the data in Table 1, it can be shown (assuming fault repair is conducted
simultaneously with the reconfiguration) that the reconfiguration saves 4,413 cus-
tomer-hours relative to leaving all customers on outage until the fault is repaired.
That is, for each occurrence of this fault, there would be 4,953 unserviced customer
hours if no reconfiguration capability existed but only 540 customer hours with
reconfiguration. Eighty-nine percent (89%) of the outage time is saved.

Other cases were also examined. For instance, reconfiguration was found to save
52% and 21% of the unserviced customer-hours for faults on branches (FC04, FC05)
and (KS07, KS08), respectively. The magnitudes of these savings were 8,284 and
1,052 customer-hours, respectively.

The computer cpu time (on a UNIVAC 1108) required for the study of the tree
faults was very modest--ranging from 3 to 37 seconds for each fault.

5. Conclusions. A computerized method, the SWITCH procedure, has been
developed for evaluating the reliability benefits of sectionalizing and reconfiguration
capability in radial distribution systems. SWITCH has a number of uses. Our case
studies focused on only one of these--single contingency analysis in systems having
remote and manual switching capability. Space limitations did not permit us to illustrate
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FIG. 6. The large distribution system with fault on arc 23" after stage 2.

TABLE 1
Reconligurations performed at each stage for the large distribution system with fault on arc 23.

No. No.
remote manual Unserviced Unserviced Unserviced Unserviced
switches switches Duration customers load (kW) customers load (kW)
(after) (after) (min) (before) (before) (after) (after)

STAGE
Remote fault

location/
isolation

Remote
reconnection

2.0 1651 127.67 1651 127.67

2 0 1.5 1651 127.67 160 28.41

STAGE 2
Remote/manual

fault
isolation

Remote
reconnection

156.3 160 23.41 80 21.32

0 0 0.0 80 21.52 80 21.52

STAGE 3
Remote/manual

reconnection
Repair fault

0.0 80 21.52 80 21.52
180.0 80 21.52 0 0.0

other potential applicatios of the SWITCH model. However, the two tables below
provide a summary of the various uses to which SWITCH could be placed. Specifically,
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Table 2 summarizes potential applications of SWITCH to operating problems, and
Table 3 summarizes its potential applications to planning problems.

Further details on this work presented in this paper are contained in [7].

TABLE 2
Potential applications of the switch model to the operation of electric power distribution systems

Potential Application Description of SWITCH use

Operation of future distribution
automation and control (DAC)
systems

The SWITCH logic is a prototype that could become software for
real-time control of switches in distribution systems. Such automa-
tion may give reliability benefits (from faster response to faults).

System reconfiguration
during planned outages

SWITCH could be used to establish operating plans for the use
of switches to reconfigure feeders during planned outages (such
as for maintenance or construction).

Load shedding and
restoration

In emergencies, distribution automation and control (DAC) could
be used to drop large blocks of load. During restoration, the
SWITCH type of logic might be used in a DAC system to restore
(via switching operations) service to small blocks of load as called
for in the restoration plan.

TABLE 3
Potential applications of the switch model to the planning of electric power distribution systems.

Potential application Description of SWITCH use

Substation emergency capacity
rating

Many utilities use a two-transformer substation configuration.
Traditionally, maximum emergency load (emergency capacity
rating) considered feasible for such a substation is limited by the
24-hour rating of each transformer. But, by using the SWITCH
model, one can study the transformer outage contingencies and
determine how much additional load can be serviced by using
tie switches to adjacent feeders and by using sectionalizing switches
for emergency reconfiguration. This additional load when added
to the single-transformer capacity yields a less conservativeMand
more accurate--emergency capacity rating for the substation.

Cost/benefit analysis of
distribution automation
and control (DAC)

If the planner can at least establish a range for the monetary value
of savings in customer-hours of outage or unserved energy--then
the SWITCH model can be used to estimate the benefits of
different sectionalizing and switching schemes. One would use
SWITCH to systematically examine the effects of circuit
reconfiguration to each of a set of component outage contin-
gencies. The set of contingencies can be either exhaustive, or a
statistical sample from among all contingencies. By comparing the
customer-hours of outage and unserviced energy for the set of
contingencies with and without the DAC, one can evaluate the
benefits of the DAC. These benefits can then be compared to the
DAC costs.

Cost/benefit analysis of
installation of sectionalizing
and tie switches

Similar to the DAC benefit/cost analysis---except that all switch6s
are assumed to be manually operated.

Reliability analysis The effect of switching capability in the distribution system upon
the duration of customer outages can be studied using SWITCH.
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PRACTICAL APPLICATIONS OF DISCRETE MATHEMATICAL
PROGRAMMING IN EXXON*
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Abstract. Applications of discrete mathematical programming may be subdivided into those involving
economies of scale, those involving mutually exclusive variables and those involving nonconvexity in the
constraint set. Exxon’s earliest successful applications involved investment planning under economies of
scale. Operations scheduling applications are characterized by mutually exclusive variables: these have
been solved satisfactorily by heuristic methods and by branch-and-bound methods running under stream-
lined computational procedures. Nonconvex constraints are found in engineering design problems: these
require artful formulation and specialized computational search procedures. Research is still needed to
endow discrete mathematical programming with interactive computation capabilities, with enhanced analyti-
cal and interpretive options and with extensions into the domain of mathematical programming under
uncertainty.

1. Beginnings. To introduce this topic, I can do no better than to paraphrase a
1958 RAND Corporation paper [1] (see also [2]) by George Dantzig. Figure 1
summarizes part of his paper which enumerates a variety of uncomputable problems
which would become computable if mixed-integer programming proves to be as
successful as linear programming.

EXCLUSIVITY

THE SIGNIFICANCE OF
MIXED-INTEGER PROGRAMMING

GEORGE B. DANTZIG

o DICHOTOMIES (EXCLUSIVE "OR")
N--CHOTOMIES (EXACTLY ONE OF "N")
TRAVELING SALESMAN PROBLEM

ECONOMIES
OF SCALE

o FIXED CHARGE PROBLEM

GLOBAL OPTIMALITY IN
PROBLEMS

NON-CONVEX

NONCONVEX
CONSTRAINTS

CONDITIONAL CONSTRAINTS
(X > 0 IMPLIES Y O)

ORTHOGONAL LATIN SQUARE PROBLEM

FOUR-COLOR MAP PROBLEM
FIG.

* Received by the editors July 27, 1981.
-Communications and Computer Sciences Department, Exxon Corporation, Florham Park, New
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Although Dantzig’s paper gives the appearance of optimism, I suspect that he
wrote it with tongue in cheek. I think he was warning that it would be most remarkable
if a new computational technique would serve to sweep away, at a single stroke, so
many problems which have baffled the best mathematical minds for decades or even
centuries. Experience over the 23 years since his paper’s publication has shown
Dantzig’s caution to have been well founded.

The subdivision of Dantzig’s list into three rough categories is my own; it is
intended mainly to provide some perspective on the nature of the underlying mathe-
matical structures of the various applications he discusses. "Exclusivity" arises, for
example, in ship scheduling: one cannot send parts of a ship to two or more separate
ports without adversely affecting its buoyancy.

Many of our applications, particularly under economies of scale in investment
planning, display nonconvexity only in the objective function. The essential nature of
the computation is the search for a global optimum among the various local peaks.
In such problems, there is generally no difficulty in moving through a sequence of
feasible solutions while travelling from one local optimum to another.

Nonconvexity in the constraint set arises either out of restrictions coming from
the physical sciences or out of regulations devised by the cunning of bureaucrats. I
will provide examples of each. Problems of this sort tend to be among the most
computationally difficult.

1958 was a seminal year in several respects for discrete variable mathematical
programming at Exxon. In addition to the Dantzig paper I have mentioned, the
Gomory cutting plane papers [3], [4], [5], [6], began to appear, and in our own offices,
we began to give serious thought to one of our first plant-scheduling applications.

Figure 2 suggests some of the options available to a scheduler in a plant of this
kind. (This particular plant is a product of my own imagination.) The scheduler’s
primary objective is to maintain an adequate inventory of the various products in the
tanks on the right, so that all deliveries into final demand can be satisfied promptly.
To do this he or she can operate the various processes in different ways and on
different feedstocks. The fundamental nonconvexity of the problem arises out of the
fact that one can operate a given process in only one fashion at a time. This is
completely analogous to my previous statement that one cannot send fractions of a
ship separately to different ports at the same time. An additional element of complexity
is introduced by the fact that the processes are not always decoupled by intermediate
tankage; in the diagram, process D can operate only if process C or process E (or
both) is simultaneously scheduled to receive and handle its product stream.

Operation I in Fig. 2 shows one possible way in which this plant might operate
during a given interval of time. Notice first that deliveries into final demand always
take place out of the product tankage on the right. This diagram suggests that,
considering the inventory levels shown, operation I may be terminated by any one of
three possible events"

Tank 9 may run dry;
Tank 6 may run full;
Tank 3 may run dry.

When an event such as these occurs, the operator must necessarily switch to some
other operation. Another point to note is that because of the absence of an intermediate
tank in this line process D and process C are directly linked in throughput rate. We
suppose that these rates are, in fact, compatible, and that each of the processes shown
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does, in fact, produce product of appropriate quality to be delivered into the particular
grade of final product tankage. Such capacity constraint and product quality restrictions
are a part of the "continuous" portion of a mixed-integer formulation; they do not
generally exhibit any nonconvexity properties of their own.

Operation II is an alternative operation in which there is some degree of inter-
dependence of process throughput rates. This also suggests that there is more than
one way to meet the quality specifications for some of the final products.

Operations I and II suggest, by the status of the final product inventory levels,
that the scheduler is usually under pressure to get the maximum throughput out of
the plant in order to keep up with the rate of deliveries into final demand. Since a
process unit generally goes through an unproductive period during changeover from
one operation to another, capacity in effect is lost during changeover. Thus a so-called
"switching cost" is a part of the objective function. Other cost considerations may
arise from the possibility of producing the same product from different raw materials
or by means of different processes. These considerations result in what may be termed
the "convex" aspect of the scheduler’s objective function.

In Operation III, a measure of "decoupling" is achieved by temporarily idling
process B. Notice that full "decoupling" could be achieved (in the sense that the
throughput rate of each operating process unit could be set independently of all others)
by idling process D and feeding process E out of tank 8. Other things being equal,
the scheduler will generally prefer such a "decoupled" operation, partly because it is
easier to schedule and partly because the units are easier to control when their feed
rates may be set independently. For the same reason, the scheduler will generally
press for more intermediate tankage than is shown in my example. The analysis of
the economic justification of such tankage is an interesting exercise in that it weighs
the "hard" cost of tankage against the "soft" incentives of easier scheduling and
improved process control, with a somewhat nebulous potential for increased through-
put. (Recall that we attained "decoupling" at the cost of idling two of the five process
units, which certainly implies a sacrifice in potential plant throughput.)

When we worked on this problem in 1958 (see Fig. 3), our kit of ready-made
tools consisted of only economic-order-quantity analysis and linear programming.
Nevertheless, we were able to establish most of the solution properties which are
standard today:

A trial schedule consists of a sequence of "operations," together with a duration
time for each.
The objective function is obviously a nonconvex function of the "operations"
sequence, and less obviously a nonconvex function of the duration times.

NOW

A POSSIBLE OPERATING SCHEDULE

TIME
FIG. 3
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. Under conditions of sufficient regularity in demand patterns, and of some
degree of commensurability of the data, some sort of "limit cycle" schedule
can be found which can be used over and over again into the indefinite future.
When the demand is less regular or stochastic, it would appear that the "limit
cycle" could still play a role as a target toward which ad hoc scheduling should
constantly aim to move.

None of these insights were sufficiently concrete for use in the actual plants in 1958.
In 1960, we chanced upon an application which, although it never came to

practical fruition, served to call forth essentially the same three solution techniques
which we see in practical use today. See Fig. 4. At that time (and I am pleased to be
able to say that this is no longer the case) the Canadian province of Alberta imposed
a most ingeniously devised set of rules for bidding on potential crude-producing leases.
The purpose was to reserve for public ownership and/or for possible later sale into
the private sector a significant fraction of the most promising lands for crude produc-
tion. However, this reservation had to be done before actual drilling had shown where
the most promising lands were. On a 6-mile by 12-mile tract, broken up into 1/2-mile
squares as illustrated in Fig. 4, the following bidding rules were imposed:

1. The total bid must include no more than 50% of the squares in the tract.
2. Each block of contiguous squares must be square or rectangular in shape. It

must not exceed 36 squares in area, and its longer dimension must be no
greater than twice its shorter dimension. Block boundaries must fall on the
square boundaries in the diagram.

3. Each leased block must be separated from other leased blocks by at least two
rows of squares, except in cases where two blocks touch only at their corners
(checkerboard).

The bidder’s interest, obviously, is to pick a pattern of blocks which has the highest
possible potential for the discovery of crude reserves, as determined by whatever
geological data may be at hand. The dark contours on this chart represent the current
state of the bidder’s estimates as to where oil is likely to be found.

Figure 4 also shows a plausible bid pattern (which I generated by hand analysis).
Two points are worth noting about this"

If the contour pattern is sufficiently smooth and slow moving in its major
patterns, then the province will have reserved for itself broad corridors into
the interior of the promising areas.
The selection of the most worthwhile blocks is obvious, but the "fine tuning"
of the pattern to attain optimality can be tedious and unrewarding.

I mentioned earlier that this application called forth the three main classes of
solution procedures: the man-machine interactive, the algorithmic and the heuristic
procedures.

On the man-machine interactive level, it is obvious, after a little playing around
with this problem, that the two main factors limiting the hand solution process are
the tedium of redrawing each successive trial bid pattern on paper plus the incon-
venience of summing up the expectations for 144 squares at each trial. Today one
could easily provide these services via a personal computer. But remember that the
time was 1960; this was a clearcut case of a research idea born at the wrong time. If
we had it to do over again in the present day of personal computing and sophisticated
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FIG. 4

graphics terminals, I think that this approach might well have carried the day. In 1960
the required development time just didn’t fit the "acceptability" window.

It may surprise the reader to learn that we could code a Gomory cutting plane
procedure faster than we could set up an interactive graphics terminal, but the fact
was that we were already into the cutting planes research. Here again the result was
that computers had not developed sufficiently to make this approach feasible. We
found that we had to reduce the problem size drastically by making the spacing of
the square boundaries only half as dense, in order to get a solution from the computer.
Such a solution is of "academic interest" only (which is the same as "no interest at
all" to the operating people).

The heuristic approach evolved (as heuristic approaches are wont to do) from
the observation that evaluation of a proposed bid pattern was an order of magnitude
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faster than the process of algorithmic generation of (supposedly) improved patterns.
Thus the proposal" "Why not generate a large population of proposed patterns quickly
by a random process, rather than a small population slowly by a more analytical
process?" Experience with this approach showed that it was rather poor at building
up a good pattern "from scratch," but that it could quite consistently improve on the
best hand solutions submitted to it as a starting point. Proof of optimality is, of course,
out of reach via this approach.

A final comment on the class of applications represented by this example (that
is, the problems involving nonconvex constraints) is that a good deal of craftsmanship
is required to arrive at a formulation which is maintainable, understandable
and computable. In this class of problems, we do not foresee an early passage to
the "black box" type of usage which constitutes a large part of linear programming
practice today.

Up to this point, I have been discussing applications which did not "fly" in the
sense of being put to use by the operating people. The next application proved to be
a real moneymakermin fact, its lineal descendents are still doing good work.

To achieve economical distribution and good customer service in such markets
as heating oil and motor gasoline, it is necessary to ship the products in large carriers
to local distribution points (which we will call "warehouses") and to move them from
there to the final customer in smaller carriers such as short-haul multi-drop tank
trucks. The question is, "how many such warehouses should there be, and where
should they be located?" The answer involves an economic balance between the
distance-dependent costs of transportation and the (mostly fixed) costs of establishing
warehouses at various possible sites. Figure 5, although it greatly understates the
number of sites and routes, nevertheless conveys some impression of the complexity
of the problem.

We used branch-and-bound procedures as proposed by Land and Doig [7] as a
conceptual basis for this computation. The problem lends itself to this approach
because the 0-1 discrete variables are each associated with the existence or non-
existence of a particular warehouse. Once a particular "branch" is chosen, i.e., a
particular subset of warehouses is selected to be open or closed, what remains is a
classical network problem, which can be solved very rapidly. (In any branch-and-bound
procedure, a great many variants of the continuous subproblem must be solved thus,
so it is important that these subsolutions be obtained rapidly and cheaply.)

Figure 5 also serves to illustrate one peculiarity of branch-and-bound procedures:
under some branch selections, the continuous subproblem may have no feasible
solution. In particular, there is no way to supply the customer in the lower left-hand
corner once his one and only warehouse is shut down.

2. Attempts at a general purpose code. I think that these three examples, one
from the scheduling area, one from the nonconvex constraints area and one from the
economies-of-scale area, will suffice to give a general flavor of the discrete variable
applications we generally see. We thought in the early 1960’s that we had done enough
special purpose work in the field, and were thus qualified to produce a general purpose
mixed-integer code. The result was MISTIC, a code for the IBM 360, which appeared
in 1964. See Fig. 6. In the ensuing five years we attempted various applications:

1965: Investment planning under fixed charges;
1965: Compressor-driver selection;
1968" Pipeline optimization;
1969" Investment planning under continuous economies of scale.
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I think it is fair to regard all of these as variants of the economies-of-scale problem.
Certainly process scheduling is conspicuous by its absence. It is significant, I think,
that all these attempts were from the class of problems which is probably easiest to
compute, which has the largest economic incentive and which has the least pressing
deadlines for implementation of a solution. The fact was that MISTIC was implemented
within the framework of a general purpose LP code. Within this framework, each
new "branch" operation meant paging the whole linear programming apparatus out
of memory, making some minor changes in the problem data, and then paging the
whole apparatus back in again. The logistics of data movements within the computer
system tended to bog down the whole process.

1 965

1 965

1 968

1 969

MISTIC’A 1964 (IBM 360) CODE

INVESTMENT PLANNING UNDER FIXED CHARGES

COMPRESSOR-DRIVER SELECTION

PIPELINE OPTIMIZATION

INVESTMENT PLANNING UNDER CONTINUOUS
ECONOMIES OF SCALE

FIG. 6

3. 1970-1980: Code expediting and application insights. During the 1970’s,
we gradually built up a much more confident posture in our mixed-integer
capabilities. I think this is attributable to three factors. First, at the data logistics level
within the code, we have, with KETRON’S help, managed to develop procedures for
making the required minor changes in problem data without paging the whole system
in and out. This has resulted in great savings in computing time. See Fig. 7.

The second factor is the discovery of means by which the user’s insights into the
problem may be used to expedite the tree search in branch-and-bound. Essentially,
this is done by allowing the user to convey information about the model’s structure
to the branching algorithm via the naming conventions used for the variables.

The third factor could be regarded as a "sour grapes" philosophy: we often decide
to be content with a "good" solution which has not been proven computationally to
be optimal. In both of these latter factors, one sees something of the heuristic
philosophy which was so successful in early applications. I personally do not believe
that this means a permanent abandonment of the optimization goal; optimal solutions
offer side benefits of sensitivity analysis and case comparability which cannot be
ignored. But I think we are saying that we would rather settle for a "satisfying"
solution than lose the interest of our users.

With the streamlined capabilities of BLOODHOUND, we are making the rounds
of the traditional applications once more (see Fig. 8) and, I think, getting a little
further with each of them.

The scheduling type applications are still approached in two ways: heuristic
methods such as materials requirements planning, and algorithmic methods such as
BLOODHOUND [6]. (As I suggested earlier, the differences between these methods
are not as extreme as one might suppose; research in MRP is moving toward enhanced
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1970: BLOODHOUND = EXPEDITED
BRANCH & BOUND

FACILE REDEFINITION OF CONTINUOUS NON-CONVEX
PROBLEMS

FLEXIBLE SPECIFICATION OF TREE-SEARCH
STRATEGIES

OFTEN TERMINATED SHORT OF PROVEN OPTIMALITY

FIG. 7

algorithms, and research in mixed-integer methods is moving toward increased heuris-
tic use of user insights. Both are talking about moving into interactive computation
in response to user needs.) At present, we recommend MRP where the number of
potential processes is large and the degree of interaction among processes is small.
Conversely, we recommend MIP when the number of processes is small and the degree
of interaction among processes is large.

Economies-of-scale problems offer no particular difficulty except when the time
dimension is important. I will return to this point in a discussion of research frontiers.

Dealing with constraint nonconvexities is still a craft in formulation and an art
in computation. In general, one must settle for a guarantee only of local optimality,
but any degree of confidence about global optimality must be derived from a priori
knowledge about the application itself.

APPLICATIONS REVISITED

SCHEDULING-TYPE
+ MATERIALS SUPPLY INVENTORIES
+ SHIP SCHEDULING
+ PROCESS SCHEDULING

ECONOMIES OF SCALE
+ CAPITAL BUDGETING
+ FACILITIES PLANNING
+ EQUIPMENT CONFIGURATION

CONSTRAINT NONCONVEXITIES
+ POOLING OF HYDROCARBON STOCKS
+ PROCESS OPTIMIZATION
+ DEVELOPMENT OF CRUDE RESERVOIRS

FIG. 8
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4. Gaps in our knowledge. Being a coordinator and manager of our research
program in computer-based management tools, I find it impossible to be contented
with the present state of our knowledge in this field. Figure 9 shows some of the areas
in which, I believe, our tools need to be improved.

GAPS IN OUR KNOWLEDGE

INTERACTIVE CALCULATIONS

DISCRETE VARIABLES IN CONTINUOUS TIME

PERTURBATIONS AND SENSITIVITY ANALYSIS

OPTIMUM CHOICE OF DISCRETE VARIABLES UNDER CONTINUOUS-
TIME STOCHASTIC PROCESSES

FIG. 9

I have already mentioned our initiatives in the direction of man-machine interac-
tion. Let me make it clear that I do not expect, in general, that such techniques will
lead to cheaper ways of computing optimal solutions. Rather, I hope to see the
emergence of better insights and understanding on the part of the user as to the
fundamental nature of the application. Too often in the past decade we have been so
algorithm-minded that we have encouraged the user to deal with the computer on a
"black box" basis. This leads to a degradation of user competence and to a rapid
evaporation of management confidence in the whole operation.

I mentioned the problem of embedding discrete variable formulations in con-
tinuous time. I know enough about convex formulations in continuous time to realize
how much of the true structure of the optimal solution is obscured by the discretization
of the time dimension. It boggles my mind to think how much distortion we cause by
introducing a new integer variable for the same decision option in each successive
time period! Furthermore, such a practice in an n-period model increases the number
of branches in the tree search by a factor of about 2".

I contend that the greatest power of linear programming lies in its analytical
capabilitiesmfor example, the interpretation of the dual solution, the interpretation
of the inverse matrix and the parametric capabilities. As a close relative of LP, MIP
could have similar capabilities. But these potentialities are rarely mentioned, let alone
exploited.

The last point of this paper is also my foggiest. I assume we are all familiar with
Dantzig’s model for multistage planning under uncertainty. But have we considered
how the structure of the solution will be altered if some of the variables in each period
are restricted to integer values? We all know a few folk theorems pertaining to discrete
variable decision making problems under uncertainty"

The planning horizon under uncertainty is closer than under the corresponding
certainty case.
The effective discount factor under uncertainty is smaller (i.e., implying a higher
effective interest rate) than under the corresponding certainty case.
The identification of the discreteness of integer variables becomes less and less
necessary in remoter time periods in the uncertainty case, whereas it does not
fade out at all in the certainty case.
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May I hope that someone in the reading audience will clothe these ideas with
rigor, preferably within the time-span of my professional career?
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SORTING AND MERGING IN ROUNDS*

R. H)GGKVISTt AND P. HELLt

Abstract. The need for sorting algorithms which operate in a fixed number of rounds (rather than
have each new comparison depend on the outcomes of all previous comparisons) arises in structural
modeling. Since all comparisons within a round are evaluated simultaneously, such algorithms have an
obvious connection to parallel processing.

In an earlier paper (SIAM J. Comput., 10 (1981), pp. 465-472) we used a counting argument to prove
the existence of subquadratic sorting algorithms for two rounds. Here we develop optimal algorithms for
merging in rounds, and apply them to actually construct good sorting algorithms for k rounds, k _>-3. For
example, in k =66 rounds, our algorithm will sort any n-element linearly ordered set with O(n 1"1)
comparisons.

1. Motivation. We shall consider two sources of our problem, one in system
modeling and one in theoretical computer science.

Interpretive structural modeling (ISM) is a technique, developed by J. Warfield
at Battelle Memorial Institute [14]-[17], to provide complex systems with structure.
Typically, this takes the form of introducing a binary ("contextual") relation on the
elements of the system and displaying the relation in some easily understandable form.
The first important step of ISM (after the elements of the system have been identified
and the contextual relation decided upon) consists of forming a "matrix model" of
the system, i.e., the characteristic matrix M of the relation R. (The i,/’th entry of M
is 1 if the ith element is related in R to the/’th element, 0 otherwise.) In this step we
pass from a "mental model" of R (in the mind of a subject or as consensus of a group
of subjects) to the matrix model M. In consequent steps of ISM, not of interest in
this paper, one takes the matrix model M to a "hierarchical digraph" D and perhaps
to a minimal digraph D’ with the same transitive closure as D. Displaying D or D’
as a hierarchy is then useful in the analysis of the complex system. We are interested
in the formation of the matrix model. When the relation R is transitive, such as
preference is usually assumed to be (see [17, p. 295] for a discussion of possible
objections to assuming transitivity in practice), the construction of the matrix M is
facilitated by transitive inference. Warfield 14]-[16] presents an algorithm to construct
M which prompts the subject (or group of subjects) possessing the mental model of
R with queries of the type "Is x related in R to y ?" (for instance, "Do you prefer x
to y ?" or "Does x impact on y ?") Depending on the answer, the algorithm fills in at
least one entry in M (and perhaps more if transitivity can be employed) and decides
the next query to be posed. At the end of this process the matrix M will have been
formed. Clearly, if R is a linear order (or a weak order [9]), the same objective can
be achieved by any of the sorting algorithms based on binary comparisons [7], [8].
(In fact, sorting the elements will yield directly the hierarchical digraph, [17].)

The techniques of ISM have been widely applied [3], [6], [12], [13]. A possible
drawback of the existing methods of ISM, as far as the construction ofM is concerned,
lies in the necessity of submitting the subject (or group of subjects) to a session at a
computer terminal. In some instances the formation of M must be done by correspon-
dence. (For example, that was the case in a recent study of preference among
environmental alternatives [10] where the subjects were representatives of various

* Received by the editors June 11, 1981.
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t Department of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada
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U.S. organizations concerned with the environment.) In such a situation a natural way
to formM is to pose a number of queries (binary comparisons) simultaneously, record
the answers together with any entries implied by transitivity and evaluate the result
to decide on the next set of queries; this process might continue for a number of
rounds, not to exceed a given integer k. We shall describe a method by which this
can be achieved and which is guaranteed to make a reasonably small number of
comparisons.

In what follows we assume that the relation R is a linear order. This corresponds
to strict preference [9] (i.e.,. the subject is not allowed to be indifferent between two
alternatives), and the digraph D depicting R is a transitive tournament. It is not
difficult to see that our results hold when R is a weak order [9]; this is the case of
weak preference, i.e., when indifference is allowed. In this case D is a digraph whose
condensation is a transitive tournament and whose strong components are complete
digraphs (corresponding to the sets of alternatives amongst which the subject is
indifferent).

The fact that our technique depends on evaluating several queries simultaneously
(in parallel) results in an obvious alternative interpretation as an algorithm for several
parallel processors. Parallel processing in comparison problems has enjoyed consider-
able interest [7], [11]; our algorithms are interesting in that they guarantee that only
a constant amount of time will be spent making comparisons. It should be noted,
however, that we ignore not only the time for operations other than binary com-
parisons, but also questions of communication among the processors and between the
processors and the outside environment. Nevertheless, our results are of interest when
analyzing the tradeoff between the time needed for parallel comparisons (i.e., the
number of parallel steps) and the available number of processors.

2. Parallel comparison trees. Because of the differences in the two sources of
our problem, we encounter a difficulty with terminology. We resolve it by resorting,
for the most part, to the language of computer science. Thus, the elements are usually
referred to as keys, queries as binary comparisons and the construction of the matrix
M as sorting. Furthermore, we use a generalization of comparison trees [7] for the
description of our algorithms; a parallel comparison tree allows a number of (not
necessarily disjoint) binary comparisons at each node (cf. Figs. 1 and 2). This is
analogous to the way binary comparison trees are used to describe and analyze ordinary
sorting algorithms [7]: the computation begins at the root with evaluating the com-
parisons indicated; depending on the outcomes a corresponding branch is taken leading
to the next set of comparisons to be made and so on until a leaf is reached yielding
a sorted sequence of the keys (or equivalently a matrix of the relation <). The height
of the tree is the time spent making comparisons (in the worst case), i.e., the greatest



SORTING AND MERGING IN ROUNDS 467

number of parallel steps. Note that parallel comparison trees need not be binary trees.
Figure 1 illustrates the obvious fact that with () processors all (.) comparisons can
be performed in one time interval.

Let for a parallel comparison tree T the maximum total number of comparisons
in any root-to-leaf path in T be cp (T) and the maximum number of comparisons in
any node of T be cn (T). We define SORT (k, n)- min cp (T), where the minimum
is taken over all parallel comparison trees T of height k which sort n keys; similarly,
SORTP (k, n) min cn (T) over the same set of trees T. (Figure 1 implies that

SORTP (1, n) --< SORT (1, n) --< ().)
Evidently, SORT (k, n) is the minimum number of queries needed to guarantee

that for any linear order R on any set of n elements the matrix M can be formed in
k rounds. Similarly, SORTP (k, n) is the minimum number of processors needed to
assure that any set on n linearly ordered keys can be sorted by binary comparisons
so that all comparisons are arranged to take place in a constant time of k intervals.

In what follows we shall state all results in terms of SORT (k, n). Unless stated
otherwise, all evaluations, lower and upper bounds, apply to SORT (k, n) as well.
This is due, for the most part, to the fact that k is fixed and that our algorithms have
about the same worst case number of comparisons at each level of the tree.

As we stated above it is obvious that SORT (1, n)<-(.) (cf. Fig. 1)" it is almost
as obvious that SORT (1, n)= (), since if not all pairs of keys are compared at the
root node of T, then there exists a child of the root in which the order is not completely
determined and T must have height strictly greater than 1.

A parallel comparison tree of height 2 which sorts n keys is completely described
by its set of comparisons at the root node. Indeed, it is again easy to see that in any
child of the root all comparisons not made at the root or implied from the answers
by transitivity will have to be made. Thus, we can identify such trees with undirected
graphs on the set of keys (cf. Fig. 2). Conversely, given such a graph G, the comparisons
indicated by the edges of G are performed first (at the root node), the result being
an acyclic orientation of G.

After the transitive closure of the orientation has been taken, certain pairs of
keys may remain incomparable and they are compared at the corresponding node in
the second level of the tree. For instance, in Fig. 2 each node other than the root
contains at most 4 comparisons, which illustrates the fact that SORT (2, 5)-< 9 and
SORTP (2, 5)<-5. (In fact, it is simple to verify that SORT (2, 5)= 9 and that

a a

eb a<b b< e//’Ob

c<d d<e/ "a<bX b>c 1e >a c.</d > e

__ __
e < b by transitivity

d c
a<b <’Jc<d<e dcG

a<c /c>e----Ill’ a>c c>e

b >d>a d d< a

e<a <c<d<b e<c<d<a<b

FIG. 2. The parallel comparison tree of height 2 corresponding to the given graph G.
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SORT(2, n)=() for n <5; similarly, SORTP(2, n)= [1/2(7)1 for n<6 so that
SORTP (2, 5) 5.) Thus, we can view SORT (2, n) as the minimum over all graphs G
with n vertices of the sum (respectively, maximum for SORTP (2, n)) of the following
two quantities A and B" A is the number of edges of G; B is the maximum over all
acyclic orientation of G of the number of edges missing from the transitive closure
of the orientation. In other words, one seeks a graph which is sparse (has few edges)
but such that each acyclic orientation has transitive closure which is dense (has many
edges). We have proved in [4] that there exist graphs G with n vertices and
O(n 5/3 log n) edges which are guaranteed to have only O(n 5/3) edges missing in the
transitive closure of any acyclic orientation. (We have not actually constructed such
graphs; in fact, it seems hard to find graphs with o(n z) edges guaranteed to have only
o(n z) edges missing in the transitive closure of any acyclic orientation [2].) Thus,
SORT (2, n) <- O(n 5/3 log n). We have also proved that SORT (2, n) "(n 3/2) and
extended our results to

’(n l+(1/k:)) SORT (k, n) O(n log n)

for every fixed k. Here Ck (3.2k-1 1)(2k 1) SO that lim ak [4]. Inasmuch as our
results depended recursively on the graphs G above, which have not been constructed,
the upper bound must be viewed only as an existence result. (There exists an
algorithmma parallel comparison treemof the given complexity, but we have not
constructed it.) Although we still do not have a construction for the graphs G, we
shall use parallel comparison trees for merging and apply the results to SORT (k, n)
for k => 3. In fact, we shall find a sequence Sk with lim sk 1 and improve the upper
bounds to

SORT (k, n)= O(n sk)

for each fixed k. (Thus, the exponents of n in both the upper and lower bounds of
SORT (k, n) have the same limit.)

A number of results concerning order statistics by parallel comparison trees may
be found in [5].

3. Merging. We shall assume as given two subsets of size n of a linearly ordered
set and use parallel comparison trees T of fixed height k to merge the sets together
(i.e., to sort the union of the two sets). Let MERGE (k, n) denote the minimum of
cp (T) over such trees T and MERGEP (k, n) the minimum of cn (T) over the same
set of trees T. As before, all results cited for MERGE (k, n) apply to MERGEP (k, n)
as well.

For trees of height 1, it is easy to see that at the root node each key in one set
must be compared to each key in the other; thus, MERGE (1, n) n 2.

THEOREM 1. MERGE (2, n) O(/’t4/3).
We give a constructive proof of the theorem, i.e., describe parallel comparison

trees T of height 2 which merge two linearly ordered sets of size n with O(n 4/3)
comparisons. This will again be best done by describing the (bipartite) graph consisting
of all comparisons performed in the first round.

Let A {a 1, a2, , a,} and B {bl, b2, , b,} be the two linearly ordered sets,
written in increasing order (i.e., < f implies ai < aj and bi < bj). Let G be the undirected
graph with the vertex-set A LI B and the edges aibj for all and j divisible byf =/n /3].

For functions f, g with nonnegative values ]’(n)= (g(n)) means f(n)>=c.g(n) for some c and all
sufficiently large n.
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An orientation O of G is called admissible if the digraph O’ consisting of O together
with the arcs from a to aj and b to bj for all </" is acyclic. The extended transitive
closure of O is defined to be the transitive closure of O’.

Let g=[n/f]. The set A is partitioned into Al={al,...,af},A2
{af+l,’’’ ,a2f},’" ,Ag={a(g-l)f+l,’" ,an}; similarly for B. For each admissible
orientation O of G, we define an undirected graph G* with the vertex-set
{A 1, A2,. , Ag} (.J {B1, B2," , Bg} and the edges AB for all and/" such that in
the extended transitive closure of O there exist a A and b B not adjacent in either
direction.

LEMMA 1. For any admissible orientation of G, the graph G* is planar.
Proofi In fact, we prove that if < i’ and j’ <, then it is not possible for both

AB and A,B, to be edges of G*. Consider the edge afb(j_lf of G. If O contains
the arc from af to b (-lf, then for any a A and b B, O’ contains the directed path
a,ar,b(_lf,b, and hence, in the extended transitive closure of O, each aA is
adjacent to each b Bj; therefore, AiB is not an edge of G*. On the other hand, if
O contains the arc from b(j-lf to ar, then for any a A,, b Bj,, O’ contains the
directed path b, b(-lf, air, a, and hence, in the extended transitive closure of O, each
a A, is adjacent from each b Br; thus, A,B, is not an edge of G*. (Note that the
lemma is valid for any choice of f.)

The corresponding algorithm (parallel decision tree) for merging A and B in two
rounds can now be described as follows" In the first round make all comparisons
named by the edges of G. This results in [n/]J 2= 0(n4/3) comparisons. After these
comparisons have been evaluated, we obtain an admissible orientation O of G. All
the comparisons whose results are not in the extended transitive closure of O will be
performed in the second round. If the comparison between some aA and some
b B needs to be made in the second round, then AB is an edge of G*. Moreover,
each edge of G* represents at most [nl/3J [nl/3J =O(n 2/3) comparisons in the
second round. Since G* is planar, it has only O(g)= O(n ;z/3) edges. Consequently,
there are only O(rt 4/3) comparisons made in the second round.

We can now describe parallel comparison trees of height k, which merge two sets
of size n.

COROLLARY 1. Foreachfixedk, MERGE (k, n)= O(nek), where Bk 2k/(2k 1).
Proof. We proceed by induction on k starting with k- 2 and Theorem 1.

(MERGE (1, n) n 2 is obvious.) Let yk (2k-l- 1)/(2k 1) and note that Yk -1--yk and 2-2yk =ilk. Construct a graph G as in the theorem but with f= [nVkJ
(and, hence, g O(nl-vk)) and proceed as before. In the first round compare all pairs
of keys indicated by the edges of G, resulting in O(nEl-)=O(n) comparisons.
In the remaining k- 1 rounds, apply the best algorithm (parallel decision tree) to
merge, in k 1 rounds, all pairs of sets Ai, Bj (of size f [n v for which AiB is an
edge of G*. By Lemma 1 and the induction hypothesis, these k- 1 rounds require
at most

O(nl-V) MERGE (k 1, n) O(n-Vn"-1) O(n)

comparisons.
It turns out that we can establish a lower bound of the same order of magnitude.

First we need the following fact"
LEMMA 2. Let G be a bipartite graph with parts {vlv2, vn}, {wl, w2, wn}

and let G have m edges. Then G contains a set of [m/2n edges of the form viwi+ for
some fixed j.
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Proof. Let Ej={viwi,E(G)li’-i =] (modn)}, E=(viwi,E(G)li’-i=]} and
E’}={viwi,E(G)ln +i"--i=]} for/" =0, 1,... ,n-1. Note that each E and E’} is a
set of edges of the prescribed form viwi+i(viw+(-,)). Since E(G)

,,-1

U=0 E and
each Ei=E UE’}, we have partitioned E(G) into 2n sets of edges
E’o,E’, E’I, E’,..., E-I,E",_I. Hence one of the sets has at least m/2n elements.

THEOREM 2. MERGE (2, n) ’),(n4/3).
Proof. We shall show that MERGE (2, n)>--1/4n 4/3 for all large n. Otherwise,

assume that there exists a parallel comparison tree to merge two subsets A
{al,."", a,} and B {b l,’’’, b,} of a linearly ordered set in two rounds with fewer
than 41-n 4/3 comparisons. Then the (bipartite) undirected graph G, whose vertices are
the keys and the edges the comparisons performed in the first round, has fewer than
1/4/’t 4/3 edges. Let f= [F/1/3J and Ai {a(i-lV+l, a(i-1)/+2, air}, Bi
{b(i-1)t/l, b(-l)t/2,""’, bit}. Let t be the (bipartite) undirected graph whose vertices
are A1, A2,’" ,Ag, B1, B2,’",Bg (g [n/f]), and whose edges are all AiB such
that G contains no edge joining any a Ai to any b Bi. Then t has more than
2 1/454/3g >= edges and by Lemma 2, contains a set of edges AiBi+i for a fixed/"

and 1/4n4/3/2g >n2/3 values of i.
Hence there are more than -n 2/3 sets Ai which have not had, in the first round,

any element compared to any element of Bi+i. It is possible that in the unknown linear
order each of the sets Ai U Bi+ consists of consecutive elements. Then no arcs join
the sets Ai and B/j in the extended transitive closure of the corresponding admissible
orientation of G for any of the over --6n 2/3 values of i. Hence, in the second round
we would have to make more than

5 2/3f2 4/3zn > 4X-n
(for large n) comparisons. (The constant 1/4 could by the same argument be replaced
by any c < 1/2.)

COROLLARY 2. For each fixed k, MERGE (k, n)= (ntk).
Proofi The argument is similar to that of Theorem 2, which is its initial step for

an induction on k -> 2. (We have already observed that MERGE (1, n) n2.) We claim
that for every k-> 2 there exists a constant Ck such that MERGE (k, n)>-_ckn for
large n. Assuming this holds for k-l, and setting ck =ck-1/(2+ck-1)--e (for any
e > 0), we shall show that the inequality holds for k. Otherwise, the graph G of the
comparisons made in the first round has fewer than ck nz edges. Letting f [n
and defining t as in the proof of Theorem 2, we find that contains more than
(2 + e)/(2 + ck_l)n edges and by Lemma 2 more than 1/(2 + ck_)n-1 edges
for a fixed /’. By the same argument as above, we may be required to merge
1/(2+ck_l)nt/v-I pairs of sets of size [ in the remaining k-1 rounds. By the
induction hypothesis this will require at least

1 t3+v-I ft3k_ > _e n Cknn C,k_
2+Ck-1

comparisons in-the worst case.
Thus the parallel comparison trees we have constructed to prove Corollary 1 are

optimal, within a constant factor.

4. Sorting. We shall use the following strategy to sort n keys in k time intervals
(i.e., by a parallel comparison tree of height k): Partition the n keys into In] sets
of sizes rn and rn + 1 (m -<_ n 1-). Sort all sets in k-/" time intervals. In the remaining
/’ time intervals merge together every pair of sets. (A dummy key may be used to
make the sets of equal size.) We have proved"
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LEMMA 3.

SORT(k-I, l’-J + I)+ ([2I). MERGE(/,-/nl-J +1)SORT (k, n)-<

for every , 0 <- <-_ 1 and ], 0 < ] < k.
By choosing a suitable and applying Corollary 1, we shall obtain:
THEOREM 3. For each fixed k,

SORT (k, n) O(n ’),

_2iwhere sx 2 and Sk min (2(2 1)Sk-i )/((2 1)Sk-i 1) with the minimum taken
over all ], 0 <] < k, for which Sk-i >=.

Let Sk be as defined above. We shall prove Theorem 3 by induction on k. Assuming
SORT (k -/’, n) O(n-) for 0</" <k and applying Lemma 3, we obtain

SORT (k, n) O(n

for any a and/’, 0 _-< a <_- 1, 0 </" < k. If Sk-i >- fli for some/’, we let

Sk-i
1 + Sk-i

and verify, from above that with this choice of a SORT (k, n) O(n), where

_22Sk-i --13 2(2 1)Sk-i
s

1 +s_ -/3i (2 1)s_i 1

Since the choice of f was arbitrary (as long as Sk-i >----), SORT (k, n) O(n).
Note that Theorem 3 is not useful when/" 1. (It yields only SORT (2, n) O(nZ).)

However, for other small values of k, it yields the following useful estimates:

SORT(3, n)=O(n8/5),
SORT (4, n) O(n2/a3),
SORT (5, n) O(n 28/9)

(observe that 28r<). These bounds can be improved for k->4 by beginning the
recurrence with, say, s2 1.667 [4]; since this is at the expense of being actually able
to construct the corresponding trees, we have not pursued the improvement.

COROLLARY 3. lim Sk 1.
Proof. We prove by induction on k that Sk+ <- Sk. Indeed, Sk+ is the minimum

of terms (/" > 0)
2(2 1)Sk+- 2
(2i-- 1)Sk+_i-- 1

for which Sk+-i >--_[3. Each such term satisfies Sk-i >----Sk+l-i >---- by the induction
hypothesis and

_2-2 2(2 1)Sk-i2(2
(2 1)s+_i 1 (2 1)s_i 1

because the function (2(U-1)x- 2i)/((2i- 1)x- 1) is increasing on x. Hence each of
the terms whose minimum is Sk+x is majorized by one of the terms whose minimum
is Sk, with the sole exception of the last term of Sk+,

2(2k-1)s-2k 3"2-4 3
(2k--1)S--1 =2"2k--3>"
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Therefore, for all relevant k the last term does not influence the computation of Sk+l,

and hence Sk/l <--Sk. Furthermore, an even easier induction shows that Sk -> 1. Thus,
the sequence Sk is monotone and bounded; let L lim Sk.

Define trj by the recurrence

ra=l, rj=l+ 1
2’-1-1 r_ for/’>=3.

It is easily seen by induction on/’, that/’/2-<try-</’- 1 for all/’->2. These estimates
shall turn out to be useful, as we are going to show that

1
s) < 1 +-

for all/" -> 2. For simplicity we shall write J () and J’ (1). Recall that fli 2i/(2 1),
so that

2sl-i
ss rrn 1 + ss-i 3i

where the minimum is taken over all i, 0 < <J, for which ss-i -> 3g. We shall first
prove, by induction of ], that s,;.)_->3j for all/’>_-2. We assume that ss,->3_ and
proceed to show that ss >-/3. If 0 < <=j, then ss_ ->/3i implies (2ss- )/
(1 +s_i-3)>-_3>-3. If/" <i <J, then

ss-i -> ss’ -> 3- >--
2-3j

and hence (2ss-i-3i)/(1 +ss-i-3)>-3j as well.
Next we prove ss _<- 1 + 1/rj by induction on/" -> 2. For that we choose =/" 1 in

the definition of ss. Since ss--., ss,>- 3-, we have

2ss,-3- 2(1 + 1/o’-,)-3- 1
SS < <=

1 +s,-3- 1 +(1 + 1/ri_)-3-
1 +--.r

In conclusion, s<)-<_ 1 + 2/f, and L lim s 1.
The inequality s<)-<_ 1 + 1/r can also be used to obtain estimates of SORT (k, n)

for larger values of k. For instance, when k =()=66 we have SORT (66, n)=
0 (n ’’’’) (which does not compare too unfavorably with SORT (c, n)=O(n log n),
[7]). In a similar vein, the results of 3 imply that

MERGE (10, n) O(n1)
(while MERGE (o, n) O (n) [7]).
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THE BOUNDED PATH TREE PROBLEM*

PAOLO M. CAMERINIS" AND GIULIA GALBIATI

Abstract. The subject of this paper is the bounded path tree (BPT) problem: An undirected graph
G (V, E) is given whose edges have nonnegative lengths; two subsets I and J of V are also given, and
nonnegative constants Ui, W are associated with each i/,/’ J. The BPT problem asks for a tree of G
whose vertex set contains I LI 3" and whose path joining vertices and/’ is not longer than Ui + W, for each
/,/" 3". This problem generalizes the shortest path and the minimum longest path spanning tree problem.

It complements standard min-max location problems, as it asks for a tree given the facility locations,
instead of locating facilities in a given network. In this paper we propose some applications of the BPT
problem for the design of emergency and communication networks, show its equivalence to an extension
of the absolute center location problem and give an algorithm for its solution. This algorithm requires time
O(klEI + klVI log k), where k ]I t_J J[, plus time for finding in G all shortest path lengths between a vertex
in I LJJ and a vertex in V. We also consider a few simple extensions of the BPT problem, such as those
admitting negative or multiple edge lengths, lower (as well as upper) bounds to path lengths, constants Zij
instead of Ui + W. We show that all these extensions are NP-complete.

1. Problem statement and presentation. In this paper we study the problem of
finding trees with bounded path lengths between pairs of vertices. Specifically, we
consider the bounded path tree (BPT) problem, which can be stated as follows.

An undirected graph G (V, E) is given, where V {1,..., n} is the set of
vertices and E

_
{{i,/’}l i,/" V, /’} is the set of edges, IEI m. A nonnegative, real-

valued function w E - / is associated with G, and for each e E, w (e) is called the
length of e. Two subsets/, J of V are also given, and nonnegative real numbers Ui,
W are associated with each /,/" J.

The BPT problem asks for a tree T of G, such that
(a) the vertex set of T contains ILI J;
(b) h (i, j, T) _<- U + W. for each L j J.
Here and in what follows, h (i, j, T) denotes the length of the path rr(i, j, T), i.e.,

the sum of the edge lengths in the unique path of T joining vertices and j.
Conventionally, h (i, j, T) 0 when j.

Any tree T satisfying conditions (a) and (b) above is called a bounded path tree.
Notice that when [II= 1 and J V, the above problem is equivalent to the shortest

path tree problem [4]. When I- J V and the bound Ui / W is independent of
and/’, the BPT problem is equivalent to the minimum longest path spanning tree
problem, whose complexity and close relationship with the absolute center location
problem have been discussed in [1], [7]. We shall see in 3 and 4 that a similar
relationship exists between the general BPT problem and an extended version of the
absolute center location problem.

2. Applications. The BPT problem has many natural applications, for instance,
in the design of emergency networks. Here edge lengths represent travel times between
centers; I is the set of centers which may require service for emergency, J is the set
of centers where emergency facilities are located. The constants U’s and W[s can
model priority levels and/or local service times corresponding to demand centers and
to facilities, respectively. As discussed in [7, p. 87-88], additive rather than multiplica-
tive factors are often appropriate in modeling such kind of situations.

* Received by the editors September 9, 1981.

" Centro di Studio per le Telecomunicazioni Spaziali, Consiglio Nazionale delle Ricerche, Politecnico
di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy.
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In this context the BPT problem complements classical min-max location prob-
lems since the former asks for finding a tree given the demand centers and the facility
locations, whereas the latter ask for locating facilities given the network and the
demand centers.

Further applications of the BPT problem derive naturally from its equivalence
to an extension of the absolute center location problem, which is studied in 3.

Moreover, the BPT problem can be applied to the design of reliable communica-
tion networks. Here for each edge e {u, v} (vertex v) of G, let puv(pv) be a given
probability for the edge (vertex) to be "alive". Assuming independence, the probability
for a path to be "alive" is the product of the probabilities for its edges and vertices
to be "alive". If we take

w ({u, v }) -log

for each e {u, v}, then for any tree T

-A (i, f, T) + log

is the logarithm of the probability to be "alive" for the path rr(i, f, T) joining in T
vertices and/’.

Assume now I -J V and take for all V

Ui Wi log x//-1/2 log A,
A being a given constant, 0 _-< A -<_ 1.

In this case the BPT problem asks for a tree T such that the probability for each
path 7r(i,/’, T) to be "alive" is not less than A.

3. Notation and discussion. In this section we introduce some notation and discuss
some connections between the BPT problem and the absolute center location problem
in more detail than in 1. As a consequence of this discussion, the algorithm proposed
in 4 for solving the BPT problem may be better understood and viewed as an
extension of Hakimi’s method [6] for the absolute center location problem.

In order to formalize these concepts, we first recall some terminology, related to
the notion of "points" and "lines" of an undirected, edge weighted graph. Referring
to the graph G and the weighting function w of 1, we define a point of G to be
either a vertex or an ordered pair (e, 0), where e is an edge with positive length and
0 is a real number such that 0 < 0 < w(e). In this latter case, the point is called an
internal point of e. We agree that edges with zero length have no internal points, and
the vertices and/" of any edge e are called end points of e. Assuming without loss
of generality that </’, we shall also write (e, 0) for and (e, w (e)) for

In the usual geometrical representation F of the graph G, the points of G are
represented by geometric points of F. As an example Fig. 1 illustrates the geometrical
representation of a point x (e, 0), with 0 -<_ 0 <_- w (e), w (e) > 0.

As the notion of vertices is extended to that of points, similarly the notion of
edges can be extended to that of lines, by saying that if x -(e, 0), x’-(e, 0’) are two
(not necessarily distinct) points of an edge e E, then the unordered pair {x, x’} is
a line of G. The function w can also be extended to the set of lines, by defining
w(l) 10-0’1 to be the length of line t.

Accordingly, the definition of path joining two vertices is extended to define a
path (of G) joining two points x and y. Such a path is a set P of p => 1 distinct lines
of G of the form

P {{x Xo, Xl}, (xx, x2}, (Xp-l, xp y}},
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FIG. 1. Geometrical representation of a point x of edge e {i,/’}, with < j, w(e) > O.

where xl, X2, Xp-1 must be distinct vertices of G, all different from x and y. When
x y, the path is closed. The length of P is given by

P

E w({x-l, x)).
h=l

A closed path with more than one line is a cycle.
As usual we call a tree a connected, acyclic subgraph of G, i.e., a subgraph T of

G having exactly one path joining any two points x, y of T. According to what was
stated in 1, such a path is denoted by 7r(x, y, T), and A (x, y, T) indicates its length.
An absolute center of a tree T is a point in the middle of a longest path of T, i.e., a
point z of some edge of 7r(s, t, T), such that

A (s, z, T) A (z, t, T),

and 7r(s, t, T) is a longest path joining two vertices of T.
Assume now that G is connected. Since line lengths are nonnegative, there always

exists a shortest path joining any two points x and y. The length of this path is called
distance between x and y and is denoted by 8 (x, y). Given any point z and any subset
S of V, there always exists a set of shortest paths joining z and each vertex of S such
that the set L of their lines does not contain cycles. This set identifies a tree of shortest
paths originating at z and terminating at S. This tree is denoted by T(z, S) and its
edge set is made up of all edges in L, with the addition of edge e {i,/} if z is an
internal point of e and L contains both lines {z, i} and {z,/}.

Referrring to the above terminology, consider the following two problems where
W is a given nonnegative real number and G is a connected graph.

Problem 1 (Spanning tree with bounded longest path). Find a spanning tree T
of G such that A (i, j, T) <- 2W for all i, / V.

Problem 2 (Absolute center location). Find a point z of G such that 6(z, i)<- W
for all V.

It has been shown [1], [7, pp. 113-114] that these two problems are equivalent.
Specifically, if z is a solution to Problem 2, then any tree T(z, V) is a solution to
Problem 1, while the absolute center z of a tree T, solution to Problem 1, is a solution
to Problem 2.

Hakimi’s algorithm [6] may be viewed as a method for solving both problems.
Its efficiency is mainly due to the fact that the search for a solution to Problem 2 may
be restricted to the vertices and to those internal points of G which are local minima
of the function

y(x) max 6(x, v),
tV
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(i,h)

Ci,i) .........

6,y

((i,j)
Cj,i)
(j,h)

.........
FIG. 2. Representation of /(x) and (x, v) (v h, i, f), restricted to the points x (e, O) of edge e {i, f},

<j, w(e)>0. The graph of/(x) (drawn in heavy lines) is the upper envelope of,(x, v), v =h, i, j.

defined over the set of points of G. Examples of such local minima are points z and
z2 in Fig. 2. Since each function 8 (x, v) is piece-wise linear with slope + 1, local minima
of y(x) can be easily computed from the distances between all pairs of vertices.

These ideas can be extended to the BPT and to the following problem, where/,
L Ui, W.(i L f J) are given as in 1.

Problem 3 (Bounded path absolute center). Find a point z of G, such that
8(z,i)+8(z,)<-U+ W for each I, J.

Referring to the interpretation given in 2, the bounded path absolute center
(BPC) problem may be viewed as that of locating a "center", which must be visited
along every path from a facility location (/" J) to a demand vertex (i I).

The following theorem states the equivalence between the BPT and the BPC
problems.

THEOREM 1. If Z is a solution to the BPC problem, then any tree of shortest paths
originating at z and terminating at I U J is a BPT of G. If T is a BPT of G, then at

least one point of T is a solution to the BPC problem.
Proof. Let T T(z, I U J), where z is a solution to the BPC problem. For each

/,/’ J, we have

A (i, f, T)<=6(z, i)+6(z, f)<= Ui q-

so that T is a BPT of G, and the first part of the theorem is proved.
Let now T be a BPT of G, and let

R min {Ux + Uy A (x, y, T)} Us + U, A (s, t, T).
x,y.I

There are two cases.
Case 1. For some v /, R >= 2Uv. Then

(1) Ui A (v, i, T) >= Uv for each L

Since T is a BPT of G,

(2) Wi-h(v,, T)>--U foreach/’J.

From (1) and (2) it follows that

8(v,i)+8(v,j)<-_h(v,i, T)+h(v,j, T)<-Ui + W
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for each I,/" J; i.e., v is a point of T, solution to the BPC problem.
Case 2. For each v /, R < 2Uo. Then

U U,[< h (s, t, T),

and there exists a point 5 of some edge e of zr(s, t, T) such that

R
U -h (s, , T) U,- h (, t, T)=.

We can now show that

R
(3) Ui h (i, , T) ->_ for each I

and

R
(4) W. -h (j, , T) >-- for each/" J.

In order to prove these inequalities, assume without loss of generality that for
each /,/" J, vertices s, and f belong to the same tree when e is removed from
T; otherwise, interchange appropriately the roles of s and in what follows. Since

h (i, t, T) h (i, , T) + h (e, t, T), h (s, t, T) h (s, e, T) + h (e, t, T)

and by definition of R

Ui + Ut h (i, t, T) >- Us + Ut h (s, t, T),

we have that

R
Ui-X(i,, T)>=Us-X(s,, T)=

for each /, and inequality (3) is proved.
Since

A (/’, t, T) A (i, , T) + h (, t, T),

R
h (, t, T)= Ut--

2

and

we have that

h(f,t, T) <- W.+Ut,

R R
Wi-h(l,, T)>= W,.-,(j,t, T)+Ut

2- 2

for each/" J, and inequality (4) is proved.
Because of (3) and (4), we may write

6 (, i) + 6 ($,/’) -< A (, i, T) + h (zT,/’, T) _-< U, + W.
for each i/,/" J, and in both Cases 1 and 2, we may conclude that there exists a
point of T, solution to the BPC problem. I3

In the next section, we present an algorithm for solving both the BPT and the
BPC problems. In a similar way as in Hakimi’s algorithm, the search for a solution
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to the BPC problem is restricted to the vertices and to the peaks of b, i.e., the internal
points of G, which are local maxima of the function

c(x) min {U -6(x, i)}.

Alternatively, the search could be carried out among the vertices and the peaks of

(x) min {W. 6 (x,/’)}.

4. Algorithm. In this section we describe an algorithm for solving both the BPT
and the BPC problems and evaluate its complexity.

The following procedure receives as input the items G, W, L J, Ui, W. (i L/" J)
and produces the output ’yes’ or ’no’, depending upon whether or not the graph G
contains a solution for both problems. For the sake of simplicity, we assume that G
is connected, so that functions 4 and are defined at all points of G. The comment
of step 3 refers to the implementation of step 5, described at the end of this section,
for analyzing its complexity.

procedure BOUNDEDPATH:
begin

1. for each u I J, v V do compute 6 (u, v);
2. for each u V do form two lists, containing the vertices of I (respectively,

/" of J) in nondecreasing order of Ui-6(u, i) (respectively, W-6(u,/’));
3. comment steps 1 and 2 above allow an efficient implementation of step 5;
4. for each z V do if & (z) + (z) -> 0 then return ’yes’;
5. for each peak z of b do if b (z) + 4 (z) >= 0 then return ’yes’;
6. return ’no’

end

The following theorem proves the correctness of this procedure and shows how
to utilize it for finding whenever it exists a solution to either the BPT or the BPC
problem.

THEOREM 2. If BOUNDEDPATH returns ’yes’, then the current point z and the
tree T(z, IUJ) are solutions to the BPC and the BPT problem, respectively. If
BOUNDEDPATH returns ’no’ then neither problem has a solution.

Proof. If BOUNDEDPATH returns ’yes’, then the current point z is such that
b (z) + (z)->_ O, i.e.,

for each s I,/" s J. Thus, z is a solution to the BPC problem. By Theorem 1, T(z, ! J)
is a solution to the BPT problem, and the first part of Theorem 2 is proved.

Consider now the case where BOUNDEDPATH returns ’no’. Suppose that there
exists a point z of G, solution to the BPC problem. For this point b(z)+(z)_->0. If
z is a vertex or a peak of b, we have a contradiction since the procedure would have
returned ’yes’. If z is an internal point of e {i, j} and is not a peak of b, then moving
from z, either towards or towards ] on edge e, makes the value of b increase. Let
us move in such a direction until either a vertex or a peak of b is found. For this
point z, b (z’) > 4(z).

Due to the special form of the functions b and , it is easy to see that if we move
from z to z’, the value of 4 can not decrease more than the value of b increases, so
that 4 (z’)+ (z’)>=0. This again contradicts the fact that BOUNDEDPATH returns
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’no’. Thus, neither the BPC nor (because of Theorem 1) the BPT problem has a
solution, and Theorem 2 is proved.

We now examine the time complexity of BOUNDEDPATH.
Step 1 requires to compute all distances between a vertex in I L.J J and a vertex

in V. This task can be performed by many different algorithms [8], [3], the best choice
depending on the range of the edge lengths, the sparseness of the graph and so on.
Thus, we do not specify the time complexity of step 1 and only remind to include it
in the overall time complexity evaluation. We remark that the identification of the
shortest paths is not required in step 1, so that computing distances without actually
identifying the corresponding shortest paths might be preferable. From the time
complexity viewpoint, however, it is still unknown whether distances can be computed
faster than shortest paths [9], [10].

Step 2 sorts n VI times the two sets I and J, so that its time complexity is
0(kn log k), where k [I L.J J[.

Using the first vertices in the two lists obtained in step 2 for vertex z, each
condition b(z)+ @(z)>=0 in step 4 can be tested in O(1) time, and hence, step 4 needs
time O(n ).

Finally, step 5 can be implemented to use O(k. [El) time: For each edge e {u, v}e
E(u < v) such that ff w (e) > 0, we do the following.

First, we extract from I a sequence l,’", ip, called irredundant, having the
following properties.

1) Either p 1 or p > 1, in which case ah < ah+ and bh > bh+ for h 1, , p 1,
where ah Ui, -6(u, ih) and bh Uih --(), ih) for h 1,. ., p.

2) qb(x)=minh=l,...,p {Ui,-6(x, ih)} for all points x of e.
The example of Fig. 3 illustrates these properties and should convince the

reader--without formal proof--that an irredundant sequence always exists. It is also
easy to see that such a sequence can be found by scanning only once each vertex
of I in nondecreasing order of Ui 6 (u, i) (or Ui 6 (v, i)). Since this ordering has
already been made in step 2, the time needed for finding the irredundant sequence
is

U3 6(I,I,3) :U8-6(u,8)=a3

U5-6(u,5)=a2

U2-l(u,2)

U7-6(u,7)=a

bl= U7-6(v,7) =U2-

{2,3,S,7,e}
U z 2

U3-6 (v,3)

b2=U5-6 (v,5)

b3=U8-6 (v,8)

FIG. 3. Representation of d(x) restricted to the points x (e, O) o1" edge e {u, v}, u < v, , w(e)> O.
The graph of 4)(x) is drawn in heavy lines. The sequence 7, 5, 8 is irredundant.
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Second, the (at most) 2p linear intervals of the piecewise linear function (x)
mrestricted to the points x (e, 0)--are identified by the following sequence of values
of O"

O, 1/2(al-b+vP), 1/2(a2-b+P), 1/2(a2-b+),
.., (ap-b,_l+), (a,-bp+P), .

(The first two and/or the last two values may coincide.) In particular, if p > 1 the
p 1 peaks of edge e and the corresponding values of are given by Zh (e, 0), where

and

Oh 1/2(ah + bh + ff

(z) +b-)

for h 1,.. , p 1. These values can be obtained in O(111) time.
Third, if p > 1, we determine in O(IJ[) time the linear intervals of by repeating

for the computations made above for . The p- 1 values of k at the peaks of
can be obtained from the linear intervals of 4, by means of linear interpolations. The
time required is o(1II / i.e., O(k).

We dispense with giving a formal procedure implemented along the above lines.
However it should be clear that such a procedure allows executing step 5 of BOUN-
DEDPATH in O(km) time, where m IEI.

The time complexity of BOUNDEDPATH is therefore O(km + kn log k), plus
time for the computations of step 1.

We conclude this section with some practical remarks.
Remark 1. When G is even moderately dense, e.g., m is fZ(n 1+) for some e > 0,

the term km dominates kn log k in the time complexity of BOUNDEDPATH.
Remark 2. If a vertex cover of size c is available, i.e., a set of c <= n vertices of

G shares at least one vertex with each edge of G, the term kn log k in the time
complexity of BOUNDEDPATH may be reduced to kc log k.

Remark 3. By Theorem 2 the time needed to solve the BPC problem is the same
as that required by BOUNDEDPATH.

Remark 4. By Theorem 2 the time needed to solve the BPT problem is that
required by BOUNDEDPATH, plus the time for finding T(z, ! t.JJ) in case of a ’yes’
answer. This extra time, however, is O(km) and, hence, is dominated by the time
complexity of BOUNDEDPATH. In fact, assume that z is an internal point of
e {u, v}. For each vertex h of ! LI J, a shortest path joining h and u (or v) can be
obtained in O(m) time by backtracking from u (or v): recall that all distances between
vertex h and the vertices of V have been computed in step 1 of BOUNDEDPATH.
Moreover, if all shortest paths corresponding to distances have already been identified
in step 1, the time needed for finding T(z, I (_J J) is only O(n).

Remark 5. Bounding techniques similar to those suggested in [7, pp. 120-125]
or [2, pp. 90-105] can be helpful for restricting the search in step 5 of BOUNDED-
PATH to a (hopefully small) subset of the edge set E.

Remark 6. When the edge lengths are uniform, i.e., w (e)= 1 for each e E, and
Ui, W. are nonnegative integers for each /, ] J, then from (5) it is easy to see that
any peak of either $ or must be a point z (e, 1/2) for some edge e. It follows
that step 5 of BOUNDEDPATH can be executed in time O(km), since for each edge
e, the values $((e, 1/2)) and $((e, 1/2)) can be obtained in O(1II) and O(IJI) time,
respectively, without using the lists computed in step 2. Therefore, the whole com-
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plexity of BOUNDEDPATH becomes O(k. m), since in this case step I needs O(k. m)
time.

5. Extensions and NP-completeness. In this section we focus our attention on
the fact that even very simple extensions or modifications of the BPT problem lead
to NP-complete decision problems [5], which are therefore probably not solvable with
algorithms having polynomial time complexity.

The first extension that we consider is the one admitting negative edge lengths
and negative real numbers Ui and W. associated with some vertices s ! and/" J. In
order to show that this extended problem is NP-complete, it is enough to notice that
when the input is a graph G with n > 1, w (e) -1 for each e E, I {1}, J {n } and
U W, -(n 1)/2, we are dealing with the problem of detecting in G the existence
of an Hamiltonian path joining vertices 1 and n, and this problem is known to be
NP-complete [5, p. 60].

A similar reasoning can be used to show that the analogue of the BPT problem,
where we require the quantity Ui + W’ to bound A (i, j, T) from below rather than from
above, is also NP-complete. In fact, this problem, when restricted to graphs G having
n > 1, w(e)= 1 for each e E, I {1}, J {n}, U1 Wn (n 1)/2, again becomes
the problem of detecting in G an Hamiltonian path joining vertices 1 and n.

Let us now consider another extension of the BPT problem. For each s/, ] s J
a nonnegative real number Zij is given instead of two nonnegative real numbers Ui,
W., and the problem asks for a tree T of G such that

(a) the vertex set of T contains I U J;
(b’) h (i,/’, T) -< Zij for each I,/" J.
In order to prove the NP-completeness of this extended problem, we exhibit a

polynomial time transformation to it from the NP-complete SATISFIABILITY prob-
lem (SAT) [5, p. 39].

In other terms, for every input of SAT, we define a corresponding input of our
problem that can be computed in polynomial time, and we show that answers to the
corresponding inputs are either both ’yes’ or both ’no’. For convenience of the reader,
we recall that SAT can be stated as follows.

INPUT. A family C ={cl,..., Cq} of clauses over a finite set L ={x,...,x,
1, , h} of literals.

QUESTION. Is there a truth assignment for L that satisfies all the clauses of C?

Let an input of SAT be given as above. Define a corresponding input of our
problem as follows:

v=}uz, uc,
h

L’- U {{p, Xr}, "[P,.r}, {X,,)i,}}
r=l

U{{xr, C}[x6c, r{1,’", h}, s 6{1,’", q}}

U {{lr, Cs}i..r - Cs, r e {1, h}, s e {1,..’, q}},

I=J=V,
w(e)=l for eachesE,

1 if {i, ]} {xr,

Zii 2 if {i, j}= {p, Cs}
oo otherwise.

for some rs{1,. ., h},
for somes {1," .,q},
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We claim that there is a truth assignment for L that satisfies all the clauses of C
if and only if G (V, E) contains a tree T that satisfies (a) and (b’). In fact, if there
exists a truth assignment that satisfies the clauses, denote by L’ the subset of L
containing the literals which have been assigned the value ’true’. Of course, L’ does
not contain a complementary pair of literals. For each s 1,..., q, choose in L’ a
literal x, (or $,) that satisfies cs and consider the three edges {p, xt}, {x,, cs} (or {p, $},
{St, c}) and {x, ,}. The union of these edges forms a tree T of G which can be
made into a spanning tree by adding edges {p, xr}, {xr, $}, if x is not already a vertex
of T, for each r 1, , h. The resulting tree satisfies (a) and (b’). Conversely, assume
G has a tree T for which (a) and (b’) hold. We can deduce the following facts.

(i) Since h (p, c, T)-< 2 for each s 1,..., q, every path in T joining p and a
clause has length two and has only one intermediate vertex.

(ii) If L’ is the set of the intermediate vertices on the paths joining p and all the
clauses, then L’ cannot contain both a literal and its complement since A (x, $, T) <- 1,
r=l,...,h.

Therefore, if we assign the value ’true’ to the literals in L’, all the clauses are
satisfied, i.e., there exists a truth assignment for L satisfying all the clauses of C.

Finally, consider the extension of the BPT problem obtained when to the graph
G are associated two nonnegative real-valued functions, w and w2 instead of one,
and the problem asks for a tree T of G such that

(a) the vertex set of T contains I t_l J;
(b") A 1(i,/’, T) _-< Ui + W, A 2(i,/’, T) -< Ui + W. for each L f J, where A (i, f, T)

and A 2(i,/’, T) denote the lengths of rr(i, ], T), corresponding to w and w., respectively.
In order to prove that this problem is NP-complete, we use a transformation

from SAT to our problem similar to the one defined above. For any input of SAT,
the corresponding input of this problem is given by the graph G (V, E) defined
above and by the following items.

wl(e) { ife={p, xr}
otherwise,

w(e)={lo ife={p,r}
otherwise,

ore={xr, c} for somes{1,...,q}andr{1,...,h},

ore={,c} for somes{1,...,q}andr{1,...,h},

Wcs=0 for eachs=l,...,q.

Again we claim that all the clauses of C can be satisfied by a truth assignment for L
if and only if G contains a tree satisfying (a) and (b").

If there exists a truth assignment that satisfies the clauses, a tree T satisfying (a)
and (b") can be constructed in the same way as in the preceding transformation but
for the fact that here we consider the three edges {p, ,}, {x,, cs}, {xt,} or {p, x,},
{,, c}, {xt, ,}, depending on the literal chosen being x, or

Conversely, if G has a tree T satisfying (a) and (b"), then for each s 1,..., q
the path zr(p, c, T) is either {{p,,}, {,,x,}, {x,, c}} or {{p,x,}, {x,,,}, {,, c}} for
some {1,..., h}. Therefore, if we take xt or t--respectivelymfor each clause cs,
we obtain a set L’ of literals, no two of which are complementary. Similarly as in the
preceding transformation, it follows that a truth assignment for L can be constructed
which satisfies all the clauses of C.
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6. Conclusions and remarks. We have proposed an algorithm for solving in
polynomial time a couple of equivalent problems--the bounded path tree and the
bounded path absolute center problem. These problems generalize two other known,
polynomially solvable equivalent problems--the minimum longest path spanning tree
and the absolute center location problem. The proposed algorithm reflects this gen-
eralization and can be easily modified--maintaining the same time complexity--to
treat a slightly haore general formulation of these problems, in which some (or all)
the path bounding constraints are substituted with a single min-max objective function.
We leave to the interested reader the task of elaborating by himself such an extension
as we feel that the formal description of an extended algorithm would be more
cumbersome than theoretically relevant.

We conclude by remarking that the BPT problem is, in a sense, a "most difficult
easy" problem, as we have shown that even simple generalizations of it lead to
NP-complete decision problems.

Acknowledgment. We are very grateful to our friend Francesco Maffioli for his
suggestions and encouragements.
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THE INTERVAL COUNT OF A GRAPH*

R. LEIBOWITZt, S. F. ASSMANN AND G. W. PECK

Abstract. The interval count of an interval graph G is the minimum number of different interval sizes
needed to represent the vertices of G, where two vertices are adjacent if and only if their intervals intersect.

We show that if G is an interval graph and for some vertex x, G-{x} has interval count one, then G
has interval count two or less.

We also show how to construct examples of interval graphs where the interval count of G exceeds
that of G- {x} by at least two when the latter number is two or more.

1. Introduction. A graph G is an interval graph if each vertex can be assigned
an interval of the real line in such a way that two vertices are adjacent if and only if
their intervals intersect. See Fig. 1. Several characterizations of interval graphs have
been given by various authors (Lekkerkerker and Boland [5], Gilmore and Hoffman
[3], Fulkerson and Gross [2]), and they can be recognized in linear time (Booth and
Leuker [1]). Such graphs have many applications.

C

a c

b. e b f
g h

h (b)

FIG. 1. (a) An interval graph G. (b) A representation of G by intervals.

e

R. L. Graham has suggested the general question of how many different sizes of
intervals are necessary to represent a given interval graph G. The minimum number
of sizes needed is called the interval count of G. In this paper we address a conjecture
of Graham’s which states that if the interval count of G-{x} is k for some vertex x
of G, then the interval count of G is at most k + 1. We show that the conjecture is
true for k 1 and false for k => 2.

The next section contains some simple observations and techniques relating to
interval representations of graphs. The third section contains a constructive proof of
the conjecture for the case k 1, and the fourth section gives a method for producing
counterexamples for the cases where k => 2. We conclude with a brief discussion of
the related open question of finding useful characterizations for those graphs with
interval number k for fixed k -> 2.

2. Observations and techniques relating to interval representations. An interval
representation of a graph is characterized by the orders of the left and right endpoints
of the intervals. Suppose the left endpoints in order form the permutation rL of the
vertex labels and the right endpoints form the permutation zrR. If there is only one
interval size, ’L and rR must be the same. Conversely, if rL 7rR, we can choose the
intervals to all have the same size.

* Received by the editors June 13, 1979, and in final revised June 15, 1981.
t Department of Mathematics, Wheaton College, Norton, Massachusetts 02766.
t Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts

02139.
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When rL # 7rR, any pair of vertices that are ordered differently in the two
permutations must have one interval contained in the other, as Ly < Lz < Rz < Ry. We
say then that y dominates z.

Roberts [7] has shown that the graphs with interval count one are those interval
graphs which do not contain Kl,3 (also called a 3-claw) as an induced subgraph. It is
clear that K1,3 cannot be represented using only one interval size. Conversely, suppose
G is an interval graph with interval count at least 2. Pick a representation of G with
the fewest pairs of vertices out of order. Suppose vertex z is dominated by vertex y.
We could extend the interval representing z to the left until it reaches beyond the
interval representing y, unless we were stopped by encountering the interval of a
vertex u adjacent to y but not to z. Similarly, there must be another vertex v adjacent
to y but not to z that prohibits us from extending the interval for z to the right. Thus,
y, z, u and v form a 3-claw with apex y.

Given a representation of G, a segment is an interval of the real line which does
not contain the left or right endpoint of any interval representing a vertex of G. Unless
we specifically state otherwise, the segments we will be discussing are those which are
contained in at least one interval representing a vertex of G. Suppose we are given
an interval representation of a graph which uses only one size of interval and that
some segment S of the representation is specified. We can increase the length of that
segment until it accounts for nearly the total length of each interval which contains
it. We call this a blow up of segment S. We can then blow up the segments closest to
S which are not contained in intervals containing S, and so on, until all intervals are
once again the same size but with their size mainly contained in the blown up segments.

Similarly, we can blow up m specified segments within a given interval until each
accounts for nearly 1/m of the length of the interval and then blow up segments in
succession until all intervals are the same size again. See Fig. 2.

3. Proof of the conjecture for k 1. Suppose G is an interval graph with interval
count greater than one but G-{x} has interval count one. This means that every
induced 3-claw of G includes the vertex x. Choose a representation of G with fewest
pairs of vertices out of order between zr and r. There are three cases: (1) x appears

Sl $2

11

(a

Sl $2

(b)

FIG. 2. (a) A 1-sized representation before blowing up segments Sl, 82 and successive segments. The
segments to be blown up and the approximate amount of the total interval which each such segment is to

account for are shown. (b) The 1-sized representation which results from the above operation.
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x

a b c d e f g

(a)

x

b c d f
a e g

(b)

FIG. 3. Case 1. (a) The graph G. (b) A representation of G using two interval sizes.

in 3-claws only as an apex; (2) there is at least one vertex which dominates x; and
(3) x is not dominated by any vertex but is a son in at least one 3-claw. (In this case
x may also be an apex of some 3-claws.) In each case we will show how to construct
a 2-sized representation for G.

Case 1. The only out of order pairs will be those where a vertex is dominated
by x. Thus, we can make all intervals the same size except for x, which will have the
second length. See Fig. 3.

Case 2. Let B be the set of vertices which are apices of 3-claws that have x as
a right son, B’ be those which have x as a left son, A be those vertices dominated
by some vertex in B, A’ be those dominated by some vertex in B’ and C be those
vertices which dominate x. Note that we may have B =A and/or B’ =A’= .

Step 1. Remove the interval corresponding to x.
Step 2. Since there are no 3-claws in the remaining graph, we can move the

vertices in A to the right until they extend beyond their respective fathers in B.
Similarly, we can move the vertices of A’ to the left.

Step 3. Adjust the lengths of the resulting intervals so that they are all the same
size.

We claim that any vertex y {A LI B LI x } whose interval includes the right endpoint
of some vertex in A or B includes the right endpoint of all vertices in A or B. (In
particular, this holds for any y e C, because such a y dominates x and x is adjacent
to everything in B.)

To prove this claim, suppose y includes the right endpoint of some aie A but
not bj B. This means that in the original representation the interval for ai lies to the
right of that for bj. But then x can’t be adjacent to bi without being adjacent to ai,

which is a contradiction. So if y intersects some ag on the right, it intersects all the
vertices in B. Suppose y includes the right endpoint of some bj B. Then it includes
the right endpoint of all the elements in A which bj dominated (since these now extend
to the right of b.), and hence, it intersects all bk B and so all ag A. The analogous
fact is true for A’ and B’.

Step 4. If B , blow up to size nearly the segment common to all the elements
of A, B and all such y. (This segment exists by the above claim.)

If B Q, blow up to size nearly 1/2 the segment common to exactly those vertices
whose intervals included the left endpoint of x.

Do the analogous thing on the other side of the graph, according to whether
B’= or not, in such a way that everything in C has size 1.

Step 5. Blow up segments in succession so that all intervals are of size 1.
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Step 6. Change each interval of A to be of size 5
3- by moving its right endpoint

to the left. The intervals of A are now properly contained in the respective intervals
of B. Likewise, move the left endpoints of each element of A’ to the right.

Step 7. Insert an interval of size into the representation to correspond to x. It
will fit to the right of the rightmost element of A and to the left of the leftmost
element of A’.

See Fig. 4.

b

d e a aa x f g h
(a) (b)

d a: x g

e a, f h

a2

al

(c)

d a2 g

e al f h

(d)

d aa x g

e a, f h

(e)

FIG. 4. Case 2. (a) The graph G. (b) A representation of G. (c) After step 3. (d) After step 5. (e) The
final, 2-sized representation.
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Case 3. Let B, A, B’ and A’ be defined as in Case 2. Note that at least one of
B and B’ (and, hence, A or A’) is nonempty.

Step 1-Step 3. Same as in Case 2.
Step 4. Let C be the set of intervals which contained the left endpoint of x but

did not correspond to x or to vertices in B. Let C’ be defined similarly. If C ,
there is some segment $ Common to all elements of C and to no other intervals. If
C , let S be the segment which contains no part of any interval and lies just to
the right of the rightmost interval which lay entirely to the left of x in the original
representation. Define C’ and S’ analogously.

Simultaneously blow up S and $’ so that they are each nearly 1/2 the total length
from the leftmost left endpoint to the rightmost right endpoint of G {x }. The elements
of C and C’ will now each have length 1/2. Note every element of B is adjacent to
every element of C, because elements of B also included the left endpoint of x.
Similarly for B’ and C’.

Step 5. Extend the elements of B to size by moving the right endpoint to the
right. Now the elements of B dominate the elements of A. Perform a similar operation
on the elements of B’.

Step 6. Insert an interval of size 1/2 into the representation to correspond to x.
This interval will have approximately half of its length in the segment S and half in
the segment $’ and will dominate anything which lays between these two segments,
as we desired.

Note that the larger size interval can be arbitrarily big compared to the smaller
intervals in this case, because x may dominate any number of independent vertices.
See Fig. 5.

4. Counterexamples for k >- 2. We will give a counterexample for the case k 2,
which will easily generalize to higher values of k. Without loss of generality, all
intervals are open intervals.

We need to find a graph G which has interval count at least four, while G-{x}
for some x has interval count 2.

One way to force a graph to have interval count at least four is as follows. Suppose
vertex v0 is the apex of a 3-claw. Then there is some vertex vl which it dominates.
If v is also the apex of a 3-claw, it dominates some vertex /22. If /)2 is in turn the
apex of a 3-claw, then it dominates some v3, so we have a chain of four intervals,
each strictly containing the next, so at least four interval sizes will be necessary to

represent G.
However, we can force an interval count of at least four without having a nest

of four intervals.
Suppose for the following discussion that G has interval count three. Let the

interval sizes be A,/x and/3 (for little, medium and big). If v dominates independent
vertices, then the size of v must be at least tA. On the other hand, suppose there is
a path of length r + 1 from a vertex strictly on the left of v to one strictly on the right
and that this path does not contain v. If each vertex on this path is dominated by
some vertex in G, then the size of v can be no more than r/. One can easily arrange
incompatible bounds on/3 by using these structures.

Consider the graph in Fig. 6. This can be represented with only two interval sizes;
see Table 1. The vertices a3 to a7 are dominated by b to bs, respectively. If b to b5
are also each dominated by some vertex, they must be of size Ix, and a3 to a7 would
then be of size h. Vertex a2 is strictly to the left of b3, and a8 is strictly to the right,
so because of the path a2,’’’, as, we must have Ix -< 5h.
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c c’,

(a)

b c

e a

e a x

d c f c’

S

d c f

(d)

(c)

(b)

S’

S

e

S S’

b c’

X

f c’,

FIG. 5. Case 3. (a) The graph G. (b) A representation of G. (c) After step 3. (d) After step 4. (e) The
final, 2-sized representation.

b b b3 b b

a a2 a3 a4 a5 a6 a7 a8 a9

FIG. 6. A component of the counterexample.

Now consider the similar graph in Fig. 7. This can also be represented with only
two interval sizes; see Table 2. Suppose we add a vertex x which is adjacent to Cl,

c2, yo to y3 and Ul but not to z. Vertex, Ul dominates y3 in the 3-claw ul, yl, y3, y5

and y3 dominates z in the 3-claw y3, X, Z, U3, SO Ul must have size/3. One can easily
check that x dominates yo and yl, u dominates y2, u2 dominates y4 and u3 dominates
ys, so the largest that yo through y5 can be is size tz. Since c2 is to the left of u, 3;6
is to the right and yo to y5 is a path between them, u can be no larger than 6/z.
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TABLE
A representation of the above graph using two interval sizes.

Vertex Left endpoint Right endpoint

al 0 72
a2 36 108
bl 54 162
a3 72 144
b2 90 198
a4 108 180
b3 136 244
a5 144 216
b4 162 270
a6 180 252
b5 198 306
a7 216 288
a8 252 324
a9 288 360

/.1 U2 U3 U4 U5

Cl y9

Z

FIG. 7. A component of the counterexample.

Now consider the graph which consists of three disjoint copies of Fig. 6, one copy
of Fig. 7 and a vertex x adjacent to all the points of each copy of Fig. 6, to c l, c2, y0

through y3 and Ul and to 33 other points Vl to /333; see Fig. 8. Here the lines from x
to some of the ai’s are not drawn in in order to avoid complicating the picture. This
graph can be represented with four sizes of intervals; see Table 3. But suppose it can
be represented with three sizes. Vertex x must have size at least 31h, because it
dominates v2 through v32 and these are pairwise nonadjacent and so have nonoverlap-
ping intervals. We have then that/3 _-> 31h. Because x, bi,1, bi,2, bi,3 is a 3-claw for each

1 to 5, one set, say b 1,2 to b5,2, must have each member dominated by x. Combining
the above results, we get/x-<_ 5h and/3-<_6/x, so/3-<30h. Thus, assuming G can be
represented with only three interval sizes leads to a contradiction.
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TABLE 2

A representation of the graph in Fig. 7 using two interval sizes.

Vertex Left endpoint Right endpoint

C 0 72
2 3 75

Yo 72 144

Yl 75 147
Ul 143 251

Y2 144 216
z 171 243
Y3 178 250
U 192 300

Y4 216 288
u3 249 357

Y5 250 322
u4 255 363

Y6 288 360
U5 306 414

Y7 324 396

Y8 360 432

Y9 396 468

TABLE 3

A representation of the graph in Fig. 8 using four sizes of intervals.

Vertices Endpoints

al,x to a9,1 and b 1,1 to b s,x

al,2 to a9,2 and b 1,2 to b5,2
a 1,3 to a9,3 and bl,2 to b5,3
v to V33

Cl, C2, Y0 to );9, and Ul to u5
Z

X

As in Table 1
As in Table 1 plus 400
As in Table plus 800
Left end of vi 72i + 1128
Right end of vi 72i + 1200
As in Table 2 plus 3600
Left end: 3784
Right end: 3820
Left end:
Right end: 3780

5. Given the simple characterization of graphs having interval count one, it is
natural to seek such a characterization of graphs with interval count 2 (or k). Few
results are known, but Leibowitz [6] has shown that graphs with interval count at
most two include all trees which are interval graphs and all threshold graphs.

Golumbic [4] also mentions the open problem of finding good upper and lower
bounds for the interval count of a graph.

Acknowledgment. One of the authors (Peck) would like to thank D. J. Kleitman
for his many helpful comments.
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MAJORIZATION ON FINITE PARTIALLY ORDERED SETS*

KO-WEI LIHt

Abstract. The classical concept of majorization between two finite sequences of real numbers is
extended to between real-valued functions defined on a finite partially ordered set. We establish characteriz-
ations of majorization. The FKG and Holley inequalities from statistical mechanics have their majorization
interpretations. Their validity is closely tied to the distributiveness of the background lattice. An equivalence
proof is hence provided. Finally, suitable restrictions on the rearrangement of function values enable us
to generalize the classical theorem of Schur-Ostrowski which characterizes functions preserving majorization
in terms of relative orders of their first partial derivatives.

1. Introduction. The classical concept of majorization between two finite sequen-
ces of real numbers is defined as follows. Let the sequences concerned be c

{c 1, c2," , a,} and/3 {ill,/32,’ ,/3,}. We rearrange them into nonincreasing order
so that a 1" >= a z* =>"" > c*n and/3 * >/3 2* >’"= >=/3*n, where c/* and/3/* are, respec-
tively, the th largest numbers in c and/3. Then a is said to maforize if

* +* +’" "+* >--t* +t* +’"" +t*
for k 1, 2,..., n and the equality holds when k n. This definition is due to
Muirhead [12] and is instrumental in the study of symmetric means by Hardy,
Littlewood, and P61ya [5]. Subsequently, majorization was applied to a wide variety
of problems such as deterministic and probabilistic inequalities, incidence matrices,
order statistics, and optimal codings, just to name a few. The recent book by Marshall
and Olkin [11] provides an excellent account of the many facets of majorization.

One slightly unpleasant feature of classical majorization is that it is not a partial
ordering unless all rearrangements of a sequence are identified or only monotone
sequences are considered. The rearrangement procedure impedes a direct and natural
generalization to sequences defined on a finite partially ordered set. With the re-
arrangement step removed, it is convenient to consider c and/it as weights attached
to the element p of a finite partially ordered set P. And a is again said to maforize
/3 if

for any subset U of P which is closed above and the equality holds in case U P.
When P is a totally ordered set p >p2 >"" >pn, this new concept of majorization
coincides with the classical one imposed upon nonincreasing sequences. Inspired by
his research into Huttman trees [3], [8], Hwang [7] defines the above notion of
majorization and attempts a generalization of the following fundamental theorem of
Schur [15] and Ostrowski [13].

THZOgM. Let f(xl, x2,""", xn) be a real-valued function possessing continuous

first partial derivatives. Then f( 1, 2, ", an) >=f(fll, fl2, ", fin) for all sequences
and fl such that c majorizes fl in the classical sense if and only if f is symmetric and
(xi-xi)((cgf/xi)-(f/xi)) >=0 holds in the domain off.

However, Hwang is only partly successful due to the lack of a suitable modification
of the rearrangement procedure. Nevertheless, along the way, Hwang proves a beauti-
ful theorem [7, Thm. 3.1] which characterizes majorization in terms of a finite sequence

* Received by the editors January 30, 1981. This work was supported in part by the National Science

Council of the Republic of China.

" Institute of Mathematics, Academia Sinica, Taipei, Taiwan, Republic of China.
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of "flows". His proof contains a grain of surprise because the main tool used is a
result of Shapley [17] concerning the existence of cores of characteristic function
games. Although interesting in its own right, this proof more or less obscures the
underlying dynamics. Therefore, Hwang [9] subsequently provides a direct proof of
his generalization of the Schur-Ostrowski theorem.

Our efforts to understand Hwang’s flow characterization have guided our attention
to an apparently remote topic--the inequality of Fortuin-Kasteleyn-Ginibre [4] from
statistical mechanics. The FKG inequality states as follows. Let L be a finite distributive
lattice and let be a probability measure on L satisfying

(x)(y) <_- (x v y)(x ^ y)

for all x, y L, where/z (x)=/z ({x }). Then

for real-valued functions f and g monotone in the sense of the order of L. The FKG
inequality is known to have many combinatorial applications [16], [18] and to be a
consequence of the following inequality of Holley [6]. Let/z and/z2 be probability
measures on a finite distributive lattice L such that

(x)(y) <- (x v y)2(x ^ y)

for all x, y L. Then

Z f(x)a (x) _-> Z/(x)a(x)

for any increasing function f. The Holley theorem so phrased is equivalent to another
formulation within a network-flow setting as demonstrated in Preston [14]. Seymour
and Welsh [16] also note that the equivalence proof is based on an order relation
between/x and tz2 which is precisely the majorization relation on a partially ordered
set introduced by Hwang. This strongly suggests the feasibility of a network-flow
foundation for Hwang’s flow characterization. Such are the circumstances which
prompt us to embark upon a unification under the banner of majorization.

Now a few words about the organization of this paper are in order. In 1, we
first define basic terms and introduce the notions of majorization and weak majoriz-
ation. Various characterizations of these notions are supplied afterwards. Theorem 2
is a modification of the original equivalent formulation of the Holley inequality.
Theorem 3, generalizing Hwang’s flow characterization, can be regarded as a "sequen-
tial" version of Theorem 2. Theorem 4 and its second corollary will bear out the
majorization base of Holley and FKG inequalities. The phenomena that local order
relations on the four-element sublattices {x, y, x v y, x ^ y} determine global majoriz-
ation relations are closely tied to the distributiveness of the lattice. After introducing
an auxiliary concept of majorization in ratio, the aforesaid phenomena are codified
into the names of Holley and FKG lattices. Thereby their equivalence to distributive-
ness is established. An analogous result of Kemperman [10, Thm. 7] could be compared
with our Theorem 6. In 3, a well-behaved method of rearrangements enables us to
obtain a bona fide generalization of the classical Schur-Ostrowski theorem. The proof
also corroborates the usefulness of the flow characterization of majorization.

2. Characterization theorems. Let P be a finite partially ordered set. A subset
U of P is called an (order-) filter if, for xU and yP, x-<y implies yU.
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(S)={xl(ly S)(x =>y)} is the filter generated by a subset S of P. We simply write
(x) when S is the singleton set {x}. The set of all real-valued functions defined on P
is denoted by . Lower Greek letters represent elements of . For c in and S P,
we define a(S)= Y. {c(x)lx e S}, when $ is nonempty, and c()=0. A tr in is
called increasing if tr(x)=>tr(y) whenever x -> y in P.

A natural partial ordering of , named weak maforization, can be defined as
follows.

a weakly maforizes if and only if a (U)->/ (U) for any filter U.

The reflexivity and transitivity of weak majorization are immediate. Now suppose
c (U)= fl (U) for any filter U. Let x be an arbitrary element of P. Consider the filters
(x) and (x)-{x}. We see that a(x)=c((x))-((x)-{x})= ((x))-((x)-{x})= (x).
Thus weak majorization satisfies antisymmetry.

Now a stronger partial ordering of , called maforization, is defined as follows.

maforizes [3 if and only if c weakly majorizes fl and c (P)= fl (P).
A totally ordered set T is said to be consistent with P if T and P possess exactly

the same elements and x <- y in P implies x =< y in T. A characterization of majorization
via totally ordered sets consistent with P is first exhibited in Hwang [9].

THEOREM 1. Ce (weakly) maforizes [3 on e if and only if t (weakly) maforizes
on every totally ordered set T consistent with P.

Proof. Sufficiency. Suppose a (U) </3 (U) for some filter U with m elements.
Since elements outside U are either incomparable or less than elements in U, there
exists a totally ordered set T consistent with P whose m largest elements constitute
the set U. It follows that a does not (weakly) majorizes fl on T.

Necessity. Suppose i c (xi) < Y. fl (x) for the m largest elements of some
totally ordered set T consistent with P. For x P, x -> xj in P implies x => xj in T. So
x must be some Xk, l<=k <-f. This shows that U ={x,x2,’’’ ,x,,} is a filter in P and
(u)<3(u).

THEOREM 2. Let a and fl be nonnegative functions, a maforizes [3 if and only if
there exists a nonnegative real-valued function 3" defined on P P such that

E 3’ (x, y) c (x), Y. 3’ (x, y) =/ (y), 3" (x, y) 0 unless x >= y.
yP xP

A sufficient and necessary condition for t weakly maforizing reads the same except
that the first equality is replaced by ,yp 3"(x, y) _-< c (x).

Proof. We only treat the majorization case.
Sufficiency. Let U be an arbitrary filter. We also use U to denote the characteristic

function of U. We have

(u) =E E U(x)v(x, y)=EE U(x)v(x, y)>--EE u(y)v(x, y) (u).
y

Clearly c (P) fl (P). Thus a majorizes ft.
Necessity. Construct a network-flow model as follows. Besides the source node

s and the sink node t, we have nodes (x, 1) and (x, 2) for each x P. There is a directed
edge from s to every (x, 1) with capacity a (x). There is a directed edge from every
(x, 2) to with capacity fl(x). There is a directed edge from (x, 1) to (y, 2) with
unlimited capacity if and only if x => y in P. Suppose (S, T) is a cut with finite capacity.
Let Ti {x Pl(x, i) T} for 1, 2. The finiteness of the capacity forces (T2) T. It
follows that fl (T2) -</ ((T2)) <= a ((T2)) -< c (T1) and the cut with T {t} has the minimum
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capacity. By the well-known max-flow-min-cut theorem, the maximum flow value of
this network is equal to B (P). Now define ,(x, y) to be the value of a maximum flow
on the directed edge from x to y if x >-y in P. /(x, y) is defined to be 0 for all other
pairs of elements.

An c is said to be transformed into a’ by a reduction if, for a certain pair x >--y
in P, we have

’(x)=(x)-e, a’(y)=a(y)+6, a’(z)=a(z) for z#xory,

where e and 6 are real numbers such that e _-> 0 and is equal to either e or 0. If
6 e, the reduction is said to be conservative. is reducible to/ if a can be transformed
into t8 by a finite sequence of reductions.

THEOREM 3. a weakly maforizes [3 if and only if is reducible to

maforizes B if and only if a is reducible to B by a sequence of conservative reductions.
When a and B are both nonnegative, a reduction sequence can be constructed through
nonnegative functions.

Proof. Sufficiency is immediate from the transitivity of (weak) majorization since
a (weakly) majorizes a’ after a single reduction.

Necessity. Let us first deal with majorization. Suppose a and/ are nonnegative.
Using Theorem 2, we can sequentially arrange conservative reductions between pairs
x > y with amounts e y(x, y). For arbitrary a and/, we may convert them into
nonnegative functions by adding a sufficiently large constant to each a (x) and/3 (x).
The reduction amounts thereby obtained also work for the original a and/. To deal
with weak majorization, we extend P to P’ by adjoining a new element x0 which is
to be less than all elements of P. Extend a and/ to P’ by defining a (x0) =/ (P) a (P)
and/ (x0)= 0. Thus a (P’)=/3 (P’). It is obvious that a majorizes/ on P’. Hence a is
reducible to/ on P’ by conservative reductions. If a reduction step involves x > x0
and the amount e, then it can be regarded as a reduction on P from x to x with e

subtracted and 0 added. Modified in this manner, a finite sequence of reductions
from a to/ on P is obtained.

When P is a totally ordered set, we label elements of P in the standard order
p >pz>’" >p,. Thus, an a can be identified with the row vector (a,
such that c =a(p). The following corollary becomes apparent when we interpret
m0a, </’, as the reduction amount from p to pi.

COROLLARY 3.1. Let P be a totally ordered set. a maforizes B if and only if them
exists an n n matrix M (rail) such that mo >= O, mii= 0 for i>], ,= mii= 1 and

B -Mo
THEOREM 4. a weakly maforizes if and only if crc weakly maforizes rB for any

nonnegative increasing function or. Here era is the product function such that era (x)=
cr(x)a (x) for all x.

Proof. Sufficiency is trivial.
Necessity. Let a be transformed into a’ by a reduction involving x->_ y. Let U

be an arbitrary filter.

cry(U)= U(x )cr(x )(cz ’(x + e + U(y)cr(y)(a’(y)- 8)

+X {(z)’(z)lz U-{x, y}}

eU(x)o’(x)-6U(y)o’(y)+o’a’(U).

(i) If U(x)= U(y) O, then ra(U)=ra’(U).
(ii) If U(x)= 1 and U(y)= O, then ra(U)=er(x)+ra’(U)>-ra’(U).
(iii) If U(x)= U(y)= 1, then ra(U)=er(x)-&r(y)+ra’(U)>=ra’(U) since

r(x)-> r(y) and 8 is either 0 or e => O.
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This shows that ra weakly majorizes ra’. By Theorem 3, ra weakly majorizes r/.
We remark that (i) the inequality Yx r(x)a (x)=> Yx o-(x)fl (x) is already sufficient

and necessary for a weakly majorizing B; (ii) if a majorizes , then, by adding a large
enough constant to make r nonnegative, we have x r(x )a (x >= r(x)13 (x) for any
increasing function r.

COROLLARY 4.1. Let ;1 be the set of all nonnegative increasing functions and
be the set of all nonnegative r such that, for any and [3, if a weakly maforizes [3,
then o,a weakly ma]orizes r[3. Then :1 2.

Proof. Theorem 4 shows that 1---2. Conversely, let r 2. For x => y, let
and/3 be the characteristic functions of {x} and {y}, respectively. It is clear that
weakly majorizes/3. So r(x) o’a (P) >- r/3 (P) r(y).

COROLLARY 4.2. Suppose ra(P) # O. r maforizes if and only if ’cr weakly
maforizes -a for any nonnegative increasing function ’. Here r is the average of r
with respect to defined by r (x ( (P)/ra (e))r(x )a (x for all x.

This is immediate since r (P) a (P). If ra (P) # 0 and r majorizes a, we actually
have ’r (P)>= ’a (P) for any increasing function -. This can be verified by adding a
sufficiently large constant to each z(x) and applying Theorem 4.

3. Holley and FKG properties. We say that c ma]orizes [3 in ratio if/3 (P)a (U)>_-
a (P)fl (U) for any filter U. For nonnegative functions, c majorizing B in ratio together
with c (P)_->/3 (P) will give rise to a partial ordering stronger than weak majorization.
Other elementary facts concerning majorization in ratio are collected in the following
lemma. The straightforward proof is omitted.

LEMMA 5. Let , and 3’ be positive [unctions. Then the following statements are
equivalent.

(i) a v majorizes .
(ii) 3"a majorizes 3" in ratio.
(iii) 3" majorizes 3" in ratio.
Now P is assumed to be a lattice with the join v and the meet ^ operations.

We have the following notions for P.
P is said to be Holley if, when a and B are nonnegative, the inequality

(x)/(y)_-< (x v y)/(x ^ y)

for all x and y will imply that c majorizes fl in ratio.
P is said to be FKG if, when a is nonnegative, the inequality

(x)(y)_-<(x v y)(x ^ y)

for all x and y will imply that tr majorizes a for any nonnegative increasing tr such
that a (P) > O.

Note that, when P is FKG, the conditions on a imply

for any increasing functions tr and r.
THEOREM 6. The following statements are equivalent for a finite lattice P.

(i) P is Holley.
(ii) P is FKG.
(iii) P is distributive.
Proof. From (i) to (ii). Let a and tr be nonnegative, tra (P)> 0, and tr increasing.
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Clearly o- is nonnegative. Assume a (x)a (y) _-< c (x v y)a (x ^ y) for all x and y.

cr (x)a (y)= (o(P)/o’a(P))cr(x)a(x)o(y)

<-(a(P)/o’o(P))a’(x)o(x v y)a(x ^ y)

<-(a(P)/o’a(P))a’(x v y)a(x v y)c (x ^ y)

r(x v y)c(x ^ y)

Since P is Holley, tr majorizes c in ratio. Hence (ii) holds.
From (ii) to (iii). Let Po be a sublattice of the FKG lattice P. Assume that a and

tr are nonnegative functions on Po such that tr is increasing on P0 and tra (P0)> 0.
Now extend c and tr to a’ and tr’ which are defined on P. For x P-Po, define
a’(x) 0 and tr’(x) max {tr(y)[y <_-x and y P0} under the convention max =0. It
follows that a’(x)a’(y) -< a’(x v y)a’(x ^ y) for any x, y P and tr’ is increasing on P.
Suppose U0 is a filter in Po. We consider the filter U (Uo) in P. Since P is FKG,
we have (a’(P)/tr’a’(P))tr’a’(U)>=a’(U). However, a’(P)=a(Po), a’(U)=a(Uo),
tr’c’(P) tra (P0), and tr’a’(U)= tra (Uo). Thus tr majorizes a on Po, i.e., Po is also
FKG. On the other hand, a lattice is distributive if and only if it has neither Ms nor
N5 as a sublattice, where M5={x>x2, x3, x4>xo} and N5={xx>x.>x3>xo and
x > x4 > Xo}. To prove our implication, it suffices to show that neither M nor N5 is
FKG. Now let a be the constant function 1/2 on M. Let tr be the characteristic function
of {x x, x2, x3}. It follows that tr tr/3. On the filter U {x, x4} we have tr (U) 1/2 <
a (U). So tr does not majorize a. N5 can be dealt with similarly. This example is first
observed by Kemperman [10, p. 327] in a slightly different context.

From (iii) to (i). This is already established in Ahlswede and Daykin [2, p. 288]
by means of their remarkable four-weight inequality in [1].

4. Schur-Ostrowski theorem. In order to generalize the classical Schur-
Ostrowski theorem to majorization on partially ordered sets, we have to introduce a
suitable notion for the rearrangement of values of a function. An a’ is said to be
obtained from a by a transposition if there exist x and y such that a’(x)= a(y),
a’(y)=a(x) and a’(z)=a(z) for z x and y. a’ is a rearrangement of a if it can be
obtained from a by a finite sequence of transpositions, a’ is a P-rearrangement of a

if each of the transpositions in the rearrangement sequence involves two comparable
elements of P. We first note the following existence lemma.

LEMMA 7. For any a, there exists an increasing P-rearrangement * of a such
that a * majorizes a.

Proof. This can be established by induction on the cardinality of P. Let a(y)=
max {a (z)lz P} and x be a maximal element in (y). By transposing values at x and
y, we get a P-rearrangement c’ of a. It is straightforward to verify that c’ majorizes
a. Now let a" be the restriction of a’ to P’-P-{x}. By induction, we have some
increasing P’-rearrangement (a")* of a" which majorizes c" on P’. Restoring the
omitted value to (a")*, we get an increasing P-rearrangement a* which majorizes
a.

Throughout this section, we use a * to denote an arbitrary increasing P-rearrange-
ment of a. Now we fix a labeling of elements of P so that P {pl, p2,"" ", Pn}. As
noted before, when P is a totally ordered set, the labeling satisfies p >p2 >" Pn.
An a is identified with the point (a 1, a2, , an), with ai a(pi), in the n-dimensional
real space. A real-valued function f(xl, xa,’", xn) is said to be P-symmetric if, for
any comparable elements p and Pi of P, the function value will be the same when x
and xi are interchanged. A short notation for the substitution f(ct 1, ct2, , c,,) is f(ct).



MAJORIZATION ON POSETS 501

To state our generalization of the Schur-Ostrowski theorem, we need the set Dij for
any comparable elements pi and pj. D {althere exists some a* in which a and a
are rearranged to comparable elements of P}.

THEOREM 8. Let f(x 1, x2, , x,) be a function possessing continuous first partial
derivatives over an open domain. Then f(a )>=f([3 ]’or all a and [3 such that some a*
maforizes some [3", if and only if f is P-symmetric and, for any comparable elements
p and p,

(Xi--XJ)(i XI.) 0
on Dij f’) domain (f).

Proof. Necessity. Supposep andp are comparable. Let/i aj, flj ai, and flk ak
for k and/’. Then any a* can be regarded as a/* by adding at most one transposition,
and vice versa. So f is P-symmetric.

Now choose and fix an arbitrary a Di fq domain (f). To simplify notation, we
may let 1 and/" 2. For e > 0, define/3 as follows.

fl=(1-e)a+ea, fl=ea+(1-e)a, fl=a forklor2.

Now assume al > a2. Let a* be the increasing P-rearrangement of a such that a

and a2 are rearranged to comparable elements ps > pt. We may suppose that there is
no Pk satisfying ps > Pk Pt and either a a or a k* a2. Now, in a*, we replace the
a at p by fl and the a2 at Pt by fl. For all sufficiently small e, the result of such
replacements produces some (fl)* and shows fl EDGE. Clearly a* majorizes (fl)*.
Thus f(a)-f(fl)>-_ 0 for all sufficiently small e. Using the mean value theorem, we see
that

\OXl

Of ((1 Xe)a q" .Ea2, /Ea q" (1 he)a2, a3, a.))
for some h, 0 < h < 1. As e approaches 0, this shows that (a a2)
(Of(a)/Ox-Of(a)/Ox2)>=O. The case for al <a2 can be handled similarly.

Sufficiency. We want to show that f(a)>-f([3) for all a and/3 such that some a*
majorizes some fl*. Since f is P-symmetric, f(a) f(a*) and f(fl) f(fl*). Therefore
we may suppose that a and/ are increasing and a majorizes ft.

Assume, on the contrary, that, for a certain increasing a, there exists an increasing
fl such that a majorizes/3 and f(a)<f(/3). Consider the set C {ilia majorizes/
and fl is increasing.}. For any totally ordered set T consistent with P, we define
CT {flla majorizes fl on T and fl is increasing on P.}. It follows from Theorem 1
that C f’l CT, where the intersection is taken over those finitely many totally ordered
sets consistent with P. The compactness of C in the n-dimensional real space follows
from the compactness of each and every CT.

We claim that CT is bounded. Every fl in CT can be obtained from a by a finite
sequence of conservative reductions. Thus, if one coordinate corresponding to p grows
to infinity, then a certain coordinate corresponding to some pi >pi will diminish to
negative infinity. This produces nonincreasing functions. Similarly no coordinate
diminishes to negative infinity.
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Next claim that C7- is closed. Let/31,/32,... be a sequence in Ca which converges
kto /3 . We have to show/3 C7-. Write k =crMk where Mk (mij) are the matrices

guaranteed by Corollary 3.1. Since each/3 k is increasing,/30 is increasing and the
sequence m j, k 1, 2,..., is bounded for any and/’. By choosing appropriate
subsequences, we may assume that m kq- limk_, rni exists for all and /’. Then
Mo- (m.) satisfies conditions listed in Corollary 3.1 and/3o= aMo.

Consequently, f attains its maximum value on C at a certain/3. /3 cannot be
identical with c. Hence there exists a nontrivial sequence of conservative reductions
Ol, Ol 1, 012, at, from c to/3. Consider the last step from ct to/3. This step involves
a pair of comparable elements, say pi > p, and the amount e > 0. Now define/3 x as
follows.

/3’=/3,+A, /3;=/3-A, /3,=/3k forkrSiorj,

where 0-<A =< e. We can easily modify the foregoing reduction sequence to become
a reduction sequence from c to/3 x. Since/3 is increasing, we are able to show/3
for all A less than a certain A0 by at most two transpositions. Furthermore, ]" still
attains its maximum at/3 on the set {/3x[0-<X =<A0}. Let g(X)=f(/3). Thus g’(y)
O]’(fl)/x -O]’(x)/xj. We have two possibilities.

Case 1. On Dj fq domain (/), we have

(x-x)(x )>0
whenever x rs x. Then

/

(, + 21)/
\

implies g’(A > 0 which contradicts the maximality off(fl ). We hence obtain the desired
inequality.

Case 2. Otherwise. A trick of Ostrowski will reduce this case to the previous
one. In place of f, we consider the function F(xl, x2,’..,x,)=f(xl, x2,’.’,

x,,)+(O/2)(x+x+’’ .+x :),, for 0>0. We see that

x,-x)( =x,-x) x) +O(x-x)2>O

whenever x # xi on Di fqdomain (f). By Case 1, F(a)>-F([3) for all a and/3 such
that some c * majorizes some/3". Let 0 approach 0; we havef(a) >- f([3). This completes
the proof.

In conclusion, we remark that Theorem 8 gives us the classical Schur-Ostrowski
theorem when P is a totally ordered set. The rearrangement of sequences of real
numbers can be achieved by transpositions each of which is trivially over two compar-
able elements of P. Furthermore, P-symmetry means symmetry and every Dj is the
set of all n term sequences. We further note that the proof of Theorem 8 can be
modified slightly to obtain yet another generalization of the Schur-Ostrowski theorem.

THEOREM 9. Let f(xx, x2, , x,) be a function possessing continuous first partial
derivatives over an open domain. Then f(a)>-f() for all and fl such that some
increasing rearrangement of a maforizes some increasing rearrangement of fl, if and
only if]: is symmetric and, for any comparable elements pi and pi,

(x xi)( Of Of)Ox x >- 0
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{a Ithere exists some increasing rearrangement of a inon D ij domain (f), where D ij

which and aj are rearranged to comparable elements o]’ P}.
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A PRIMAL APPROACH TO THE SIMPLE PLANT LOCATION
PROBLEM*

GERARD CORNUEJOLSt AND JEAN-MICHEL THIZY

Abstract. The most successful algorithms for solving simple plant location problems are presently
dual-based procedures. However, primal procedures have distinct practical advantages (e.g., in sensitivity
analysis). We propose a primal subgradient algorithm to solve the well-known strong linear programming
relaxation of the problem. Typically this algorithm converges very fast to a point whose objective value is
close to the integer optimum and where most of the decision variables have been fixed either to 0 or to
1. To fix the values of the remaining variables we use a greedy-interchange algorithm. Thus we propose
this approach as a heuristic. Computational experience shows that an optimal solution is discovered with
high frequency.

1. The simple plant location problem. The simple plant location problem has
received much attention, as it combines interesting theoretical features with a wide
range of practical applications. Numerous algorithms have successively compounded
on the various structural properties of its primal and dual linear programming relaxa-
tions. Although primal approaches have distinct advantages (e.g., in sensitivity analysis)
they have so far been outperformed by dual approaches, e.g., Erlenkotter [5]. Geoffrion
[6], Narula, Ogbu and Samuelsson [10] and Cornuejols, Fisher and Nemhauser [2]
proposed a subgradient procedure on a dual formulation expressed as the optimization
of a piecewise linear function. In this paper we show that the primal problem can be
written in a similar form and solved by a subgradient algorithm. This primal approach
presents the double advantage of directly yielding (near) optimal solutions which are
amenable to 0-1 variable treatments and of being extremely easy to program. It has
often been noted in the literature that subgradient methods yield good suboptimal
solutions fairly rapidly, but are less efficient in a strict optimality search. We observed
this behavior here also for the test problems that we tried. Accordingly, the approach
proposed in this paper is to supplement the subgradient algorithm by a heuristic
instead of continuing the search until optimality.

The simple plant location problem consists in selecting which facilities to keep
open among a finite set J of potential sites in order to maximize the profit made in
serving a finite set I of customers. A revenue cij can be made by satisfying the totality
of the demand of customer from location if a facility is kept open there, and a
cost f. is incurred for maintaining a facility open at location/’.

(1) z* max E E Ci]Xi] Z fY,
iIjJ ]J

(2) Y’. xii 1 all/

(3) xii <_- Yi --< 1 all L/" J,

(4) xii, yi->0 alliL/’J,

(5) yj integer all/" J.
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By relaxing the integrality conditions (5) we obtain the well-known strong linear
programming relaxation (1)-(4). Several authors have observed that the strong linear
programming relaxation often has integral optimal solutions [13], [2], [5]. We will
show that the vector of variables y can be considered strategic in the sense that, when
this vector is known, optimal values for the other variables (namely the variables xij)
can be obtained analytically. Therefore, for any given feasible y, the optimal value
of (1)-(4) takes an analytic form zL(y), and the strong linear programming relaxation
reduces to

z*= max ZL(y)..
0<__y__<l

PROPOSITION 1. Let J {1, 2, ., n } and, ]:or each L let si be a permutation
ofJ such that

Cisi(1) Cisi(2) Cisi(n).

Given a vector 0 _-< y =< 1, an optimal solution to the linearprogram (1)-(4) with variables
xij is given by

(6)

Ys,() for f < hi,

Xisi(j) 1 Ys,(t) for j hi,
t<hi

0 for f >

where hi is an index such that

(7)
<hi t<<-h

Furthermore, the optimal value ZL(y) is a piecewise linear concave function of y.
Proof. Given the vector 0 -< y <- 1, the linear program (1)-(4) reduces to

max Z E cixi,
iljJ

all e/,

This program decomposes into III knapsack problems with real bounded variables:

zi(y max E cixi,

(8.i) Y’. xij 1,

0--<_xi --< y all/" s J.

The optimal solution (6) follows. Furthermore, it is easy to check that zi(y) is a
piecewise linear concave function of y. One way of doing it is by stating the dual of
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the linear program (8.i). [This will also be useful in the proof of Proposition 2.]

zi(y) min ui + Y. wqyj,

(9.i) Ui / Wij Cij all ] J,

wi=>0 allfJ.
To find an optimal solution of (9.i), it suffices to consider ui =Cik for k J and
wij max (0, ci cik ), all/" J.

Therefore

zi(y) min [ci + Y Yi max (0, cii-ci)].

z(y) is the minimum of a finite number of linear functions and therefore it is piecewise
linear and concave. The function zL(y)=Y.iIzi(y)-Yqjf.yi is the sum of piecewise
linear concave functions and therefore is also piecewise linear and concave.

PROPOSITION 2. Given a vector 0 <= y <- 1, a subgradient of zL at y is given by

(10)
iI

where hi is defined in (7).
Proof. An optimal solution to (9.i) is

u Ci,(h and w*q max (0, c C,,(h,)
Therefore

vi Y, max (0, cii Cis,(hi)) --fj all ] e J,

all/" J.

z(y)= zi(y)- 2 fYi- u / wq- Yi"
j.J il j.J

This equality identifies a linear function which achieves the minimum in the
definition of z as the minimum of a finite number of linear forms. Therefore the
coefficients of the variables yi in this linear function form a subgradient of z at y. [3

In fact, for this problem, the set of all the subgradients is easy to describe.
THEOREM 1. The subdifferential ofz at y is

Z max (0, Cij--Ui)--fj},
il

where u satisfies
(11) Cis,(k,) >---- Ui >- Cis,(h) for all I,

and ki and li are respectively the smallest and largest values of hi satisfying (7).
Proof. If u is outside the limits defined in (11), then setting u equal to the

violated bound yields a smaller value of zi(y) and therefore zL(y). Proposition 2 shows
that each of the bounds in (11) defines a subgradient direction. Since V is defined as
the convex hull of these bounds, the proof is complete.

2. A primal subgradient algorithm. Given a concave real function to be maxim-
ized over a convex feasible set in R", a subgradient algorithm can be described by
the following iterative process: calculate a subgradient of the function at a given point
of the feasible set, update the point by making a step along the direction defined by
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the subgradient and by projecting onto the feasible set, and repeat the process until
a prespecified convergence criterion is satisfied.

The size of the steps is crucial to the success and the speed of the procedure. In
[11] it is shown that a step size of a k guarantees the convergence if Y.k--O a k= +0
and limk_,oo a k 0. However, the rate of convergence is slow. Practitioners have used
successfully a step size a k which is halved if no improvement of the function value is
obtained during a given number s of consecutive iterations. Note that this choice of
a violates the sufficient condition of [11]. Another possibility is simply to decrease
the step size by a factor q at each iteration, again with no guarantee of convergence
to an optimum. Other step sizes proposed in the literature [7], [11] require the
knowledge of a target value, i.e., an upper estimate of the optimal value z*. We tried
several step sizes for our problem and concluded that, unless a sharp estimate of z*
can be obtained, the steps with a target value do not outperform the other choices
of a k. An upper estimate of z* arises naturally from a feasible solution of the dual
of (1)-(4); however, a sharp estimate requires a good dual solution, an approach
contrary to the spirit of this paper--namely, to present a purely primal algorithm.
Consequently, we settled for a step size a k without target value.

For our application the convex feasible set is the n-dimensional hypercube
Z conv{0, 1} onto which it is very easy to project. A more flexible procedure,
delineated in [11] and applied to constrained optimization in the hypercube by
Demjanov [4] allows one to overshoot the projection at each step by as much as the
distance from the current point to its projection.

PROPOSITION 3. Let v be a subgradient ofz at point y. If yi 1 and vi >= 0 (resp.,
Y1 0 and vj <=0), letv (/.)1, ,/3j-l, a,/-)]+l, Vn) be a vectorsuch that -Ivil <-a <-

Iv l, Then the following inequalities hold.
(i) v (y’- y) _-> v (y’- y) _-> z (y’) z (y) for all y’ z,
(ii) cos (v, y’ y =< cos (v , y’ y ).
Proof. If yi 1 and vi >= 0, then 0 -<_ y <= 1 implies 1 -< y yi -< 0 and v.(y; yi) -<_

a (y y), proving (i). Furthermore, IIv 11-<_ IIv II, since <-- a This, together with
(i), proves (ii). The same reasoning holds when yj 0 and vi <- 0. [3

In practice we were not able to identify significant differences between various
overshooting strategies and settled for the simple projection. Another improvement
of the subgradient direction proposed by Camerini, Fratta and Maffioli [1] consists in
taking a linear combination of the subgradient and the former direction of search.
We tested this approach but abandoned it also as it calls for the use of an approximation
of z*.

An original feature of the approach that we propose is to incorporate the primal
subgradient algorithm in a heuristic. The idea of this heuristic is that, after a limited
number of iterations of the subgradient algorithm, certain coordinates of the current
solution y k have converged either to 0 or to 1. (The criterion that we use for
convergence is described below in the algorithm.) These variables are then fixed
definitively to 0 or to 1, thus reducing the size of the location problem to a set of
unsettled variables. Depending on the size of this subproblem, an optimal solution
can be attempted. In general, we propose the use of a well tested heuristic, such as
greedy-interchange [2], for this final phase.

3. The algorithm.
0 < 1 an initial stepStep 1 (Initialization). Choose an initial vector yO with 0-< y

size a, a step reduction factor q and a maximum number of iterations kmax.
kFinally set the variable fixing criteria e, a, Ay and r/ for each iteration k. Set k 0.
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Step 2 (Subgradient). Find a subgradient V
k of ZL at yk according to Proposition

2. If y 1 and v _-> 0 (resp., y 0 and v -< 0), set v 0.
+ y +a%/llvll, all ] J.Update: yi

Set a k+l= ak/q and increment k by 1.
If y. < 0, set y 0.
If y > 1, set y 1.

Step 3 (Variable fixing heuristic).
k k-1 {Sy, a Ay-6y =]yi -Yi [and Ay =max }.

k,IfAy_--<e andy_->l-r/ fixyi=l.
kIfAy<--e andy<_-r/ fixyi=0.

Step 4 (Termination). If every variable Yi has been fixed, STOP. If not, and
k < kmax, go to Step 2. Finally if k -> kmax and some variables are still unsettled,
use a heuristic such as Greedy-Interchange to solve the remaining subproblem.
STOP.

4. Computational results. Three sets of problems were implemented. They have
as many potential location areas as consumer areas (I J). The 33 33 and 57 x 57
problems first appeared in [8]; the 100 x 100 problems appeared in [9]. The revenue
cij is set to the negative of the distance between and j. All the fixed charges are
equal. These problems have been solved in [2], [3], [5], and [14].

The following values were adopted:

kmax 300,
0

q 1.03,
o o

Yi =0.5 and Ayi 1 for all ] e J,

0.001,

=0.9,

.20 k/kmax.

The interchange heuristic proceeds in two stages: first with a set of n locations,
where n is determined by the greedy heuristic, then with n + 1 locations; the smaller
value is retained.

Table 1 indicates the optimal value of each problem, the value obtained by a
greedy-interchange only (set kmax 1 in the algorithm), and finally the value yielded
by the algorithm, consisting of a subgradient search followed by a greedy interchange
heuristic. The computational time is divided in three components: initialization (sorting
the cost matrix), subgradient search and greedy interchange heuristic.

Table 2 gives an idea of the quality of the subgradient component of the algorithm.

Problem 100

TABLE 2
Variable fixing heuristic.

8000 7000 6000 5000 4000 3000 2900 2000

unsettled variables 16 14 20 21 21 25 25 31
after 200 iterations

# unsettled variables 10 12 16 18 18 19 18 26
after 300 iterations

variables fixed to
nonoptimal value
after 300 iterations

0 0 0 0 0 0 0

1150 1000

33 39

31 33

Not
known

Not
known
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VERTICES BELONGING TO ALL OR TO NO MAXIMUM
STABLE SETS OF A GRAPH*

P. L. HAMMER,, P. HANSEN, AND B. SIMEONE

Abstract. The focus of the present paper is on the relations between the set D of optimal solutions
of a maximum weighted stable set problem, and the set C of optimal solutions of its continuous relaxation.
The main result is that if a variable takes a constant binary value in all Y C, then it takes the same value
in all X D (this may be contrasted with a well-known result of Nemhauser and Trotter, stating that if a
variable takes a binary value in some J C, then it takes the same value in some X D). For any graph
G, the set P of the vertices ] such that 3j has a constant binary value in all C, can be efficiently
detected; moreover, the results in this paper imply that in the unweighted case, the subgraph induced by
P has the "strong" K6nig-Egervfiry property and that the subgraph induced by the complement of P has
a perfect 2-matching: actually, the maximum stable sets of G are in a 1-to-1 correspondence with those
of the latter subgraph.

1. Introduction. Let G (V, E) denote a finite, undirected graph without loops.
For notational simplicity, we assume that V {1,. ., n}. A stable set $

_
V is a set

of pairwise nonadjacent vertices, i.e., such that (], k) E, V], k e $. Let c (cj) denote
an n-vector (n =1 VI) of positive weights given to the vertices of G. The weight of a
stable set is defined as the sum of the weights of its vertices. We are interested in the
problem of determining one or all maximum weight stable sets (MWSS) of G, and in
the properties of these sets. It is well known that this problem may be expressed by
the following integer linear program (denoted by ISP, for "integer stability problem"):

max z cixi

subject to

X+Xk <= 1 V(], k)eE,

x e {0, 1}, ]= 1, 2," ’’, n.

To any optimal solution X* (x) of the ISP there corresponds an MWSS S defined
by x 1 if ] e S and x 0 otherwise. Replacing the integrality constraints of ISP by

xj e [0, 1], j=l, 2,...,n,

yields the continuous relaxation of ISP (denoted by CSP). The relationship between
the optimal solutions of the CSP and of the ISP has been studied by Nemhauser and
Trotter [9], Picard and Queyranne [10], Pulleyblank [11] and Berge [3], [4]. The main
result of Nemhauser and Trotter [9] is that if a variable xi takes the value 1 (respectively
0) in an optimal solution " of CSP the corresponding vertex belongs (respectively

* Received by the editors November 3, 1981. This work was done while the first author was visiting
professor at the Swiss Federal School of Technology, Lausanne, and, in part, during visits of the last two
authors there and of the two first ones to the Istituto M. Picone, as well as while the second author was
visiting professor at the Graduate School of Business, University of Pittsburgh. Support of the Swiss Federal
School of Technology, the Canadian Natural Sciences and Engineering Research Council, the Italian
Consiglio Nazionale delle Richerche and the Graduate School of Business, University of Pittsburgh is
gratefully acknowledged.

Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1.

$ Institut d’Economie Scientifique et de Gestion, Lille, France, and Facult6 Universitaire Catholique,
Facult6 des Sciences Economiques, Mons, Belgium.

Istituto M. Picone per le Applicazioni del Calcolo, Consiglio Nazionale delle Rich6rche, Rome, Italy.
The definitions and notation are similar to those of Berge [2].
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does not belong) to at least one MWSS of G. Picard and Queyranne [10] have shown
that there is a unique maximal set of variables which are integral in the optimal
solutions of the CSP. Pulleyblank [11] has studied the unweighted graphs such that
no variable is integer in any optimal solution to CSP--the 2-bicritical graphs--and
has shown that they form the overwhelming majority of random graphs. Another
characterization of these graphs, in terms of regularizable graphs, is due to Berge [3],
[4].

The main result of this paper is that if a variable takes a constant binary value
in all optimal solutions of CSP, then it also takes the same value in all optimal
solutions of ISP. Although it will be seen that the problem of determining all vertices
belonging to all or to no MWSS of G is NP-complete, the set P of those variables
taking a constant binary value in all optimal solutions of CSP can be detected in
polynomial time. The graphs for which P and those for which P V are character-
ized in 3. Characterizations of P are presented in 4. In the unweighted case, which
is dealt with in 5, the graphs for which P are seen to be those having a perfect
2-matching while those for which P V are the graphs with the "strong" KSnig-
Egerviry property.

2. Persistency properties. It is well known that in every basic feasible solution., of CSP the variables i take only the values 1, 0 or 1/2 (cf. Balinski [1]). We shall
restrict our attention to feasible solutions having this property. Throughout this paper
it is understood that "solutions" means "feasible solutions with 0, 1/2, 1 components".
Accordingly, the set V may be partitioned a priori into 7 classes defined by the values
taken by the x. in all optimal solutions ., of CSP"

v, .{/Iv,t,
{/Iv,t

Vo,,.." {ilv2, o or x 1/2},
Vo,, {jlv2, * 1 or *i 0}.

It is of course assumed that if belongs to the class V, x takes each of the values
feasible for V in at least one . We first show that V0.1 is empty for all G, while this
is not necessarily the case for the six other classes.

THEOREM 2.1. If a variable x takes the value 1 in an optimal solution of the CSP
and the value 0 in another optimal solution of the CSP, then there exists an optimal
solution with components O, 1, 1/2 of the CSP in which it takes the value 1/2.

Proof. Consider a graph G and two optimal solutions.,l and2 of the correspond-
ing CSP, such that xi= 1 and :2i 0. Let K ={klk 1--2k, k 1, 2,’", n},Kx
{gig K, Xk 1} and Ko {gig K, Xk 0}.

Consider the n-vectors

X3._{Jlk, kgK, {2k, kgK,
1/2, k.K’ X4= 1/2, keK.

X3 is feasible. Indeed, it is enough to prove that, if and f are adjacent vertices and
x3i 1, then one must necessarily have x3 0. In fact, x3i 1 implies x xi 1 by the
definition of X3. But then Xl =0 since X1 is feasible. Moreover, x2i cannot be 1,
otherwise x2g would be 0 and thus would belong to K and x3 would be 1/2. Hence
we must have x2j < 1, which implies/’’K and x3i 0. A similar argument shows that
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X4 is feasible. Now, we must have

Y c= Y c;
kK kKo

indeed,

would imply

kK1 kKo

z(X) z(2,)-- y. c + X c, > z(2,),
keK keKo

contradicting the optimality of X,, and a similar argument holds for the reverse
inequality. But then X3 and X4 are optimal solutions also, proving the theorem. [

To show that the other classes V are nonempty for some G, we look at some
unweighted graphs. The end vertices of a path of length 2 belong to V1 and the middle
vertex to Vo. The vertices of a triangle (or 3-cycle) belong to VI/: and those of a
square (or 4-cycle) to Vo,,/2.,. In the graph of Fig. 1, the vertices 1 and 2 belong to
V/2,, and the vertices 3 and 4 to Vo,i/2.

3 5

2 4 6

FIG.

An alternate proof of Theorem 2.1 could be obtained along the lines of the proof
of Lemma 1 of Picard and Queyranne [10]. It is indeed implicit in that proof that the
vector

X= 0,
1/2,

is an optimal solution to CSP; this immediately implies Theorem 2.1.
Note that our proof of Theorem 2.1 implies that the set of optimal solutions to

CSP is closed under two binary operations, different from the three considered in
Picard and Queyranne [10]. Using the notation of [8], these operations can be written
as

{klZ 2 1},
{kl 0},
{k[ 2 or x 1/2}

0 1 and *

0 0 0
2 2 2 2

0 1

We now prove a result stronger than Theorem 2.1.
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THEOREM 2.2. Let Q V- Vo- V1. There is an optimal solution* of CSP such
that 1/2 for all

Proof. Let ,1 be an optimal solution of CSP with a maximum number of com-
ponents equal to 1/2. Assume that the theorem is false; then there is an index/" 17" such
that )lj is integer. Since/" 6 V, there is an optimal solution X2 such that x zi. But
then the vector X5 defined above is an optimal solution to CSP with more components
equal to than -1, a contradiction. F!

Let us now turn to the relationship between the optimal values of the variables
in ISP and CSP.

THEOREM 2.3. If a variable xi takes the value 1 (respectively O) in all optimal
solutions of CSP then it retains the same value in all optimal solutions X* of ISP,
hence the corresponding vertex belongs to all (respectively to no) maximum weight stable
sets of G.

Proof. Assume by contradiction that the result does not hold. Then let denote
an optimal solution of CSP such that x. is integer and X* an optimal solution of ISP
such that xf 1-

Let K {k ]k 0 or k 1}. Consider the n-vector defined by

|k forkK,
k. x for k’K.

X is integer, and feasible. Indeed, for all (k, l) such that k K, K or such that
kgK, lgK, this follows from the feasibility of ., and of X* respectively. For all (k, l)
such that k K, lK and (k, l) E we must have k :k 0 as .l 1/2.

Moreover,

E c,, <-_ E c,x,(2.1)

otherwise z()> z(X*), contradicting the optimality of X*. But then, consider the
n-vector, X’ defined by

forkK,x:= for k,ffK.

X’ is feasible. This follows from the feasibility of ., and X* for k K, K, the
feasibility of for kgK, lgK and the fact that k 0, l 1/2 for all (k, l) such that
k K, l/gK and (k, l)E.

If (2.1) holds as a strict inequality z(X’)> z(), contradicting the optimality of; if (2.1) holds as an equality X’ is an optimal solution of CSP with x =, again a
contradiction.

The converse of Theorem 2.3 does not hold. Indeed, in the unweighted graph
of Fig. 2, there is a single MSS consisting of 1 and 2, yet all vertices belong to V/2.
No result similar to Theorem 2.3 holds if the vertices of G are assumed to belong to
V1/2,1 or V0,1/2 instead of to V1 or Vo. Indeed, the graph of Fig. 1 has four MSS:
{1, 2, 5}, {1, 2, 6}, {1, 2, 7} and {3, 4, 7}; so a vertex/" such as 1, which is associated
with a variable xi never equal to 0 in an optimal solution of CSP, may not belong to
all MSS of G, and a vertex/, such as 3, associated with a variable xj never equal to
1 in an optimal solution of CSP, may belong to an MSS.
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5 3

2
FIG. 2

The permanent P of G is the set of those vertices/" for which xj takes a constant
binary (0, 1)-value in all optimal solutions of CSP. Determining the permanent can
be done in polynomial time. Indeed, it is a well-known result of Edmonds and
Pulleyblank (see Nemhauser and Trotter [9]) that an optimal solution of CSP can be
determined by solving a maximum weight stable set problem in a bipartite graph
G’=(V’, V",E’) associated with G =(V,E); V’ and V" both have n vertices and
E’ {{i’,/’"}, {i", j’}]i, ] E}, with weights c c’ cj; associating with the optimal
solution .,’, ,1" of the weighted stability problem in G’ the vector .- (.,’ +.,"),
we note that X is anoptimal solution to the CSP on G. To check if one of the
conditions of Theorem 2.3 is satisfied, we consider in turn each variable xi such that

1 or x 0; we then set x 1, x 0 and resolve the bipartite weighted stable
set problem; if the value of the objective function is <z (.,) the condition is satisfied,
in view of Theorem 2.1.

As we have seen above, Theorem 2.3 allows us to easily detect, in general, only
a subset of those variables belonging to all or to no MWSS of G. The next result
shows that finding them all may be difficult, at least in some cases.

THEOREM 2.4. The problem of determining all vertices belonging to all or to no
maximum stable sets of a graph G (the persistent stable set problem) is NP-complete.

Proof. We use Cook reducibility (see Cook [6], Garey and Johnson [7]). Assume
that a polynomial algorithm exists to find all vertices belonging to all or to no maximum
stable sets of G. Apply it to G and delete all such vertices. Each of the remaining
vertices (if any) belongs to at least one maximum stable set of G. Choose any vertex
and delete it, as well as its neighbors (i.e., adjacent vertices). Iterate this procedure
until no more vertices remain. In this way, a maximum stable set would be determined
in polynomial time. As the stability number problem is NP-complete, the persistent
stable set problem is NP-hard.

To show that the persistent stable set problem is also NP-complete we consider
all subgraphs G and G’ of G generated by V minus/" and by V minus/" and its
neighbors respectively, for j 1, 2, , n. Now/" belongs to all maximum stable sets
of G if and only if a(G)<a(G); belongs to no maximum stable set of G, if and
only if l+a(G}’)<a(G). As the stability problem is NP-complete these conditions
can be checked in polynomial time on a nondeterministic Turing machine, and the
result follows.
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Theorem 2.5 allows us to further characterize the optimal solutions . of CSP.
Let V V- V0- V1 as above and G’ denote the subgraph of G generated by V.

THEOREM 2.5. (a) The optimal solutions f of the CSP are precisely the vectors

j=l if j V,

if j Vo,

where X* is an optimal solution of CSP for G’;
(b) X*’-(1/2, 1/2,..., 1/2) is an optimal solution of C_SP for G’.
Proof. To prove (a) let us first show that if k V, V0 LJ VI, and (k, l)E then
0 in all Y. Indeed, if the statement is false 1 and hence k 0 in all .,

contradicting the assumption that k V. Then (a) easily follows.
Assume (b) does not hold. Then by Theorem 2.2 there is some variable j which

takes the same integer value in all optimal solution of CSP for G’ and, because of
(a), for G also. But this contradicts

It follows from Theorem 2.5 that the process of finding those variables which
take the same binary value in all optimal solutions of CSP for G, cannot be iterated
on G’.

3. Extreme eases. In the present section, we shall give a characterization of
"bad" graphs, for which no variable takes a constant binary value in all optimal
solutions of the corresponding CSP, as well as of "good" graphs, for which all variables
take a constant binary value in all optimal solutions of CSP. We denote by z7 the
optimum value of CSP. If S___ V, we set c(S)=isCi. We shall often refer to the
three sets V1, V0, V defined above. If S

_
V, the neighborhood of S is the set N(S)--

{ili V-S, (i,f)E for some/’S}. For simplicity, we write N(i) instead of N({i})
for singletons {i}.

A perfect c-matching of G V, E) is a nonnegative vector A R (m --IEI) such
that

Ai=ci, for alli=l,...,n.
]N(i)

Note that G may have no perfect c-matching.
A feasible solution of CSP will also be called a fractional stable set of G, while

a nonnegative vector X (1," ", n) such that i +j >- 1 for all (i,/’) E will be
called a fractional transversal of G. If, in addition, X is binary, then X is the
characteristic vector of a transversal in the usual sense, i.e., a set C of vertices such
that each edge has at least one endpoint in C.

THEOREM 3.1. The permanent P of G is empty if and only if G has a perfect
c-matching.

Proof. According to Theorem 2.2, P 3 if and only if h (1/2,. , 1/2) is a maximum
fractional stable set of G; taking into account that h e-h, where e (1,..., 1),
and the fact that for an arbitrary graph the set X is the characteristic vector of a
maximum fractional stable set if and only if e-X is the characteristic vector of a
minimum fractional transversal, it follows that h is a minimum transversal of G.

Let us consider now the linear programming formulation of the minimum frac-
tional transversal problem:

min cfi
(3.1)

s.t.g+->l for (i,f)E,
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and its dual

max ,t 0.
(i,j)E

s.t. Y. Aij -<ci, i=l,...,n,
jN(i)

&ii>=O, (i,j)E.

The vector h (1/2,..’, 1/2)is always a feasible solution of (3.1) with weight (Y7=1 q)/2.
On the other hand, by adding up all inequalities in (3.2)--except for the nonnegativity
constraints--one gets i.iE &J <- (= c)/2 for every feasible solution , the equality
holding only when , is a perfect c-matching. By linear programming duality it follows
now that h is a minimum transversal of G if and only if G has a perfect c-matching. [3

A graph G=(V, E) will be said to be c-tight if V can be decomposed into two
subsets U1 and Uo such that

(a) U1 is stable,
(b) for all nonempty U

_
Uo, c(U)<c(N(U) U1).

THEOREM 3.2. A necessary and sufficient condition for all vertices of a graph G
to belong to the permanent is that G is c-tight.

Proof. Necessity. U1 V1 and U0 Vo are the required sets. V1 is stable and for
all nonempty U___ V0 one must have c(U)<c(N(U) U1); otherwise the vector
with

(1 foriV1-N(U),

x=lO forieV0-U,
1/2 forieUU(N(U)Yl)

would be an optimal solution of CSP, a contradiction.
Sufficiency. Let us assume G to be c-tight and let us prove that the vector

defined by
foriU1,

i= 0 foriUo

is the unique optimal solution of CSP. In fact, let X be an arbitrary basic feasible
solution of CSP and let

01 {ilx, 1}, Do =- {ilx, o}, O1/2 {ilx, 1/2}.

If A D1 f3 Uo, and B Do f3 U1, then N(A) f’) U1
_
B. By assumption, c (A) <

c(N(A) f’) U1), unless A ;. Hence, the vector X’ given by

Ii’iD1-A’x iDo-A,

(, D1/2 (.J A (N(A) UI)

is feasible, and cX’=cX+-(c(N(A)fqU1)-c(A))>=cX, the equality holding only
when D1 .

Next, let F (D1U D1/2) f) Uo. Again by assumption, c(F) < c(N(F) f3 U1) unless
F . Hence the vector X" given by

D1 [.J (N(F) f’) U1),
x7 i Uo,

(-, D1/2 f3 U
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is feasible, and cX"= cX’+-(c(N(F) U)-f(C))>-cX’, the equality holding if and
only if F .

Finally, since c:=cX"+1/2c(D/2fqU)+c(DofqU), one has cfi;>-cX’’, with
e.quality only if U1 =D. It follows that c) >-cX, the equality holding only when
X X. Since X was arbitrary, " is the unique optimal solution of CSP. Therefore
V1
_
U1 and Vo

___
U0.

Assume now that V . We cannot have V
_

U1, since otherwise definingX* by

l, e V1,
(3.3) x* 0, e Vo,, e V,

we would have 5 c TX* < CT 5.
Hence the set L V f’l Uo is not empty. Since V1 and V are completely

disconnected, N(L) U1
___

V. By hypothesis, c (N(L) U1) > c (L). Hence the vec-
tor X given by

1 for V1 (N(L) UI),
i= 0 forieUo,

1/2, for e U1 Vl N(L)

is a feasible solution of CSP such that c" > cX*,a contradiction. It follows that
V=. [3

Remark. It is worth noting that the permanent of G coincides with V if and only
if CSP has a unique optimal solution, and this solution is binary.

If S
_

V, we denote by G(S) the subgraph of G induced by $.

For arbitrary graphs the following decomposition property holds.
THEOREM 3.3. The vertex set of an arbitrary graph G can always be partitioned

into two subsets P and O such that G(P) is c-tight and G(O) has a perfect c-matching.
Proof. Let P V [.J Vo be the permanent of G and O Q. By Theorems 2.5

and 3.1, G(Q) has a perfect c-matching. On the other hand, V is stable and for all
U

___
Vo, we must have c(U)<c(N(U)fq V), for otherwise the vector " given by

if e V-N(U),
i if Vo- U,

ifie Q U U U (N U)f’I V,)

would be a feasible solution of CSP such that c T.f(>_ C TX*= 5, with X* given by
(3.3). Hence
and V0.

4. Characterization of the permanent. The results of this section give a charac-
terization of the three sets V, V0, V defined above.

Since Vo N(V) and V V V N(V), the set V1 uniquely determines V0
and V" hence we shall concentrate our attention only on V.

THEORZM 4.1. A vertex belongs to V if and only if it is unsaturated in some
maximum c-matching.

Proof. Let A be the set of those vertices ] having the property that ] is unsaturated
in some maximum c-matching. Let us prove that A_ V. In fact, if s A there is a
maximum c-matching A such that ir(i)Aij < ci. Applying complementary slackness
to the primal-dual pair of linear programs (3.1) and (3.2), one sees that 3i--0 for
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all optimal solutions X of (3.1), and thus x 1 for all optimal solutions X of CSP.
Hence A

_
In order to prove that V1 A, consider an optimal solution X of (3.1) and an

optimal solution h of (3.2) such that (X, A) is a strongly complementary pair. X*-
e-, is an optimal solution of CSP. If V1, one has x x* 1, 1 0 and Y’.jr(0 h0 < c;
hence

Another characterization of V1 is based on the concept of "major set".
We shall call a stable set S* a ma[or set if $* maximizes c(S)-c(N(S)) over all

stable sets of G.
LEMMA 4.2. A stable set $ is mafor if and only if there is an optimal solution X

of CSP such that S =-{ilxi- 1}.
Proof. Let S be an arbitrary stable set. Define a vector X by

1 if iS,

x 0 ilioN(S),
1/2 if i V-S-N(S).

X is a feasible solution of CSP, and

(4.1)

On the other hand, if X* is an optimal solution of CSP, let S---{i" x’ 1} and
So* ={i" x* 0} (note that S* and S may be empty). Then one must have So* N(S*).
Hence

(4.2)

The lemma then follows from (4.1) and (4.2).
THEOREM 4.3. For an arbitrary graph G there is a unique minimal ma]or set, and

this set is precisely
Proof. The set V1 is stable. Moreover, by Theorem 2.5, there is an optimal

solution X* of the CSP such that V1 =-{i" x* 1}. Hence VI is a major set by Lemma
4.2. Moreover, again by Lemma 4.2 and by the definition of V1, every major set
contains V1. Hence V1 is the unique minimal major set of G.

5. The unweighted case. For the unweighted case, i.e., the case when all the
weights ci are equal, the results of the previous sections take a particularly simple and
interesting form.

For technical reasons, and without loss of generality, we may assume that ci 2
for 1,..., n. Then, Theorem 3.1 implies

THEOREM 5.1. A graph G has the property that no variable takes a constant binary
value in all optimal solutions of the corresponding CSP if and only if the vertex set of
G can be covered by pairwise nonincident edges and odd cycles.

Proof. Follows from Theorem 3.1 and from the easily seen fact that G has a
perfect 2-matching if and only if the vertex set of G can be covered by a set of pairwise
nonincident edges and odd cycles. [

COROLLARY 5.2. If the stability number a(G) of G is greater than n/2, then at
least one vertex of G belongs to all maximum stable sets of G.
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Proof. If c (G) is greater than n/2, then also the fractional stability number c *(G)
is greater than n/2. Hence h (,..., 1/2) cannot be an optimal solution of CSP and
thus, by Theorem 2.2, VoLI V1 must be nonempty. As a matter of fact, if Vo is
nonempty also V1 must be such, for otherwise the vector h (1/2,..., ) would be an
optimal solution of CSP. Thus one always has Vx # and the statement then follows
from Theorem 2.3. U

For example, in all bipartite graphs G with bipartition {A, B} such that IAI IB I,
there exists at least one vertex belonging to all maximum stable sets of G.

Let us now turn our attention to those graphs for which the permanent coincides
with the whole vertex set. We recall that a graph G is said to have the Kinig-Egervdry
(KE) property if, denoting by v(G) the maximum cardinality of a matching and by
’(G) the minimum cardinality of a transversal of G, one has (G)= -(G).

Making use of P. Hall’s theorem, it is not hard to see that the graphs with the
KE property can be equivalently defined as those graphs G whose vertex set can be
partitioned into two subsets U1 and Uo such that:

(a) U1 is stable,
(5.1)

(b) For all U
_

Uo, IN(U)f’) U[ >= IUI.
If strict inequality holds in (5.1) for all nonempty U

___
Uo, we shall say that G

has the strong Knig-Egervgry (SKE) property.
If a graph G is such that V , then G must necessarily have the KE property,

since V implies a(G)= a*(G) and hence ,(G)= z(G) by a theorem of Lovfisz
[8].

Theorem 3.2 then takes the form:
THEOREM 5.3. The permanent of a graph G coincides with the vertex set of G if

and only if G has the strong Knig-Egerv6ry property.
If M is a matching, a vertex v is said to be exposed if no edge in M has v as an

endpoint; otherwise v is said to be saturated. If v is saturated, the unique vertex u
such that (u, v)M is called the twin of v.

THEOREM 5.4. A graph G has the strong Knig-Egervtiry property if and only if:
(a) G has the Knig-Egerv6ry property,
(b) G has a unique minimum transversal C, and
(c) for all maximum matchings M, each vertex of C is connected to some exposed

vertex by an alternating path.
Proof. Necessity. Let G have the strong K6nig-Egervfiry property. Then (a) is

obvious. (b) follows from Theorem 3.3 and from the remark that if CSP has a unique
optimal solution X and if X happens to be binary, then also IMP must have X as its
unique solution, and thus.X e-X yields the unique minimum transversal of G. In
order to prove (c), let U and U0 be the two sets in the definition of the SKE property.
As we have seen in the proof of Theorem 3.3, Uo is a minimum transversal (and
hence coincides with the unique minimum transversal C of G), and U1 is a maximum
stable set. If M is any maximum matching, each edge of M has exactly one endpoint
in Uo. Let Vo be a given vertex in Uo. Assign labels to the vertices of G as follows:

1. Give Vo the label "-".
2. If v is an unscanned vertex labelled "-", give the label "+" to all unlabelled

neighbors w of v in U. For every such w, set p(w)= v (that is, v is declared
to be the predecessor of w). Declare v scanned.

3. If u is an unscanned vertex labelled "+", and u is exposed, stop; in this case
an alternating path from Vo to u exists and can be retrieved from the pre-
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decessor index p(. by the usual backtracking procedure. Else if the twin w
of u is unlabelled, give the label "-" to w, and set p (w) u. Declare u scanned.

4. If there are no more unlabelled vertices, stop. In this case, let U be the set
of vertices labelled "-" and let U’ be the set of vertices labelled "+". Then
clearly U’I UI and U’= N(U) f) U1, by the way the algorithm works. Hence
G does not have the SKE property.

Sufficiency. If G has the KE property but does not have the SKE property, then
there must be a nonempty set Uc__ U0 such that UI-IN(U) U I, Now eor all
maximum matchings M, each edge of M has exactly one endpoint in Uo. If Vo is an
arbitrary vertex of U then every neighbor of Vo is saturated by M. Hence there cannot
be any alternating path from Vo to some exposed vertex. E]

Let us call a set S c_ V bimatched if it can be covered by pairwise nonincident
edges and odd cycles. A vertex u will be called avoidable if there is a maximum
bimatched set $ such that u’ S. For example, in the 2-path

there are just two avoidable vertices, namely 1 and 3.
THEOREM 5.5. V1 is the set of avoidable vertices of G.
Proof. Consider the linear program

max Ae
(i,j)E

(5.1) s.t. Y hij_-<2 for alli=l,...,n,
ieN(i)

Ai _-> 0 for all (i, ) E.

A theorem of Tutte [12] states that if is a collection of pairwise nonincident
edges and odd cycles, then the vector A defined by

2 for all edges (i, ) /,
(5.2) Ai 1 for all edges (i, ) along odd cycles of /,

0 for all other edges

is a basic feasible solution of (5.1); and, conversely, all basic feasible solutions arise
in this way.

If $ is a bimatched set, /is a collection of pairwise nonincident edges and odd
cycles covering S, and h is defined through (5.2), then Y’.(,iE hj ISl. Hence if $ is
a maximum cardinality bimatched set then h is a maximum 2-matching; conversely,
if h is a basic optimal solution of (5.1) then the set of saturated vertices is a maximum
bimatched set.

It follows that a vertex is avoidable if and only if it is unsaturated in some
maximum 2-matching (note that if is unsaturated in some maximum 2-matching, it
is also unsaturated in some basic maximum 2-matching). Then the statement follows
from Theorem 4.1. El

If we call a set T c_ V avoidable when there is a maximum bimatched set S such
that $ f’) T , Theorem 5.4 can be rephrased by saying that V1 is the union of all
avoidable sets of G. Note that in Theorem 4.3, V1 was characterized as the intersection
of all major sets of G.

Our final result summarizes the relationships between the three sets V1, Vo, V
and the (discrete) maximum stable sets of G.
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THEOREM 5.6. (a) For all maximum stable sets $ of G, V1
_
$ and Vo f’) $ (

(b) The maximum stable sets of G are precisely the sets S VI S’, where S’ is a
maximum stable set of G( V).

Proof. (a) follows at once from Theorem 2.5; (b) is an easy consequence of the
relation V0 N(V1).

In conclusion it appears that the determination of Vx, V0 and V, which can
be carried out by a computationally efficient procedure, allows the reduction of a hard
problem to another hard problem of smaller size and special structure.

Acknowledgments. The authors thank A. Rinnooy Kan and J. K. Lenstra for
useful discussions.
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MINIMIZING A COMBINATORIAL FUNCTION*

DING ZHU DUt AND F. K. HWANGt

Abstract. Let M(N, d) denote the minimax number of group tests required for the identification of

the d defectives in a set of N items. It is of interest to determine the values of N and d for which

M(N, d)= N-1 (achieved by testing the first N-1 items one by one). Recently it has been proved that

M(N, d) N- for N < [2.5dl. A lemma crucially used to obtain that result is the following:

M(N,d)>-min{N-+l,2t [log2 (d-t]}’N-
The problem is to find a suitable such that

N 1-<2t+[log2 N-

and din is minimized. However, standard methods do not work for this minimization problem. In this

paper we propose a novel method to solve the minimization problem to obtain the new result: M(N, d)=
N- 1 for N_-< [2.625d].

1. Introduction. Let m and n be relatively prime positive integers, an integer
satisfying 0-<_l <-m +n-2, and A a positive number. Define 11 Ira(/+ 1)/(m +n)],
where lx denotes the largest integer not exceeding x. The problem is to locate the
minimum of

F(k)=((mmk+n)k +l) ’
over the nonnegative integers k 0, 1, 2,. .

Let/2 [n(l + 1)/(m +n)J. Since m and n are relatively prime and + 1 <m +n,
neither ll nor 12 can be an integer. Therefore we have

m(l + 1) m(l + 1) n(l + 1) n(1 + 1)
-1</1<, -1</2<.
m +n m +n rn +n m +n

Adding up, we obtain

or l + 12 l.
Define

1-1 <l+12<1+1,

re+n--1
h 1-Ii=0 [(m +n)(x + 1)+/-i]

f(x) 1-I,--o"-1 [m(x + 1) +/ i] 1-I,L- [n(x + 1)+/2- i]

for real x >-0. Then

F(k +1)
f(k)= fork=O, 1,2,....

F(k)

If f(x)= 1 has no nonnegative solution, then F(k) is either monotone increasing or
monotone decreasing. If f(x) 1 has a unique nonnegative solution x, then F(k) has
a minimum k which is either Ix] or [x], where Ix] denotes the smallest integer
not less than x. Of course, since f(x) is a polynomial of degree m + n- 1, we would

* Received by the editors June 9, 1981.
f Institute of Applied Mathematics, Academy of Science, Beijing, China.
Bell Laboratories, Murray Hill, New Jersey 07974.
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not expect in general that f(x) 1 would have so few solutions. However, in this paper
we give an interesting and novel method to show that indeed f(x)- 1 has at most one
nonnegative solution. We also show how this minimization problem can be applied
to a group testing problem.

2. The main result. Two sets of numbers A--{al<a2<.. "<an} and B
{bl <b2 <" <bn} are said to be interleaved ifbl <al <b2 <a2 <" <bn <an (revers-
ing A and B, if necessary).

LEMMA 1. Suppose the set {a<a2<. ’<an} and the set {bl<b2<" "<bn} are
interleaved. Then the equation

Hi._..._l_. (X ai)
g(x)

1-IL (x_bi)
:c’

where c >0 is a constant, has n- 1 roots in the interval (bl, an), and one root in the
n-1

interval (S-g=: bg, S-Y.g=x ag), where S is defined by

’i=lai-cE=lbi

Proof. Since for e > 0 and 1 -<_ <- n

g(bi-e)- >oo and g(ai)=O,
e-O

there exists at least one root in the interval (ag, bi+l) for each 1, 2,..., n- 1 due
to the continuity of g(x) in that interval. Let x, x2,’’", xn denote the n roots. Then
by comparing the coefficients of both sides of the equation

fi (x-ag)-c (x-b,)=(1-c) fi (x-x,)
i=1 i=1 i=1

we have

-,,ni=l ai-c 2iLl bi
2 xi: --S.
i=1 1 --C

n--1
By noting that the sum of the previously found n 1 roots is greater than Y-i= ai but
less than Y.i--. bg, Lemma 1 follows immediately.

Let I denote the set {(l + i)/(m + n ), 1, 2,. , m + n, # m + n l}, J the set
{(l+])/m,j=l,2,...,m,j#m-l} andK the set{(12+k)/n,k=l,2,...,n,k
n -l}.

LEMMA 2. Suppose that m and n are relatively prime. Then the set J UK U{1}
and the set I are interleaved.

Proof. We first observe that no number in J UK U {1} can be equal to a number
in I. For example, if

l+i 11+]"
m+u m

for some 1 _-< -< m + n and 1 -</" _-< m,

then
m 11+]
n l+i-]

Since m and n are relatively prime and 11 +] <2m, necessarily l +] m and +i
m + n. Hence and ] are not in the designated sets.
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Next we show that there exists at most one number in J [.J K contained in the
interval ((l+i)/(m +n), (l+i+l)/(m +n)) for each i= 1, 2,..., m +n, m +n-l.
Suppose to the contrary that there exist two numbers in J [.l K contained in the interval
((l +i)/(m +n), (l +i + 1)/(m +n)). Since 1/m > 1/(m +n) and 1In > 1/(m +n), the
two numbers cannot be both in J or both in K. So we can let (/x +j)/m and (/2 + k)/n
denote the two numbers. Then

or equivalently

But this implies

l+i ll+f /+i+1 l+i 12+k /+i+1

m+n m m+n m+n n m+n

11+] m 11+] 12+k n 12+k
/+i+1 m+n l+i’ /+i+1 m+n l+i

l+]+k m+n l+]+k
/+i+1 m+n l+i

or </" + k < + 1, a contradiction to the fact that i,/’, k are all integers.
Finally, we observe that the number 1 must lie in the interval ((m + n- 1)/(m +

n), (m +n + 1)/(m +n)).
Define M max {(m + ll)/m, (n + 12)/n }. Since all numbers except M in J 12 K

{1} lie in the interval (1/(m +n), (m +n +l)/(m +n)), and since I and JUKU{1}
have the same cardinality, Lemma 2 follows immediately.

COROLLARY. Without loss of generality, assume M (m + ll)/m. Then Lemma
2 remains true if we decrease ll and increase 12 each by 1.

Define
m n

c--
(m + n)+"X

THEOREM 1. Ifc > 1 orc -<2(/+ 1)/(m +n +2(/+ 1)), f(x) 1 has no nonnegative
solution. If 1 >-c > 1-1/2M, f(x)= 1 has a unique nonnegative solution, lying in the
interval (1/2(1-c)-M,c/2(1-c)-(l+ l)/(m +n)). If 1-1/2M>=c >2(l+ l)/m +
n + 2(/+ 1), f(x)= 1 either has no nonnegative solution or has a unique one, lying in
the interval [0, c/2(1 -c)-(l + 1)/(m + n)).

Proof. Note that f(x) can be written as

f(x)

Let

h(m+n)m+" x+
i=/+1 m + n
i#m+n

mn (x+l)
i=l+l i=I2+l
irn in

l+i
m+n
-,i 1, 2, , m +n,im +n-l},

ll+Jm ’]=l’2" "m’]#m-ll}’
12+k
n

-,k 1, 2,... ,n,k #n-12}.
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From Lemma 2, the set J’UK’U {-1} and the set I’ are interleaved, since I’, J’ and
K’ are simply the negatives of/, J, and K, respectively. Define ai and b for
1, 2, , m + n 1, such that

A={al<a2<" .<a,,+,_l}=/’,

B {bl <b2 <"" <b,.+,,-1}=J’l,3K’t.J{-1}.

Then f(x) 1 implies

i=1 (x -at)
--C.

= (x -b)

From Lemma 1,f(x) 1 has m + n 2 roots lying in the interval (-M, -(1 + 1)/(m + n))
and one root in the interval (1/2(1-c)-M, c/2(1-c)-(l + 1)/(m +n)). Then we have

,,+,-1 "+" + m + n + 1
ai=l =1-/-

i=1 i=1 m + n 2

re+n-1 l, +] 12+k m +n +2Z b,=l- Z =1--
i=1 1=1 m k=l n 2

m+n--1 m+n--1

S 2i=1 ai-c ’.i=1 bi 1-1
m +n +1 c

1 -c 2 2(1 -c)’
re+n-2 C

S-Y. ai=
i=1 2(1 --C)

/+1

m+n
re+n--1 1

S-- bi
i----2 2(1 -c)

Since the last interval is the only one that could contain a nonnegative root,
Theorem 1 follows immediately.

COROLLARY. If C > 1, F(k) is monotone decreasing. If 1 ->_c > 2(/+ 1)/
(m +n +2(l+ l)), then F(k-1)>F(k) for k-<max{0, [1/2(1-c)-M]} and F(k +
1)>F(k) for k >-_ [c/2(1-c)-(l+l)/(m +n)] (since c/2(1-c)-(l+l)/(m +n)-
1/2(1-c)+M <1, we can obtain the minimum of F(k) by comparing at most two
values of k from [1/2(1-c)-M] to [c/2(1-c)- [(/+ 1)/(m +n)]). If 2(/+ 1)/(m +
n + 2(/+ 1))-> c, F(k) is monotone increasing.

Proof. Obvious from the observation that

F(k + 1) 1
F(k) -, c

3. An application to group testing. In a group testing problem we have a set of
N items including d defectives and N-d good items. The problem is to identify all
the defectives by means of a sequence of group tests where a group test is a simultaneous
test on an arbitrary subset of items with two possible outcomes. A "pure" outcome
indicates that every item in the subset is good while a "contaminated" outcome
indicates that at least one item in the subset is defective. For given N and d, let
Mr(N, d) denote the worst-case number of tests required by the group testing algorithm
T to solve the (N, d) problem. Define

M(N, d) minM(N, d).
T
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Let I denote the algorithm which tests each item individually. Then clearly

Mr(N, d)=N- 1,

since the nature of the last item can be deduced from knowledge of the other items,
while no other items can be exempted from testing in the worst case. The question
arises: For what values of N and d, is it the case that M(N, d)=Mt(N, d)=N-1?
Recently Hu, Hwang and Wang [1] proved that

M(N, d)=N-1 for 2N -< 5d + 1

and

M(N,d)<N-1 forN>=3d

by using the following two lemmas.
LEMMA 3.

M(N,d)>-min{N-+l,2t [log2 (d-t]}N-
forN>d>-t>O.

LEMMA 4. M(N, d)=N- 1 implies M(N’, d) N’- 1 ]’or d <N’ <N.
We now show that Theorem 1 and these two lemmas lead to a stronger result.
THEOREM 2. M(N, d) N 1 for N <-_ d.

21Proof. From Lemma 4, it suffices to prove Theorem 2 for N [dJ.
We decompose the proof into eight cases.
Case (i). d =8k. Then N= [dJ =21k. Set t=4k. Then n-t= 17k. d-t=4k,

n 2t 2 13k 2. We will prove (47kk) > 213k-2 by showing that

min 213k-2 > 1
k 4k ]

Theorem 2 then follows from Lemma 3.
Define

17k 3kF(k)=(4k ]/21
Then we have m 4, n 13, 11 0, h 2-13. We compute

(m +ll n +12.)M =max 1,
m n

m ml>c
(m + n - .5

/,h .7677>1
M

Therefore, from Theorem 1, f(k) 1 has a unique nonnegative solution in the interval
(1.15, 2.59). Namely, F(k), and hence ()/2a- attains a minimum at k 2. Thus
we have

min (1::)/213k-2 (3:)/224 1.08> 1.

As the proofs for the other seven cases are identical to case (i) with different
parameter values, we only give the values of the parameters in each case without
further details. K will always denote the value of k that minimizes (rS[)/2r-2t-2.
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Case (ii). d 8k + 1, N 21k + 2, 4k + 1, 1.08 <K < 2.54.

mink (17k +1)/4k213t-2 (385)/2z4 1.40> 1.

Case (iii). d =8k +2, N=21k +5, t=4k +2, .92<K<2.42.

mn (17k + 3)/213k-1min4k /(240)/212 1 18" (387)/225=1.15}>1
Case (iv). d 8k + 3, N 21k + 7, 4k + 2, .84 <K < 2.30.

m}n 4k + 1 1/
min 214= 1.60 227= 1 58 > 1

Case (v). d =8k +4, N =21k +10, t=4k +3, .69<K<2.18.

(17k+7/213k {(254)/ (491)/ }mn 4k +1 1/
/2=min 215= 1.29 228= 1 30 > 1

Case (vi). d 8k + 5, N 21k + 13, 4k + 3, .54 <K < 2.01.

(17k +0)/ /(267)/ (44)/231=1 16}>1mink 4k+
213k+5 min 218 1.13,

10

Case (vii). d =8k +6, N=21k +15, t=4k +3, .40<K<1.88.

man (17k + 12)/ 13+7 (279)/k 4k +3
2 220= 1.48> 1.

Case (viii). d =8k +7, N =21k +18, t=4k +4, .31<K<1.77.

man (17k + 4)/213+8 (371)/221 1 25 > 1
4k+
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Abstract. In this paper we obtain a sufficient condition that a kind of iteration scheme has no cycles
other than fixed points.

A detailed version of this result and of its applications may be found in E. Goles [Tech. Rep.,
Depto. Matem., Univ. de Chile, Santiago, 1981].

1. Introduction. Given a real symmetric (n n)-matrix (aij), a real n-component
threshold vector (h), and a partition of n into n 1,’", nk, we define a corresponding
mapping M from the set of binary n-vectors into itself, as follows"

For indices up to the n lth we set

Mi V) 1 iff Y aii V] >= ti.

For indices between n + 1 and n + n2 we make the analogous computation, using
however the value M.(V) instead of V. for the first n values:

Mi (V) 1 iff Y. aiiMi + . aiiV. >--_ ti.
j<=nl, j>nl.

In general, for indices lying in the kth block of indices, we use the M. values
rather than the original V., on all indices in the first k 1 blocks. This use of the most
recent values corresponds to a Gauss-Seidel rather than a Jacobi iteration scheme.

For

we have

k-1 k

S--= 2 ni<i< 2 n.
j=l ]=1

Mi (V) 1 iff Fi V) =- E aii + E aiiV >- ti.
j<-_s j>s

If n n, this is the Jacobi iteration scheme; all new values are computed using the
old input value. For ni 1 it corresponds to the Gauss-Seidel iteration scheme where
each new value is used as soon as it is computed. The general case could be called a
block Gauss-Seidel scheme; numbers of values are computed at each stage with the
same inputs, and all are updated together in determining the next set of components.

This kind of iteration arises in a number of contexts. An application of the results
below is a study of the behavior of the spin systems and will be described.

2. The main result. The main purpose of this paper is to give a sufficient condition
that the mapping V -M(V) have no nontrivial cycles. Our main result is"

THEOREM. Iffor every index i, a, is at least as large as the sum of the magnitudes
of laij] for ] in the same block as but not equal to i, then --> M(Q) has only fixed points
as cycles:

Proof. If n n, so that there is only one block, the condition of the theorem
implies that for any V with V/= 1, Y aijV, is no less than aiW for any vector
if’ having Wi=0. Thus if ,aiW>=ti, so that M(ff’)i 1, then we must also have
M /r)i 1 for any/" -> 1.

* Received by the editors July 25, 1981, and in revised form January 22, 1982.
t IMAG, B.P. 53X, 38041 Grenoble Cedex, France.
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In general, the condition of the theorem implies that the contribution to F(V)
from indices within the same block as (between S + 1 and S + nk) are larger if V 1
than the corresponding contributions to F(W), if W O.

The proof is completed by showing that the interblock contributions to F(V)
cannot be such as to permit cycling. Suppose, on the contrary, there were a cycle
consisting of vectors V(1), V(2), ., V(q), V(1)= V(q + 1) such that

Vff + l) M(V(i)).

Any index that takes the same value in each V(r) contributes identically to eachF V(n))
and, therefore, will not contribute to differences among them. If the ith component
of V(i) goes from zero to one at some point in the cycle and from one back to zero
at some other point, the value of F(V(r)) at the latter point must be strictly less than
its value at the first one. This condition implies that

q

E (V(j))(F(V(j))-F(V(j- 1))) < O.
/=1

The sum over any consecutive block of l’s for V(j) telescopes to form the difference
just discussed between the values at the point where V goes to zero and the point
where it goes to one. The sum indicated is the sum of the strictly negative contributions
over the various consecutive blocks of ones in the ith component, over the cycle.

We have already seen that the contributions from within i’s block to this difference
must be nonnegative; the interblock contributions must, therefore, be negative definite.
Explicitly, they are

q.. aq , V(p)(Vj(p + 1)- Vj(p))
j<-s p=l

q

/ aq , V(p)(Vi(p)-Vj(p-1))<O.
j>S+nk p=l

If we sum this over all indices i, the contribution from indices for which V(P) is
independent of P trivially vanishes so that, if there is a nontrivial cycle, the entire
sum must be strictly negative. However, for every pair of indices (i, ]) with </in
different blocks, we obtain

q

a, ., (V,(p) Vj(p + 1)- V,(p) V/(p))
p=l

from the ith term, and a ,__ Vi(p)(V(p)- V(p-1)) from the jth term. These
contributions are equal in magnitude and opposite in sign, so that the entire sum is
zero, and there cannot be any indices that vary over the cycle.

It is easily seen that the theorem is not valid in the nonsymmetrical case [4].

3. Application. Our theorem can be illustrated by a collection of spins or 0, 1
variables located at a rectangular array of lattice points in the plane. A state of this
system is characterized by assigning 0 or 1 to each spin. The interactions among these
spins are such that a spin will be influenced to flip its value by the orientations of its
neighbors. For example, one can consider a model in which the value of a spin at
time tk is obtained by "majority vote" among its nearest neighbors (with no change
in case of ties).

There are several versions of this model, depending upon which spin values are
used for the neighbors when taking the vote to determine a particular spin at time tk.
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If the tk-1 spins are used, the system can be described by a threshold matrix model
of the Jacobi kind already discussed--with n n. If one instead iterates row by row,
using the tk values for the previously considered rows in computing each row vote,
one has a block Gauss-Seidel iteration with a block for each row.

One can also iterate in the Gauss-Seidel manner (n 1) using all previously
determined tk spins in computing each tk spin.

Our theorem implies that the majority rule, with no change in case of a tie, cannot
give rise to oscillation in the last case, but can (and in fact often will) give rise to
oscillation in the other cases. In the row by ro’v case, the effect of the "inertial"
diagonal term has to exceed that of all others in the same row to avoid oscillation.
One can in fact have cycles with long periods if the conditions of the theorem are not
satisfied in either of these cases.

Acknowledgments. I am indebted to the referee for careful reading of an earlier
version of this paper.
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Abstract. Dynamic programming is a general problem-solving method that has been used widely in
many disciplines, including computer science. In this paper we present some recent results in the design
of efficient dynamic programming algorithms. These results illustrate two approaches for achieving efficiency:
the first by developing general techniques that are applicable to a broad class of problems, and the second
by inventing clever algorithms that take advantage of individual situations.

1. Introduction. Dynamic programming is a general problem-solving technique
that has been used widely in operations research, economics, control theory and, more
recently, computer science. The present paper will be oriented toward the use of
dynamic programming as a paradigm for designing algorithms in computer science.
As computational efficiency is a major goal in algorithm design, we will be interested
in techniques which allow us to speed up algorithms produced by straightforward
dynamic programming. There are two promising directions for such research, namely,
the development of general techniques that are applicable to a large class of problems,
and the invention of efficient algorithms for specific problems by taking advantage of
their special properties. In this paper we give a review of some recent progress in
these directions. In 2, we discuss a general speed-up technique that can be applied
to dynamic programming problems when the cost function satisfies certain restrictions
known as the Quadrangle Inequalities. In 3, we give an improved algorithm for
finding the optimal order of multiplying a sequence of matrices.

We will not give proofs for the theorems cited in this paper. For proofs as well
as further discussions, the reader is referred to [8] for the topic considered in 2, and
[4], [9] for the topic considered in 3.

2. Quadrangle inequalities.
Example 1. Given a set of points X on the plane, how do we find five points

that span a pentagon with maximum perimeter?
A natural solulion based on dynamic programming would be to seek out maximum

triangles, maximum quadrilaterals, and maximum pentagons in turn. It is not difficult
to argue that we can restrict our consideration to the extreme points of X. Therefore
let us assume the convex hull of X to be P (vl, v., , vn), and the distance between
vi and vj to be dij. Then maximum triangles can be found by computing the largest
entry in the matrixD +D (R)D, whereD (dij), and (R) denotes the (max, +)-multiplica-
tion of two matrices defined by

F(R)G (p/j), wherepij max {f +gli <-k <-f}forF=(fij) and G (g/j).

Since (R) is associative, we will write D2 for D (R)D, and D for D t-1 (R)D. A maximum
pentagon then corresponds to a maximum entry inD +D4, whereD4 may be evaluated
as D2(R)D2. In general, a maximum t-gon can be found by first computing Dt- and
then finding a maximum entry in D +D t-i. Since Dt- can be obtained from D in
O(log t)(max, +)-multiplications (see [7, 4.6.3], for example) at a cost of O(n 3) steps
per matrix multiplication, the answer can be obtained in O(n 3 log t) steps.

Now we pose the question: Can D (R)D be computed in time faster than O(n3)?
It turns out that, by properties of the Euclidean metric dij, if we let K(i, ]) denote

* Received by the editors February 25, 1982.
f Xerox Palo Alto Research Center, Palo Alto, California 94304.
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max {kldik + dkt (D (R)Dit}, thenK (i,/) is a monotone function of and/" (see Theorem
1).

CLAIM 1. K(i,f)<=K(i,f+l)<-K(i+l,f+l).
This property enables us to limit our search for the optimal k, while computing

(D(R)D)id+l=max{di.k +dk.t+li <=k <=f + l}, to those k that lie between K(i,f) and
K(i + 1, f + 1), provided that the latter two values are already known. This suggests
computing (D(R)D)it by diagonals, in order of increasing values of f-i. The cost for
computing all entries of one diagonal is O(n) as a result of Claim 1 and the total cost
for obtaining D (R)D is thus only O (n 2).

More generally, when one forms the product D (R)D for any r-> 1 and s >-1,
monotonicity properties analogous to Claim 1 also hold (Theorems 1 and 2). This
implies that our earlier dynamic programming algorithm for finding maximum t-gons
can be speeded up from O(n 3 log t) to O(n 2 log t).

The critical property of the Euclidean distance function dit that makes Claim 1
true is what we call the "quadrangle inequalities". We say that a real-valued function
]’(i,/), where 1 =< <= / _-< n, satisfies convex quadrangle inequalities (convex QI) if

f(i, k) +f(j, l) >- f(i, l) +f(j, k) for <- / =< k -< l.

The same inequalities with signs reversed are called concave quadrangle inequalities
(concave QI):

f(i, k)+f(/, I)<-f(i, I)+f(/, k) for <=/" <= k <= I.

Example 2. It is easy to see that the distance function dit for vertices of a convex
polygon in Example 1 satisfies the convex QI. Some other examples of functions are
given below.

f(i, ]) ai -b ai+ -b. -b a )
f(i, /) ai + ai+ +’" + at-
f(i, /) ai+l -b ai+2 q- + at-1

all satisfy both concave QI and convex QI;

f(i, /) ai ai+l at satisfies concave QI if all ak’S are >_- 1.

Furthermore, convex QI are preserved by convex, nondecreasing mappings (for
example, log dit satisfies convex QI); while concave QI are preserved by concave,
nondecreasing mappings (for example, f2(i, j) satisfies concave QI for any of the four
f’s defined above). Additional QI-preserving mappings that are of particular import-
ance to dynamic programming will be discussed in Theorem 2 and 3 below.

Our earlier Claim is derived from the following general theorem. Let gfg(i, j)
denote max{klf(i,k)+g(k,j)=(f(R)g)(i,j)}; that is, K:(R)g(i,j) is the largest index k
for which f(i, k)+g(k,/) achieves the maximum. For simplicity, we will write K(i,f)
for Kr(R)g(i, f) whenever the context f(R)g is understood.

THEOREM 1. If both f and g satisfy convex QI, then Kr(R)g(i, f) is a monotone

function of and ]"

K(i, /) <-_K(i + 1,/) <-_K(i + 1,/+ 1).

As we saw in Example 1, the above theorem allows us to compute K:(R)g and f (R) g
with a cost of only O(n) per diagonal, thus O(n 2) in total.

COROLLARY A. If both f and g satisfy convex QI, then f(R)g and K:(R)g can be
computed in O(n 2) time and space.
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The above results regarding convex QI and maximization problems have parallels
in concave QI and minimization problems. Define

fQ) g(i, /’) min (f(i, k) + g(k, ])li <-- <- k.
COROLLARY B. If both f and g satisfy concave QI, then f (R)g and Krg can be

computed in O(n 2) time and space.
The following theorem allows us to apply these corollaries iteratively, in situations

such as Example 1.
THEOREM 2. If both f and g satisfy convex QI, then f(R)g also satisfies convex

QI. If both f and g satisfy concave QI, then f(2) g also satisfies concave QI.
We also find the concepts of QI useful in the evaluation of recurrence relations

involving either minimization or maximization operations. We will mention one such
result for concave QI.

A function w (i,/’) where -< ] is said to be monotone if it is monotonically increasing
on the lattice of intervals (ordered by inclusion), i.e.,

w (i,/’) <_- w (i’,/") if [i,/’]
_

[i’,/"].

THEOREM 3. Let c (i,/’), where <-_ f, be defined by

()

c (i, i) w (i, j) + min [c (i, k 1) + c (k,/’)]
i<]<--k

c(i,i)=a(i).

If w satisfies concave QI and is monotone, then c satisfies concave QI.
In consequence, we have the following speed-up result analogous to Theorem 1

and its corollaries.
COROLLARY. For a function c(i, ]) satisfying the description of Theorem 3, we

can compute Kcc (i, f) and c (i, f) for 0 <-_i <-_ ] <-n in O(n 2) time and space.
Example 3. A bookstore is interested in organizing its index files in a way to

facilitate look-ups. Take the subject index for example. Suppose that the index,
alphabetically ordered, consists of a number of key subjects such as {ART, COOK-
ING, ., TRAVEL}, plus other subjects that fall in the intervals in between, namely
{A-ART, ART-COOKING,...}. We will denote the key subjects by
{gl, K2, gn}, and the intervals by {Io, Ix, , I, }. Assume that the access probabil-
ity for key Ki is pi, and that for interval/ is qi. We would like to build a binary tree,
with the Ki’s as internal nodes, and the/;s as external nodes, such that the expected

NOVEL

E

Io It I2 / Is 16 17 18

I3

FIG. 1. A binary search tree.
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number of comparisons in looking up a subject, namely

pi(1 + level of Ki) + Y’. qj(level of/.)
lin

is minimized (Fig. 1).
Since all subtrees of an optimal tree must themselves be optimal, this problem

can be solved by dynamic programming. One naturally arrives at recurrence relations
of the form (1), with c(i, f) being the minimum cost of a subtree for keys {Ki/l, , K}
and intervals {Ii,"’,/}, and

(2)
w(i,f)=p+l+...+p+q+. .+q,

a(i) =0.

The cost of the optimal tree that we are interested in is c (0, n). As noted in Example
2, the function w (i,/’) in (2) satisfies concave QI. Therefore by the corollary to Theorem
3, we can compute the values of c(i, ]) in O(n 2) time and space. Furthermore, once
c (0, n)and Kcc (0, n) are found, we can then trace the information in Kc(i,/’) "from
top down" to obtain the actual construction of an optimal binary tree in O(n) steps.

Remarks. The problem of optimal binary search trees discussed above is a classical
example of dynamic programming in the computer science literature. The original
O (n 3) solution by setting up the recurrence relations (1) was due to Gilbert and Moore
[3]. Then Knuth [5] showed that the algorithm can be speeded up to O(n 2) by proving
that Kc,(i, ]) is monotone. However, his proof of monotonicity was given for the
particular w(i, ]) as defined by (2), and thus not apparently generalizable. For the
problem considered in Example 1, some recent results can be found in [2].

3. Multiplying a sequence of matrices. We now turn to another example of a
classical dynamic programming algorithm [1] which saw much notable progress lately.

Example 4. Let M,ME,"" ,M,, be n matrices of dimensions ddE, dE
d3, , dn dn+, respectively. What is the optimal order, by multiplying two matrices
at a time, for evaluating the productM ME" Mn ?

To be more specific, let us assume that the cost for multiplying a p q matrix
with a q r matrix is pqr. Consider, for example, four matrices M1,... ,M4 of
dimensions 100 1, 1 50, 50 20 and 20 1. Evaluating their product in the left-to-
right order ((M ME) M3) M4 would cost 125,000 operations, while the minimum
cost, achieved byM x ((ME x M3) x M4), is only 2,200.

Using dynamic programming, a solution to this problem can be obtained by
defining c(i, ]) to be the minimum cost for evaluatingM xM+. x M., and setting
up the recurrence relations

c(i, ])= min [c(i, k 1)+c(k, j)+didkdi]
i<k<--j

c(i,i)=O.

if/</,

This gives an O(n 3) algorithm for computing c(1, n). Can we do any better? As our
tools based on quadrangle inequalities (Theorem 3) do not apply to recurrence relations
of the present form, we must come up with a different technique.

In the following, we will first develop a geometric representation for the problem.
Then, by looking at the case n 3, we will extrapolate some simple properties of the
optimal solution. We then show how these properties can be utilized to lead to an
O(n 2) dynamic programming algorithm.
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FIG. 2. Geometric representation ]’or the evaluation o]’ a matrix chain.

We will use the vertices of an (n + 1)-sided convex polygon in the plane to
represent the n + 1 parameters (dl, d2," , d,/l). A directed edge from di to dj, where
<], will be interpreted as a matrix of dimension d x dj, representing the product

Ms M+ x. Mj_1. Thus, the n + 1 sides of the convex polygon correspond to the
n input matrices and the final product, while any chord represents a potential partial
product. It is easy to see that there is a one-to-one correspondence between the
different ways of parenthesizingM ME" M, and the possible ways of triangulat-
ing the polygon (dl, dE, dn+l). If we associate a cost of didkd with a triangle whose
vertices are labeled d, dk and d, then our original problem becomes the problem of
finding an optimal triangulation of the polygon (d, d2,’’’, dn/). Figure 2 illustrates
the triangulations corresponding to the two different ways of evaluating M1 M2
M3 M4 mentioned earlier.

From now on, we will refer to the d’s as weights. Let w <-w2-<"" -< wn be the
weights of an n-sided convex polygon P sorted into nondecreasing order. (The ordering
may not be unique as some of the weights may be equal; we assume that a particular
ordering is chosen and remains fixed.) We will use ww to denote a directed edge
from w to w, and WiWjWk to denote a triangle with vertices w, w and Wk, when there
is no ambiguity to these notations. We will also use the term partition interchangeably
with triangulation.

Consider the case of a quadrilateral. If w and WE face each other, then the
arc wWE gives us an optimal partition. This is so because

W1 W2" W4 + W1 W2" W3 W2" W3 W4 -I- W1 W3 W4

or

1/w3+ 1/w4<= 1/wl + 1/w2.

Similarly, if w faces wa, then w w3 is an optimal partition, because

l/w2 + 1/W4 <- 1/w + 1/w3.

On the other hand, if w faces w4, then either ww4 or w2w3 could be optimal.
The above generalizes to an n-gon by an inductive argument.
LEMMA 1. Let P be an n-gon with weights w <-_ w2 <-"" <= w,. Then there exists

an optimal partition 7r ]’or which the ]ollowing is true.
(a) wx and w2 are ad]acent (either by a side edge or by a chord); similarly ]or Wl

and w3.

(b) ifboth w w2 and w w3 are side edges, then either w w4 or w2w3 exists as a chord.
Lemma 1 implies that we can set up the following recursive procedure or finding

an optimal triangulation. We use P to denote the subpolygon of P consisting of those
vertices lying between wi and w in a clockwise traversal.
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PROCEDURE Partition [P]
begin

if [PI 1 or 2 then return
else

if P is a triangle then return P
else

else

else

end.

if wl and W2 are not adjacent then return Partition [P1,2] [-J Partition [P2,1]

if W1 and W3 are not adjacent then return Partition [P,3] t_J Partition [P3,1]

return better of {Partition [P2,3] [--J Partition [P3,2],
Partition [Px,4] [-J Partition [P4,]};

As it is, this recursive algorithm requires exponential time, since in the worst
case the last else clause could generate two problems of size n-c for some constant
c. We will show that, however, the total number of calls on distinct subpolygons {Q}
is bounded by O(n2). Furthermore, these O(n 2) subpolygons can be ordered in such
a way that in computing Partition[Q], solutions to its subproblems are already
available. In other words, one can turn Partition into a dynamic programming algorithm
with an O(n 2) space and time bound. To this end, we need a characterization of those
chords wiwj in the original polygon P that may arise as WEW3 in some recursive call
spawned by Partition [P].

DEFINITION. A (directed) chord wiwj of P is called a bridge, if all weights Wk in

Pii satisfy k _-> max {i,/’}.
Note that both w w2 and w2w are bridges, and it is the only instance where two

bridges correspond to the same (undirected) edge. The side edges of P may be viewed
as degenerate bridges, henceforth we will include them in the definition for con-
venience.

It is easy to check that bridges have the following properties’
1. Two bridges never intersect (except possibly at the endpoints); therefore there

are at most O(n) bridges.
2. A partial order < can be imposed on the set of bridges if we define w i,w, < wiw

to mean PiT - Pij.
3. The transitive reduction of < (i.e., the subgraph of < with all edges implied

by transitivity removed) is a forest, for a <b and a <c imply that b and c are
comparable in <. We shall denote this forest by T[<]. Note that ww2 and w2w are
the two roots of T[<], and the leaves are the degenerate bridges (sides) of P.

4. Any nonleaf node wiwi of T[<] has exactly two sons, namely WiWk and WkWi
where k is the smallest index (aside from and/’) in Pii; we will refer to them
respectively, assuming <f, as the minson and the maxson of wiwi. Thus T[<] is
actually the union of two binary trees. Figure 3 gives an example of a polygon P and
the corresponding T[<].

Procedure MarkBridges below identifies and outputs the bridges of P as it makes
one clockwise scan of the weights. The bridges are actually generated in (slightly
modified) postorder [6] of the tree T[<]; therefore, in particular, they are topologically
sorted into a nondecreasing order consistent with <. The procedure employs a
stack S, and we use the notations S x abd x S for pushing and popping as defined
in [6].
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lO 11
6,119 7’l,x 0’5 2,9 9,6 k.l,8

r 2,3

1,2 2,1

FIG. 3. A polygon Pand the correspondingforest T[<]. (The weights are represented by their indices only.)

PROCEDURE MarkBridges [P];
begin

find the minimum weight w 1;

w<-wl;

repeat
begin

Sw;
w - nextweight;
while top(S) > w do

begin <:: S;

--Going clockwise from w 1.

output (top(S), t) and (t, w) as bridges;
end;

end
until w w1; --Halt after returning to w 1.

end.

DEFINITION. A subpolygon Q of P is called a cone, if Q Pij LJ WiWjWk where
b wiw is a bridge of P, and k _-<min {i,/’}. We also denote a cone Q by (b, Wk)
(Fig. 4).

In particular, Pi for any bridge ww] is a cone, and P itself is the union of two
cones P1,2 and P2,1. The existing partial orders on bridges and on weights induce a
natural alphabetic order on cones.

DEFINITION. We say that a cone Q’= (b’, W k,) precedes a cone Q (b, Wk) if
either (1) b’<b, or (2) b’=b and k’>-_k.

LEMMA 2. Any subpolygon that may arise in the execution of Partition [Q], ]:or
a cone Q (b, Wk), is either a triangle or a cone Q’ which precedes Q.

Thus we can use dynamic programming to compute and tabulate the solutions
to all cones in accordance with their precedence order. The actual recurrence relations

W

Wk’

FIG. 4. Example of two cones (the shaded regions).
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have been incorporated into the following program. We use Partition [Q] to refer to
the table entry containing the optimal solution to cone Q. The outer for loop iterates
over all b in the order as they are generated by MarkBridges, while the inner for
loops iterate over all Wk with k _<-i in decreasing order. The algorithm runs in O(n 2)
time, as there are at most 2n bridges, and at most n cones for a given bridge.

PROCEDURE DP-Partition [P]
begin

tor b wiwj B do
begin

if b is a leaf then

--B is the output of Markbridges [P].
--Assume that </’.

Ior all cones Q (b, Wk with k _-< do
if Wk Wi then Partition [Q]*-

else Partition [Q],,- Q;
if b is not a leaf then

for all cones Q (b, Wk) with k -<_ do
if Wk Wi then Partition [Q].- Partition[(minson (b), wi)] U

Partition[(maxson (b ), wi)]
else Partition [Q]

better of {Partition [(b, wi)] [.J WiWjWk,
Partition[(minson (b ), Wk)]
Partition [(rnaxson (b), Wk)]};

end;
Partition [P].- Partition [P1,2] t.J Partition [P2,1];

end.

Remark: In 1980, Hu and Shing [4] gave an O(n log n) algorithm for solving
this problem. However, their presentation is exceedingly long; a more concise exposi-
tion, including the preceding algorithm, can be found in Yao [9].

4. Conclusions. We surveyed some recent results in the design of dynamic pro-
gramming algorithms. These results illustrate two approaches for obtaining speed-up
in dynamic programming: one general and the other problem specific. In the first
case, the quadrangle inequalities provide a type of sufficient conditions by which
speed-up is guaranteed, and these conditions apply to a broad class of problems. In
the second case, we present a nonobvious algorithm for solving the matrix chain
product problem efficiently. Even though the techniques involved in the second case
are problem specific, it serves as an excellent example for illustrating how speed-up
comes about in dynamic programming: namely, by trying to solve individual subprob-
lems fast, and by trying to keep small the total number of distinct subproblems that
need solving.
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AN ALGORITHM FOR PARTITIONING THE NODES OF A GRAPH*

EARL R. BARNESf

Abstract. Let G {N, E} be an undirected graph having nodes N and edges E. We consider the
problem of partitioning N into k disjoint subsets N1, , Nk of given sizes m 1, ", ink, respectively, in
such a way that the number of edges in E that connect different subsets is minimal. We obtain a heuristic
solution from the solution of a linear programming transportation problem.

1. Introduction. The problem of partitioning the nodes of a graph arises in the
laying out of circuits on computer boards [1, Chap. 7], [2], [3], computer program
segmentation [4], [5], [6, pp. 74-126], and in several other areas. In each case an
undirected graph having n nodes N ={1, 2,..., n} and IE] edges E is given. Also
given are k positive integers m => m2 >=" -> mk satisfying Y .= rni n. The problem
is to partition the nodes N into k disjoint subsets N,..., Nk of sizes m 1,’’ ", rn,
respectively, in such a way that the number of edges connecting different subsets is
minimal. An edge which connects two distinct subsets is said to be cut by the partition.

In this paper we show that the partitioning problem is equvalent to a matrix
approximation problem. We show that an approximate solution of this matrix approxi-
mation problem can be obtained by solving a linear programming problem. The
solution of the linear programming problem gives a partition of the nodes which, at
least heuristically, cuts a number of edges close to the minimim. A good survey of
previous approaches to the partitioning problem is given in [7].

2. The algorithm. Let aij be the number of edges connecting nodes and j, /’,
and let a, 0, 1,..., n. Let A denote the n x n matrix (aij). A is the adjacency
matrix of the graph. Given a partition of the graph, let P (pij) be the n x n matrix
defined by

1 if nodes and j belong to the same subset,
Pi= 0 otherwise.

In this way, we identify each partition with a matrix P.
Let P be any partition and let E,c denote the number of edges not cut by P. let

Ec denote the number of edges cut. Then clearly

and

2E 2(IEI-E.)= 2IEI-Y ajpi.

Let IIcII- ,/Y Ic, l2 denote the Frobenius norm of a matrix C (ci). Each partition
P has rn rows containing exactly rng ones, i= 1,..., k. Thus [[pl[2= y. rn2 for each
partition P.

Observe that

Ila ell= Ilall 2 y’. aip + IIPIIz 4E + Ilallz + Y mz 4IEI.
This shows that the partition which minimizes the number of edges cut is the one
nearest A. Thus our original problem .has been reduced to approximating A by a

partition. A useful estimate of how close a partition can be to A is provided by the

* Received by the editors March 11, 1981, and in revised form April 30, 1982.

" IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.
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Hoffman-Wielandt inequality [8]. According to this inequality if A and B are real
n x n symmetric matrices with eigenvalues a ->. >- a, and/3 ->. >--/3 respectively,
then

IIa-nll-> . (,-,).
i=1

Let A ->.. -> A, denote the eigenvalues of the adjacency matrix A. The eigen-
values of each partition P are given by m,. ., m, 0,. ., 0. To see this, observe that
the rows (columns) of P corresponding to nodes in the same subset/V are identical.
Thus each partition has exactly k distinct rows (columns). Moreover, the distinct rows
of P are mutually orthogonal. This follows from the disjointness of the sets N,. ., N.
It follows that P has rank k. Thus 0 is an (n- k)-fold eigenvalue of each partition.
Since the distinct rows (columns) of each partition are mutually orthogonal 0-1 vectors
they are eigenvectors of the partition. They correspond to the eigenvalues m,..., m.
We are now in a position to apply the Hottman-Wielandt inequality. If A is the
adjacency matrix of the graph, this inequality states that

k

(2.1) IIA-PIi’->= Z (h,-m)+ A,2
i=1 i=k+l

for any partition P.
The set of orthonormal eigenvectors of a partition P obtained from the k distinct

columns of P can be written as

/xJl
(2.2/ v, =+ ] 1 k,

\x,q/

where each x, is either 0 or 1 and

(2.3) x=m, ] l, ., k, x l, l, ., n.
i= i=

Let u,..., u, denote a set of orthonormal eigenvectors of A corresponding to the
eigenvalues ,. ., ,, respectively. We say that u,. ., u are the first k eigenvetors
of A. Let U denote the n x n matrix whose ]th column is u, and let A diag ( , ., ,).
Let V denote the n x k matrix whose/’th column is v, given by (2.2). Assume for the
moment that the + sign in (2.2) is chosen. The correct choice of signs will be discussed
later. Let M diag (m ,..., m). We can write

A UAUr and P=VMVr.
This gives

IIa -ell=- IIUAU- VMVII=- IIA- UVM(UV)II=.
If we could choose V such that

(2.4) urv

/1 0 0
0 1 0

0 0

/0 0
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we would have equality in (2.1), and P would be the best approximation of A by a
partition. However, it is generally impossible to choose V such that (2.4) is satisfied,
due to the constraints (2.3). We therefore choose V to minimize the error IIuTv--JII
subject to (2.3). We have

(2.5) IIuTv--JII= --liE- UJII Z ujllz 2- 2 u.u 2k 2 Z Z P.Uij
/=1 j=l i=l i=1]=1

where uq and uij are the ith components of the vectors uj and uj respectively. Substituting
for u from (2.2), we see that the V which minimizes (2.5) is obtained by solving the
transportation problem

(2.6)

subject to

minimize- (uii .
,=

xi mi, j 1,. ., k,
i=1

k

Y xq=l, i=l,...,n,
j=l

Xq>=O, i=l,...,n, ]=l,...,k.

Since the numbers m1," ", ink, 1, are integers, a vertex solution of this problem will
be integer valued. And since

__
Xij l, each xi will be 0 or 1. Thus, given a solution

of the linear programming problem (2.6), we obtain all the distinct columns (2.2) of
a partition P. In terms of the nodes the partition is given by N U_-1/V. where
(2.7) N. (ilx 1}, j 1,..., k.

An algorithm for solving (2.6) is described in [9] and in most books on linear
programming. To complete our description of the partitioning algorithm, we must
explain how the signs in (2.2) are chosen. Clearly the most desirable choice of signs
is the one for which the corresponding transportation problem has the smallest possible
minimum. One way of determining this choice is to solve the 2k transportation problems
corresponding to all possible choices of signs in (2.2) and select the one with the
smallest minimum value. A less tedious, but heuristic, procedure for choosing the
correct signs will now be described.

As far as the linear programming problem (2.6) is concerned, changing the sign
of v is equivalent to changing the signs of the components ulj,. ", ui of u in (2.6).
Thus we can fix the signs of the vi’s and concentrate on changing the signs of the ui’s
so as to make the minimum (2.6) as small as possible. It is convenient to choose the
+ sign for each vi in (2.2). The vi’s then lie in the nonnegative orthant of n-dimensional
Euclidean space. Since the vj’s are to be chosen to approximate the u;s, we choose
the ui’s to be as close to the nonnegative orthant as possible. Thus given a set of
orthonormal first-k eigenvectors u 1," ", u of A, we obtain an equivalent set by
replacing ui by -ui whenever -ui has a larger projection on the nonnegative orthant
than u. We use this new set of eigenvectors of A to determine a partition (2.7) of N
as described above. The projection of a vector y (yl,.. ", y,) on the nonnegative
orthant is given by y + (y + +

1," ", y, where y max {yi, 0}. The size of the projection
is measured by Ily /ll- 42 (y
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3. An alternative partitioning procedure. The discussion of this section applies
only to the case k >-3. Suppose we have found a partition N U=1/V. of the nodes
of a graph by the procedure described in the previous section. If for each/’, uj is a
good approximation of uj, then it is clear tht the partition we have found is very close
to an optimal one. However, it may happen that for some/’, u is a not a good
approximation of u. In this case the partition we have found may differ significantly
from an optimal one. Typically u will fail to be a good approximation of u when uj
has significantly more than m components greater than x/1/m. In such a case,
there is really no good approximation of u by a vector of the form (2.2). The number
of positive components of such a tq is too small for uj to be a good approximation of

u. One way to remedy this situation is to change the problem so that u has more
nonzero components. If 1 or if m +mk <= m-l, this can be accomplished by using
our procedure to find an m1,’", mj-1, m +ink,’’ ", ink-1 partition. The u for this
problem will have m +mk nonzero components. It is likely to give a better approxima-
tion of u than the original uj. To obtain an ml,.. ", mk partition we simply find an
m, mk partition of the set N. obtained in the m, ., m-l, m + ink, ", ink-1 partition.
In some cases this partition will be superior to the original ml,. , mk partition. We
demonstrate this with an example in the next section. Observe that the m, mk partition
is on a graph containing only mj / mk nodes. Thus the u’s that appear have a larger
percentage of nonzero components than the u’s that appeared in the original problem.

In some cases it may be desirable to increase the number of nonzero components
in several of the u’s. This can be done by a natural extension of the procedure just
described. Thus, for example, an m l, mE, m3, m4, m5 partition may be found by first
finding an m + m4, mE + ms, m3 partition and then m 1, m4 and mE, m5 partitions.

We close this section by giving an explicit condition for when the approximation
of u by u can be improved if m is replaced by mj /mk and mk by 0 in the original
problem. The approximation can be improved if

E u+ E (1//mi+mk u,)2< E u z,+ 2 (1/4-u,)2,
eN--(N UNk) N UNk N-N N

or, equivalently, if

(3.1)
iNjUNk iNj

This inequality exhibits an approximation of ui in the new problem which is an
improvement of the old approximation.

To implement our method we need an algorithm for computing the first k
eigenvectors of a real symmetric matrix A. Such an algorithm is described in [10]. It
is the block Lanczos method.

4. Obtaining a local minimum for E. In general a partition obtained by the
methods of the previous two sections will not be optimal, even locally. That is, given
such a partition, it may be possible to decrease E by interchanging a node in one of
the sets with a node in another of these sets. The possibility of improving a partition
by such interchanges should always be investigated when our method is applied.
Interchanges of single nodes should be carried out as long as it is possible to do so
without increasing E. However, in making interchanges that leave E fixed, care must
be taken to avoid cycling, that is, returning to a partition that has already been
examined. When it is no longer possible to make a single node interchange without
increasing E, or cycling, a local minimum for E has been obtained. In general, E
will have many local minima. However, we expect the one found by the procedure
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we just described to be very close to a global minimum. This is because we expect
our original partition to be close to an optimal one.

Given an initial partition N U= N., a simple formula for computing the change
in Ec due to a single node interchange between two of these subsets is given in [7, p.
296]. We repeat it here for the sake of the reader. Suppose we wish to interchange
a node in Nx with one in N2. For each N let E(i) denote the number of edges
connecting to nodes in NE. That is, E(i)= .,jN. aij. Let I(i)= 2vl ai denote the
number of edges connecting to nodes in N1. Let Dl(i)=El(i)-Ii(i). Dl(i) is the
amount by which Ec is reduced if node is switched from N1 to NE. Define EE(]),
IE(]), and DE(I) similarly for each node ] NE. The amount by which E is reduced
if node N1 is interchanged with/’ NE is

D(i, /) D,(i) +DE(f)- 2ai.
If D (i,/’) is negative for each N1 and each ] NE, then it is not possible to make a
single node interchange without increasing E. If some D(i,/) is ->0 the nodes and
/" for which D(i, ]) is a maximum should be interchanged provided this maximum is
positive. If the maximum is zero, an interchange should be made only if it avoids cycling.

5. Examples. To demonstrate our procedure we partition two graphs that appear
in [11, p. 425]. The first graph has 20 nodes whose connections are described in Table
1. First we partition the nodes into two sets containing 10 nodes each. The first step
of our procedure requires that we find the first two eigenvectors of the adjacency
matrix A. Let the first two eigenvectors of A, normalized to have unit length, be
denoted by ua and uE respectively. Orient these vectors so that their projections on
the nonnegative orthant are maximal. Form the transportation tableau whose first
and second rows contain the vectors -/1/10Ul and -/1/i0u2 respectively. This
tableau is shown in Table 2. We have rounded all numbers to three decimal places.
The rows in the tableau correspond to two origins, each having 10 units of a product
for shipment. The columns correspond to 20 destinations, each requiring 1 unit
of the product. The numbers -x/1/10uj appearing in the upper portion of the squares
in the tableau represent the cost of shipping a unit of the product from origin/" to

TABLE

Node Connections to

2, 3, 4, 7, 8, 17
2 3, 10, 14, 15, 16
3 8,12,16
4 7, 9, 11, 17
5 6, 9, 11, 15, 16, 20
6 7
7 9, 15, 16
8 10, 12, 14, 16, 18
9 12, 20
10 12, 14, 16, 19
11 18, 19, 20
12 13, 15
13 14, 16, 18, 19
14 16, 18, 19
15 16, 17, 19
17 18
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TABLE 2

14 15 16 17 18 19 20

-.0" lOSS ’.120 -’2 -.038 -.Oe3 -.0:’3

-.043 .038 .029 -.117 -.I08 -.062 -.I06 . -.115 .076 -.077 .016 .053 .0 -.046 .026 -.054 .021 .027 ’.089

destination i. The optimal solution of the transportation problem is given in the usual
way by integers placed in the lower portion of the squares of the tableau. The partition
determned by this solution is N t.J= N., where

N ={2, 3, 8, 10, 12, 13, 14, 16, 18, 19},
N2 {1, 4, 5, 6, 7, 9, 11, 15, 17, 20}.

In this partition nodes 15 and 18 can be interchanged without increasing Ec. When
this interchange is made we obtain a partition which agrees with the one found in
[11]. It cuts 13 edges.

As a further demonstration of our procedure, we obtain a 7, 7, 6 partition of the
graph in Table 1. The transportation tableau for this problem, along with the omal
solutioni_given in Table 3. The rows of the tableau are given by -/1-u ;, -x/1/7uE,

and -x/1/6u3, where u;, u2, and u3 are the first three normalized eigenvectors of

TABLE 3

10 11 12 13 14 15 16 17 18 19 20

-.081 -.106 -,090 -,01 -.066 -.023 -.07 -.116 -.02 -,108 -.048 -.091 -.082 -.117 -.101 -.143 -.050 -.069 -.076 -.027

.051 .046 .035 -.139 -.129 -.07 -.126 .075 -.141 .091 .093 .020 .063 .106 -.056 .031 -.066 .02 .032 -.106

.181 .084 .131 .057 -.107 -.009 .084 .054 -.024 -.023 -.148 .010 -.111 -.082 .000 .012 .058 -.088 -.140 -.107

the adjacency matrix A, oriented so that they are as close to the nonnegative orthant
as possible. The partition determined by the solution of this transportation problem
is given by N (.j3___l N., where

N1 {2, 3, 8, 10, 12, 15, 16},

N= {1, 4, 5, 6, 7, 9, 17},

N3 ={11, 13, 14, 18, 19, 20}.

The partitioned graph is shown in Fig. 1. The partition cuts 23 edges. For this partition,
condition (3.1) is satisfied with/" 1. We shall therefore investigate the possibility of
improving our partition by first obtaining a 13, 7 partition and then a 7, 6 partition
as explained in 3. The transportation tableau corresponding to the 13, 7 partition
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II 1’14 18 19 20 4

FIG. 1

is shown in Table 4. It gives the partition

N1 {1, 2, 3, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19},
N2 {4, 5, 6, 7, 9, 11, 20}

which cuts 10 edges. The partitioned graph is shown in Fig. 2.

TABLE 4

10 11 12 13 14 16 16 17 18 19 20

-.060 -.078 -.066 -.037 -.048 -.017 -.055 ;-.085 -.038 -.079 -.036 -.067 -.060 I-.088!-.074 -.105 -.037 -.orlo -.0 -.020

-.051 .046 .035 -.139 -.128 -.075 -.128 .076 -.141 .091 -.093 .020 .063 .106 -.056 .031 -.088 .026 .032 -.106

2 3 8 I0 14 16 12 13 15 17 18 19

4 5 6 7 9 II 20

FIG. 2
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This partition is probably optimal since its eigenvectors /1 and P2 are very good
approximations of u and u2 respectively. The 7, 6 partition of N1 given by our
procedure is

N1 ={1, 2, 3, 8, 10, 14, 16}{12, 13, 15, 17, 18, 19}.

It is shown in Fig. 2. This partition cuts 12 edges. Thus

N =N.LI{1, 2, 3, 8, 10, 14, 16}L1{12, 13, 15, 17, 18, 19}

is a 7, 7, 6 partition of our graph which cuts 22 edges. This is an improvement over
the partition (5.1) which cuts 23 edges. Both partitions are local minima.

TABLE 5

Node Connections to

7, 12, 13, 14, 15, 16, 17
2 12, 17, 18, 20
3 5, 11, 13, 14, 18, 19, 20
4 6,9
5 7, 9, 10, 12, 16, 19
6 16, 18, 20
7 8, 9, 11, 16
8 15, 18
9 11, 15, 19

11 14, 17, 18, 20
12 14
13 18, 20
14 16, 18, 20
16 18
17 18
18 20

The second graph in [11] also has 20 nodes. Their connections are given in table
5. We shall partition the nodes into two sets of equal size for comparison with the
partition given in [11]. The relevant transportation tableau and the solution of the
transportation problem are given in Table 6. The 10, 10 partition obtained from this
solution is

N={2, 3, 6, 11, 13, 14, 15, 16, 17, 18, 20}(.J{1, 4, 5, 7, 8, 9, 10, 12, 15, 19}.

It cuts 14 edges. We can interchange nodes 12 and 16 without increasing Ec. Then
if we interchange 1 and 6 we arrive at the partition

N= {1, 2, 3, 11, 12, 13, 14, 17, 18, 20}(.J{4, 5, 6, 7, 8, 9, 10, 15, 16, 19}

given in [11]. It cuts 13 edges.

TABLE 6

10 11 12 13 14 15 16 17 18 19 20

-.075 -.0 -.099 -.017 -.065 -.083 -.068 -.036 -.062 -.011 -.100 -.050 -.066 -.104 -.027 -.081 -.059 -.125 -.036 -.100

’-.041 .064 .022 -.032 -.136 .036 -.121 -.031 -.136 -.043 .008 -.025 .054 .035 -.066 .044 .039 .090 -.080 .098
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6. Complexity of the algorithm. The algorithm we have described requires three
significant calculations for its implementation. First we must determine the k largest
eigenvalues and the corresponding eigenvectors of the n n adjacency matrix A. We
have suggested doing this by the block Lanczos algorithm described in [10]. The
principal operation in each step of this algorithm is to form a matrix-vector product
of the form Ax. Usually A is very sparse and should be stored in sparse matrix format.
Sparse matrix techniques can then be used to form Ax in O(n) operations. We have
used the block Lanczos to determine the four largest eigenvalues, and the correspond-
ing eigenvectors, of an adjacency matrix of order n 918. This matrix arises in an
actual circuit layout problem. It has an average of 5 nonzeros per row. The block
Lanczos algorithm required 73 steps and 5.08 seconds of CPU time on an IBM
370/3033. In general this portion of the algorithm requires O(n) operations.

The next step in our algorithm is to solve a transportation problem involving k
origins and n destinations. First we consider the case k 2. This is perhaps the most
important case. It is also the easiest to solve. In this case one has a tableau similar
to Table 2. m numbers must be selected from the first row and m2 from the second
row, choosing only one number from each column in such a way that the sum of the
numbers selected is a minimum. This can be done as follows. Make one pass through
the tableau selecting the smaller of the two numbers in each column. Break ties
arbitrarily. Suppose this procedure selects m numbers in the first row and m & numbers
in the second row. If m m, then the numbers selected give the solution of the
transportation problem. If m > m, then m-m numbers selected in the first row
must be dropped in favor of the corresponding numbers in the second row. The
numbers to be dropped can be chosen one at a time, always dropping the number
that results in the smallest increase to the sum of the numbers selected. If m < m
a similar adjustment in the numbers selected can be made to arrive at a solution of
the transportation problem. Thus when k 2 the transportation problem can be solved
by making O(n) comparisons.

Now consider the general case k > 2. In the transportation tableau of k rows,
duplicate row mi times. This gives an n n matrix C. Clearly our transportation
problem is equivalent to an assignment problem with cost matrix C. Lawler shows in
[12, 4.7] that this problem can be solved in O(n ) operations. However, this is a
worst case analysis, and in practice we have found that the transportation problems
are solved very quickly.

The third step of the algorithm involves interchanging pairs of nodes between
the various subsets of the partition. In practice we have found this portion of the
algorithm to be the most time consuming. Since all pairs of nodes must be considered,
this is an O(n 2) operation.
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FINITE SOLUTION THEORY FOR
COALITIONAL GAMES*

WILLIAM F. LUCAS" AND KAI MICHAELIS"

Abstract. In 1944 von Neumann and Morgenstern introduced a theory of solutions (stable sets) for
multiperson cooperative games in characteristic function form. Some special classes of games are known
to have solutions which are finite sets. These finite solutions give rise to interesting geometrical structures
and basic combinatorial patterns. They have provided new insights into problems in the social sciences and
they invite additional interpretations and uses in the mathematical and physical sciences. This paper provides
an introduction and survey of finite solution theory.

1. Introduction. In their monumental book Theory of Games and Economic
Behavior (1944), J. von Neumann and O. Morgenstern [38] introduced the first general
model for multiperson coalitional games. Their model consists of four parts: a charac-
teristic function defined on a set of n players, an (n- 1)-dimensional simplex of
imputations, a binary irreflexive relation on this simplex called dominance, and a
solution concept which they referred to as solutions. A solution is a subset of the
imputations which has certain internal and external stability properties. Such solutions
are often referred to currently as stable sets or as von Neumann-Morgenstern solutions,
to distinguish them from the many other notions of solution which have since been
proposed for such game models.

In general many of the resulting von Neumann-Morgenstern solution sets exhibit
some undesirable properties, from both a mathematical and an applied point of view.
For many games there are a great number of different solutions and many imputations
in each solution. For some games with n => 10, solutions may not even exist [18], [19].
There are also games with empty cores (another fundamental and natural solution
concept) when n => 14 for which solutions do not exist [20], [21]. There are games
with n ->4 which possess some "pathological" sets as solutions [35] and games with
n _>-20 with only "pathological" solutions [36]. In general, solutions are difficult to
find, and many of them do not seem immediately useful in applications.

On the other hand, there are many large classes of games for which all of (or at
least many of) the solutions demonstrate more pleasant theoretical structure and for
which new insights of an applied nature have resulted. For example, there is a rich
theory of solutions for the "simple" (or voting) games. Symmetric solutions for
"symmetric" games exhibit rather intricate and beautiful geometric patterns.
Of particular interest are those solution sets which consist of only a finite number of
imputations. Although finite solutions do not exist for most games, they are of
significant interest when they do appear. They provide a most interesting mathematical
structure in their own right as well as new interpretations of an applied nature.
Furthermore, finite solutions appear to invite many additional interpretations and
uses within mathematics as well as in various physical systems.

The object of this paper is to bring together in one place the bulk of what is
known about finite solutions (stable sets), and to present these results in terms of the

* Received by the editors May 17, 1982. This research was supported in part by the National Science
Foundation under grants MCS-7728392 and MCS-8102353, and by the Office of Naval Research under
contract N00014-75-C-0678, NR 047-094.

" School of Operations Research and Industrial Engineering, College of Engineering, Cornell Univer-
sity, Ithaca, New York, 14853.
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modern notation of (0, 1)-normalization. A main purpose is to focus attention on this
natural and rather fundamental mathematical structure which arose in applying mathe-
matics to the social sciences, and which now appears ripe for additional interpretations
and applications in a variety of other contexts. One new infinite family of finite stable
sets is also announced in 5.3. The original model [38] for characteristic function
games is reviewed briefly in 2, and some special classes of games and necessary
notation are introduced in 3. The known finite stable sets for the n-person games
with n 3 and 4 are surveyed in 4. A few infinite families of finite stable sets for
general n are described in 5. The vast class of games known as extreme games is
discussed in 6. Some suggestions of a rather general nature concerning potential
applications appear in 7.

2. The model. An n-person game is given by a set N {1, 2,. ., n } of n players,
and a real valued characteristic function v :2N --> R defined on the set 2N of all subsets
(coalitions) of N which has v()= 0 for the empty set . The set of imputations
(realizable outcomes) for the game (N, v) is defined as the (n 1)-dimensional simplex

A ={x sRn" , xi=v(N) andxi>-_v({i})Vi N}
iN

where each x (xl, x2,..., xn) is a feasible distribution of the available wealth v(N)
among the individual players. An imputation x dominates another one y via the
nonempty coalition S cN whenever

Xi > Yi Vi S

and

is

This is denoted by x doms y, or simply as x dom y when some such S exists. For x s A
and B cA let

Dom x {y s A: x dom y }

and

DomB= Domx.

A solution (in the sense of von Neumann-Morgenstern), or stable set, for a game is
a subset V of A with the properties

V TIDom V= , VLIDom V=A

which are referred to as internal and external stability, respectively.
Another solution concept, called the core of the game, is given by

C I x A ’. xi >= v (S)VS cNI.is

It is easy to show for any solution V that C V and C fq Dom V C fq DomA .
Many variations and generalizations of the model have been studied. The function

v can map coalitions S into sets other than the half spaces given by (*). There is little
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change in this theory when the set A is replaced by one of the sets [9]:

A x " , X V (N) and Xi V ({i
iN

E x E Rn" E xi v (N or E x Rn. E xi v (N)
iN iN

The set A can also be an arbitrary polyhedron in n, or some other type of set. If A
is a finite set then one is working in the context of (directed) graph theory. Variations
in the definition of dominance can be made, and several other solution concepts have
been proposed and analyzed. More generally, an abstract game (X, d) consists of an
arbitrary set X and an irreflexive binary relation d on X. However, we will not be
concerned with these extensions of the classical model in this paper.

The dominion Doms x of an imputation x with respect to a given (nonempty)
coalition S is either the empty set ; (e.g., when condition (*) fails to hold) or else it
is the intersection of A with an open generalized orthant at x, i.e., with

Os(X) {y n: Yi < Xi Vi S}.

A solution V results in a "covering" of A- V by such sets Os(x) for x s V. The sets
Os(x) may overlap each other as x s V and S N vary, but they are all disjoint from
the closed set V. In the case where a solution V is a finite set, then the resulting sets
Os(x) for x E V provide a covering of A- V by a finite number of such generalized
orthants. If the regions Domsx were viewed as a sort of "directional force field"
eminating from x, then a solution V is "held in place" by these resulting domination
cones.

3. Some special classes of games. A large number of special classes of games
have been defined and studied. The classical model assumed that all games (N, v)
were superadditive, i.e.,

v (S T) _-> v (S) + v (T) whenever S f’) T .
Dropping this constraint does not alter the theory significantly. However, this

condition will be assumed throughout this paper, unless explicitly stated otherwise.
Clearly, it is sufficient to consider only essential games, ones with

v (N) > E v ({i}),
ieN

since A reduces to the empty set or else the one point (v({1}), v({2}), , v({n}))
when this latter inequality fails. One can also show that it is sufficient (for von
Neumann-Morgenstern solution theory and most of the other known solution con-
cepts) to consider only (0, 1)-normalized games, i.e., ones with

v(N)=’l and v({i})=O VieN.

In this case the set of imputations becomes the unit simplex

A={xEn. ’. xi=l, xi>=OViEN}.
iN

A game is constant sum if

v (s) + v (N- S) v (N) VS = N.
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This condition reduces the number of independent parameters v(S) by half. A game
is symmetric whenever

ISI=ITI implies v(S)=v(T)

where s Isl denotes the number of players in the coalition S. A (0, 1)-normalized
symmetric game is determined by the n-2 values v(2), v(3),..., v(n-1) where
v(s)=v(S).

Finite solutions arise more frequently in the study of monotone simple (or voting)
games, i.e., the ones with

v (S) 0 (losing) or v (S) 1 (winning)

and

ST implies v(S)_-<v(T)

where S and T N. T is called a minimal winning coalition if v(T)= 1 and v(S)= 0
for all S T. The lattice (2, ) is thus "cut" into a set of winning coalitions and
losing coalitions just "below" the set d//of minimal winning coalitions. The weighted
mafority games are the monotone simple games

[q; w, w2,’"", w.]

where a coalition S is winning if and only if YiEs wi->q, q is called the quota. For
example, the n-person direct (or simple) majority game is given by

[[n/2+1]; 1, 1,..., 1]

where [p denotes the largest integer in p.
Many other finite mathematical structures, e.g. projective geometries and block

designs, give rise to monotone simple games in a natural way. For example, the
seven-point projective plane in which the seven lines correspond to the minimal
winning coalitions is a monotone simple game, but is not a weighted majority game
[38, 3rd ed., p. 469]. An indication of relations of this type is given in the paper by
Bruen [3] and in the references listed there, as well as in the paper by Dubey and
Shapley [6].

There are some other major classes of games known as "extreme" games which
will be introduced in 6.

4. Games with small n. The known finite solutions for the games with 3 or 4
players will be discussed in this section. It is assumed that these games are essential,
superadditive and (0, 1)-normalized. Finite solutions for n-person games with n-> 5
are presented in the following two sections, and most of these can be viewed as special
cases of infinite families of finite solutions.

There is only one 3-person game with a finite solution, and it is v()= v(1)=
v(2) v(3) 0, v(23) v(13) v(12) v(123) 1. (Note that the braces and commas
have been deleted from expressions such as v({2, 3}).) This particular game is a direct
majority game, the only 3-person constant-sum game, and a symmetric game. It has
infinitely many solution sets V, but it has only one finite or "symmetric" solution. It
consists of the three imputations in the set

{(o, (1/2, o, (1/2, 1/2, o)t.

V is illustrated along with its domination regions in Fig. 1.
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13 N {1, 2 3 L k

v ((o, , ))

X1

x3=l Q Xl=I
x2= (1/2, 0,1/2)

FIG. 1. The finite symmetric solution V3.

Many of the known finite solutions possess total or partial symmetry, and thus
it is convenient to introduce the following notation. For any x s A, B cA and S cN
let

(x) {y s A: y is obtained from x by permuting its coordinates},

(X)s {y s A: y is obtained from x by permuting its coordinates xi where s S}

and

(B) LI xB (x).

A subset B of A is symmetric if (B)=B. For example, Va=(VS)=((0,,zx-))

Several finite solutions have been shown to exist for some of the 4-person,
constant-sum games. The characteristic function v for these games has (8)= 0 for
]81 0 or 1, ($)= 1 for [81 3 or 4, and 0 _-< v($)= 1-(N-8)_-< 1 for [8[ 2. That
is, each such game corresponds to a point b (bl, b, b3) in the unit cube U where

bx v(14), b2= v(24), b3 v(34).

Using symmetry, it is sufficient to consider only those games corresponding to the
points b in this cube which are in the four-sided polyhedron

P ={b U: bx <=b2<=b3 and b2+b3 < 1}.

P has vertices (0, 0, 0), (0, 1/2, 1/2), (1/2, 1/2, 1/2) and (0, 0, 1), and is illustrated in Fig. 2. Von
Neumann and Morgenstern [38] and Mills [26], [27] have determined finite solutions
for the four vertices of P, three of the six edges of P, and in a three-dimensional
neighborhood in P near the center (1/2, 1/2, 1/2) of the cube U. Two edges and one face
of P are known to possess no finite solution. It is known that every three- and
four-person general-sum game does possess a solution [1], [38], but most of these
known solutions are not finite.
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b3 v(34)

v(14)

(0, 0, 1)=b

(, )=b;/

FIG. 2. The constant-sum four-person games.

u

52

v(24)

4.1. The vertices of P. The three vertices b= (0, 0, 0), b 1= (0, 0, 1) and b2=
(0, 1/2, 1/2) of P give rise to the following finite solutions V4(b i), 0, 1, 2, consisting of
3, 4, ind 7 imputations, respectively"

V4(b O) ((0, , 21-, 0)){1,2,3},

Va(b 1) {(1/2, 1/2, 0, )} U ((, 0, , 0)){1,2,4},

V4(b 2) {(0, , 21-, 0)} .J ((0, I, 21-, 41-)){1,2,4} J ((0, 21-, 41-, 1/4)){1,3,4}.

The solution V4(b 0) is merely the solution V3 for the three-person game, since player
4 is a "dummy" in the game corresponding to b. The vertex b3= (1/2, 1/2, 1/2) in P
corresponds to the only four-person, constant-sum, symmetric game, and it is known
to have at least the following three types of finite solutions of 10, 13, and 13 points,
respectively:

V(b): <(, , , 0)> <(, , , )>,
V4’b3(c))={(1/4,1/4,1/4,1/4)}l,.J((--c,-:t --C, 2C, 1/4)) whereO<c<,=

V4(b3; 1)={(1/4, 1/4, I, 1/4)} U ((0, 1/4,-, )){2,3,4}
U ((41-, 0, , )){2,3,4} U ((1/4, , 41-, )){2,3,4}.

The last solution V(b3; 1) discriminates against player 1, and is not symmetric. Three
similar solutions V(b3; i) exist which likewise discriminate against players 2, 3
and 4, respectively. The solutions V4(b 1), V4(b2), V(b3) and V(b3; 1) are illustrated
in Fig. 3.
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X3 X3

(, o, , o)

X2

(o, 1/2, 1/2, o)

X2

X4

(a) V’(b ) (b) V4(b 2)

Xl

FIG. 3. Some four-person game solutions.

4.2. The edges of P. Some finite solutions are known for four of the six edges
of P.

(i) The "main space" diagonal b (z, z, z), 0 -<_ z <_- 1/2, which connects the vertices
b0= (0, O, O) and b 3 (1/2, 1/2, 1/2) of P has the finite solutions

Vz4[bO4 3] (( z 1 z z )) ((1 z 1 z
,b 4’2 4’2,0 t.J 4’ 4

,0,
{x,2,3} 2 2

2’2 2’ 2’

when 0 <- z <= }; and

4[__. ] 4[0 4 ]Vz b 3,b 3 Vz b ,-b 3 0 4’2 2’ 4’

when <-z N . These solutions have 9 and 15 imputations, respectively.
(ii) The "main face" diagonal b (0, z, z), 0 N z N , which connects the vertices

b o and b= (0, , ) of P has the seven-point finite solution

2,2,2,0 u -z,,,{,3}

which converges to V4(b) and W4(b) as z approaches 0 and , respectively. Mills
[27] showed that this is the unique finite solution for the interior of this edge.
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(iii) Consider the other "space" diagonal (1/2- z, 1/2- z, 1/2 + z ), 0 <= z <= 21-, which joins
the vertices b 3 and bl= (0, 0, 1) of P. For 0_-<z <, there is the solution V4(R(e))
given below. Von Neumann and Morgenstern [38] stated that finite solutions exist
for the intervals < z <-- and -<_ z -<_ , but they did not explicitly display them. It is
not known whether finite solutions exist or not when z 18.

(iv) The "interior" edge b (z, , ), 0 -< z -< , which joins the vertices b 2 and b 3

of P has the finite solution V4(R (e)) given below when 52- <z =<1/2. No finite solution
2is known for 0 < z < g.

(v) and (vi) Mills [26], [27] proved that no finite solution can exist for games
corresponding to the interiors of the other two edges of P, i.e., b (0, 0, 2z) or
(0, -z, 1/2+z) for 0<z -<1/2.

4.3. The faces of P. Mills [27] proved that there exist no finite solutions on the
face of P with bl 0, except for the edge b (0, z, z) where 0-< z -< and the vertex
b 1= (0, 0, 1), which were covered above. There are no published results about finite
solutions for the interiors of the other three faces of P, except where these faces meet
the solid region discussed in the next section.

4.4. A neighborhood of b. Von Neumann and Morgenstern [38, 3rd ed., pp.
321-329] showed the existence of finite stable sets in a three-dimensional region R
in P located near the center point b3= (1/2, 1/2, 1/2) of the unit cube U. For any b P let

u(b) (-1 + bl + bz + b3)/2,

u3(b) (1 +b-bz-b3)/2,

u4(b) (1 -bx-b+ b3)/2,

and then for N {1, 2, 3, 4} define

_u(b)=min ui(b) and ti(b)=max ui(b).

Whenever b s P and 32-a < 2e -< _u then there is the finite solution

{ {u+eifyi= } }V4(R(e)) x cA" Xi--" Ui if Yi =1/4 where y s V(b3(0))
ui 2e ifyi=0

which has 13 points and is somewhat similar to V(b3(c)) presented above when c 0.
One can prove that the required bounds on the parameter e are satisfied when b is
near b 3, e.g., one can pick the region to be

R ={bP" 5bl+5b2+b3>5}.

5. Infinite families of solutions. For n-person games with n > 4 there is relatively
sparse knowledge about the existence of finite stable sets. However, there are four
types of families of finite solutions for infinitely many values of n which have been
discovered. The fourth family, the extreme games of 6, actually includes the other
three families. The three special cases are nevertheless of significant interest in their
own right and are discussed briefly in this section.

5.1. The main simple solution. Von Neumann and Morgenstern [38, pp. 431-
445] found a finite solution, for each "homogeneous" weighted majority game. A
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weighted majority game [q; Wl, W2, , Wn] may have infinitely many sets of (nonin-
tegers) weights we (even when normalized, e.g.rwi 1) which give rise to the same
simple game, i.e., the same set of minimal winning coalitions. The game
[q; wl, w2, , w,] is called a homogeneous weighted majority game whenever there
exist weights wi such that the sums is wi are all equal if and only if S e///. This
occurs when the "overdetermined" system of linear equations is xi 1 for all S e
can be solved. The resulting finite solution relates to the weights in a natural way.

There are four constant-sum, weighted majority games with five persons, and
these are all homogeneous. Their main simple solutions are as follows.

(i) [3; 1, 1, 1, 1, 1]. This 5-person direct majority game has the unique sym-
metric finite solution

((], ], ], o, o))

consisting of 10 imputations.
(ii) [4; 1, 1, 1, 2, 2] has the seven-point solution

{(o, o, o, u ((1/4, 1/4, o, (d, o, o,
(iii) [5; 1, 1, 2, 2, 3] has the five-point solution

V5
h,2 {(1/2, , 0, 0, ’)} U ((0, 0, , 0, )){3,4} U ((1/2, 0, , , 0)){1,2}.

(iv) [4; 1, 1, 1, 1, 3] has the seven-point solution
3V,3 {(1/4, 41-, 41-, 1/4, 0)} U ((1/4, O, O, O, )){1,2,3,4}.

5.2. Some symmetric solutions. Bott [2] described a unique symmetric solution
V(q) for each (simple, symmetric, homogeneous) weighted majority game [q;
1, 1,..., 1] for [(n/2)+l]<=q<-n. These solutions give rise to quite interesting
geometric structures. However, these are finite solutions only in the case when n is
odd and q (n + 1)/2, e.g., vSn(3) vSo (given above) when n 5. A "symmetric
type" solution which is a generalization of the Bott solution V (q) for quota q n 1
is given in Lucas [17] for games which need not be simple or symmetric.

Muto [29] described a certain class of unique symmetric solutions which are finite.
However, the games in this class are not in general superadditive. Consider the
symmetric n-person games with

v(s)=0

v(s)>=k/(n-k+l)

v(s)<-_sv(k)/k

ifs <k,

ifs =k,

if k <s <n

for some k with 2 <= k <= (n + 1)/2 and where s 0, 1, 2, , n. The unique symmetric
solution is

V(k)=((1/(n -k +1),..., 1/(n-k +1), 0,..., 0))

where each imputation has n -k + 1 nonzero coordinates. For n odd and k (n + 1)/2
this is the Bott solution V((n + 1)/2). In the case where n =mk- 1 for an integer
m and

0

v(s)

(m

ifs <k,

if ]k <-s < (] + l)k and l <-] <-m -1,
-1)
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this solution reduces to one given by Gurk and Isbell [13]. This solution has (n-/l)
imputations. For example, when n 4, V(2) ((], 1/2, 1/2, 0)), and if n 6 and v satisfies
v(2) >=52-, v(3) <-, v(4) <=54- and v(5)<= 1, then V(2)= ((, , , , ], 0)).

It should be noted for the games in this section that many of the values v(S) for
the "nonvital" coalitions S (i.e., those S not needed in any domination that exists or
in the definition of the imputation set A) can often vary over a range of values without
altering the resulting solution sets. This is also true for many such nonvital coalitions
throughout this paper. It should also be observed that any solution for an n-person
game will, by adding 0 coordinates, be a solution of an n’-person game with n’> n
which has n’-n "dummy" players, i.e., players who never add any new value by
joining a coalition.

5.3. A new family. In 1977, McKelvey and Ordeshook [24] described nonsym-
metric solutions V(a, y) for the direct majority game [3; 1, 1, 1, 1, 1] which consist
of ten imputations of the form

(a,a,b,O,O), (O,a,O,b,a), (a,O,O,a,b), (b,O,a,O,a), (a,b,O,O,a),

(O,O,b,a,a), (a,O,a,b,O), (O,a,a,O,b), (b,a,O,a,O), (O,b,a,a,O)
5where 2a+b=l and 1/4<b<. (When a=1/4 (or b=1/2), then the set Vo(,V)

((1/4, 1/4, 1/4, 1/4, 0)) is a solution.) Each set VSo(a, 3") is a proper subset of the symmetric set
((a, a, b, 0, 0))= W5 of 30 points. There are several such solutions V(a, 3") for each
value a depending upon the particular selection 3" of ten such imputations from the
set W5.

For the 9-person game [5; 1, 1, 1, 1, 1, 1, 1, 1, 1] Michaelis [28] found analogous
types of solutions V9o(a, 3’) of 126 imputations each which are subsets of the symmetric
set ((a, a, a, a, b, 0, 0, 0, 0))= W9 of 630 points and where 4a + b 1 and < b < 1/2.
(Whena=(orb=1/2) then 91V0(g, 3")12 ((, , , , , , 0, 0, 0)) is a solution.) He also
proved that there are no such solutions contained in W7= ((a, a, a, b, 0, 0, 0)) for
the 7-person direct majority game.

Recently, it has been shown that when n is odd and not of the form 20-1, then
the game [(n + 1)/2; 1, 1,. ., 1] has various solutions V (a, 3") of ((n+q)/.) imputations
each. These are proper subsets of the symmetric set ((a,. , a, b, 0,.. , 0))= W" of
(n + 1)/2(((+q/2)) points and have (n 1)a/2 + b 1 and 2/(n + 3) < b < 4/(n + 3) (or
2/(n +3)<a <2(n + 1)/(n +3)(n- 1)). No solution of this form can exist when n is
of the form 2- 1, because ((,/’)/2) is then odd and the following characterization is
impossible to achieve.

One can characterize these solutions V(a, 3’) as the subsets of
((a, a, b, 0, , 0)) W" which are complete in the sense that for each S cN with

IsI-- (n 1)/2 there is a unique imputation x with xi 0 for all s S, and complementary
in the sense that if x s V0 (a, 3’) then x’ is also in this solution where x a when
xi 0 and x 0 when xi a. The detailed proof of this characterization and of the
existence of such sets appears in Lucas, Michaelis, Muto and Rabie [22], [23].

6. Extreme games. Many of the particular games mentioned so far belong to a
special class of games known as "extreme" games. This class of games contains most
of the games for which finite solutions have been determined, and it provides a useful
scheme for studying games with finite solutions. Only a brief introduction to extreme
games is presented here. A more detailed exposition is given in the monograph on
this topic by Rosenmiiller [33].

We will restrict our considerations to essential, superadditive and constant-sum
games in (0, 1)-normalization. Any such n-person game is determined by the 2"-- n
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1 parameters v(S), and the set of all such games forms a polyhedral subset P of the
unit cube U of 2"-1-n- 1 dimensions. One can define the class of extreme games
as those games corresponding to the extreme points of P.

One also classifies games (whether extreme or not) according to the number of
distinct values the characteristic function can take on. This approach extends the
notion of weighted majority games to the case of several quotas qj and coalitional
values v (S) as follows. Consider any n-person game for which the players have integer
weights wl, w2, "’, wn; there are E quotas q <=q2 -<... =<qz, and the characteristic
function v is of the form

0 if w(S)<q,
v(S)= dj ifq<=w(S)<q+l,

1 if q <= w(S)

$where w(S)= Y.is wi. Given the vector w (Wl, w2,’’’, wn) define its restriction w
to S by

ifi$,wS=
0 ifiS.

Let

H(q)={S cN: w(S)=q}.

A weight vector w is called homogeneous for the quota vector q (q, q2,’" ", q),
and denoted by whom q, whenever w(S)>= qj implies that there is a T c S such that
w(T) q. Note that a game of the form (**) need not in general be superadditive
unless additional constraints are placed on the wi, d and q.

A game of form (**) is a (simple) weighted majority game if E 1. (**) describes
a symmetric game if each w 1. It is convenient to classify extreme games of type
(**) according to the numbers E + 1 of values taken on by v. Finite solutions are
known to exist for some extreme games of form (**) for various values of E + 1 from
2 through 4. A brief indication of some of these results follows. This category includes
most of the games described in 4 and 5. See Rosenmiiller [33] for a morb extensive
treatment of extreme games.

6.1. Extreme games with two values. If a constant-sum n-person game of form
(**) with E + 1 2 is homogeneous, then it has the main simple solution

V (q) {wS/q: S H(q)}

of von Neumann and Morgenstern [38] where q q is the quota. The four constant-
sum, simple, 5-person games are homogeneous weighted majority games, and their
main simple solutions were given in 5.1. There are 23 simple, constant-sum, 6-person
games. Eight of these are homogeneous weighted majority games. For seven other
games of this type Gurk and Isbell [13] determined finite solutions by generalizing
the main simple solution to consider more general sets H’ of coalitions instead of
H(q). For the eight remaining games in this class no finite solutions have been
determined.

6.2. Extreme games with three values. When the characteristic function in (**)
takes on three values (i.e., when E 2), then the conditions for extremality and
the determination of finite solutions become more involved. The constant-sum
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requirement determines dl =1/2 and for the integers wi that ql+q2 w(N)+ 1. The
resulting game will be extreme if in addition

[(w (N)+ 2)/3]_-< q <= [(w (N)- 1)/2],

Wi "(q2 ql, 1, 2," , n, and w hom ql, whom q2, and w hom (q2 ql) are satisfied.
This is not a complete characterization of extreme games (with three values), as there
are extreme games which cannot be described by weights and quotas as in (**). Let
a,/3 6 R and let

V (qi a,/3) {(w R + awS)/qE g H(qi), S H(), R fq S }.

For two smaller intervals of q and additional homogeneity requirements on w,
Rosenmiiller [33] extended the main simple solution. He showed that if [(w(N)+
4)/3]-<ql -<_[3(w(N)+ 1)/7] and also if w horn (2ql-q2) and whom (3q2-4ql), then
V,I V, (q2)t.J V (ql; 1/2, 2(qE-ql))is a solution. Also if[(w +4)/3]_-<ql _-<[(w 1)/2]
and w horn (q2/2) and w horn (ql-q2/2),

V,2 V, (q2) LI V (ql; 2(qE-ql)/q2, q2/2)

is a finite solution. For the special case of symmetric games, i.e. games with w w2--
w,, 1, Griesmer 11] showed that if q (N 4-1)/3 is an integer and dl 1/2, then

q2 2q and the game given by (**) is extreme and has V, (q2) as a finite solution.
There are no 4-person extreme games with three values. Gurk [12] determined

all eight extreme 5-person games with three values and stated that he found finite
solutions for all but two of these games. One of these eight extreme games is also a
symmetric game.

6.3. Extreme games with four values. The conditions on the characteristic func-
tion (**) become more complex when it takes on four values (i.e., E 3). To be
constant-sum dx =, d2= and ql+q3 w(N)+ 1, q2=(w(N)+ 1)/2. The resulting
game will be extreme if the following conditions hold:

q2 <-- q <= -q2,
Wi <q3--q2, Wi <q2--ql for 1, 2, , n,

whom q. for/" 1, 2, 3,

w hom (q3 q2), Whom (q2 q 1).

Again, this is not a complete characterization of extreme games with four values. For
symmetric games (all wi- 1) with an odd number of 7 or more players which satisfy
the above conditions, Muto [30] obtained finite solutions. If 3q2/5 <ql -< 5q2/8, then

V4 V(q3) U/wR/q3 +2ws/3q3 +
T(lOql-3w(N))w

(18ql 6q3)q3

R sH(qz),SH(3q2-4ql),SfqR , T =N-(SI..JR)}
is a finite solution. He also obtained a finite solution with a similar structure for
qE/2 <=ql --< 2q2/5.

Rosenmiiller [33] showed that when ql 3q2/5 and w(N)+ 1 is a multiple of 10,
then

V V (q3) [-J V (q2; 2/3, 3(qa-q2)/21.3 V’ (ql; 2/3, 3(qa-ql)/2)
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is a finite solution for a game satisfying the conditions above. Actually, his theorem
is more general in that it allows games given by (**) to also have more than four
values, and as long as q] (](E 1) + 1)(w(N) + 1)/(E2 + 1), whom ql and w(N) + 1
is a multiple of E2+ 1,

V V(q) U V(q]; (N-1)/,(q-q])/(N-1))
]--1

will be a finite solution and the resulting game will be an extreme game with E + 1
values.. Pefil lkfi. When finite solutions do exist they provide a very
interesting mathematical structure. They usually exhibit some pleasant symmetries as
well as some intricate combinatorial properties. Recall that a finite solution V gives
a covering of the imputation simplex A by means of a finite number of overlapping,
open generalized orthants Os(x) whose complement in A is ust the set V. (A can
also be replaced in this theory by the n-dimensional simplex A, the subspace" E, or
the half space E.) It would appear as though such finite solutions give rise to quite
natural and perhaps rather basic structures and interrelationships which could prove
of significant mathematical interest from a purely theoretical point of view. They form
a certain type of geometry of points and space" filling cones emanating from these
points. In any case, such solutions have already proved to be of serious interest to
applications arising in the social sciences. In addition, finite solutions seem to suggest
various additional interpretations within applied mathematics as well as in the physical
sciences.

Much of classical geometry deals with points, lines and subspaces, and relations
between these. These concepts are highly linear ones and lower-dimensional" in
nature, whereas many areas in contemporary mathematics such as discrete optimization
make use of more directional" or angular" types of notions such as cones. These
may be full-dimensional regions, and may display their own geometrical and com-
binatorial relationships. Many new mathematical concepts, subject areas, abstractions
and syntheses are resulting from recent developments in fields such as optimization
theory and combinatorics. Ideas such as the blocking polyhedra of Fulkerson [8] or
the corner polyhedra of Gomory and Johnson [10] are examples. There are recent
results on the rigidity of polyhedra and bar systems such as flexible (nonconvex)
polyhedra by Connelly [5] and related work by Whitley [39] and B. Roth whose
rigidity, or lack thereof, seems to invite additional interpretations in terms of angular
notions; this may be particularly true for the analogous problems in higher dimensions.
Attempts to give geometrical descriptions to mathematical entities such as spinors
[4], [32] or twistors [7], [14] usually rely heavily upon directions and angles, at least
in lower dimensional cases. Finite solutions may be one of several possible ways to
construct useful geometric systems based more on angular notions than linear sub-
spaces.

The combinatorial structure of some finite solutions often leads to immediate
applications beyond the original game theoretical context. The recently discovered
family of solutions described in 5.3 can be used in statistical designs, for more
ecient storage of computer data or in scheduling workers or athletes (e.g., baseball
pitchers). This is discussed in another paper by Lucas, Michaelis, Muto and Rabie
[221, [23].

There are many physical systems in which small particles are "held in position"
in space. Crystals and molecules are examples. Even superfluids such as normal helium
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and helium three, He3, at very low temperatures behave somewhat like a giant molecule
or crystal. For example, they flow or rotate with little friction and are slightly magnetic.
The forces arising from each "particle" in such structures would appear to be less.
than uniform in all directions. On the other hand, there is, in many parts of the
physical sciences, a strong habit of thinking in terms of central force fields, whereas
interactions of elementary particles and the structure of the atom or the nucleus
appear to be governed by a variety of discrete variables or rules which appear somewhat
combinatorial in nature. One can easily conceive of models where particles with
angular force fields (perhaps pulsating as well) bind together in given integral numbers
when at close range, and yet repulse each other at larger distances. Such (nonlinear)
fields may be angular at short distances and appear as central force fields or take on
a probabilistic interpretation at larger distances. Such models seem more natural or
straightforward than explanations in terms of "spring-like" forces or being enclosed
in a "tough skin". There exist models which view current elementary particles as
combinations of other objects, as purely combinatorial-type structures in twistor space
[7], [14], or as related to the notion of monopoles [15]. Evidence on the existence of
fractional electrical charge [16] would appear to support these former views. In light
of this situation, it does not seem too unreasonable to suggest that the employing of
additional combinatorial ideas or the more explicit shift in thinking to more angular
notions in the study of some physical systems may be worthwhile.

Speculations about the value of a mathematical theory "in search of an applica-
tion" should be taken with due caution. Plato and Kepler were badly misled by trying
to fit the real world to the beautiful result on the existence of precisely five regular
(Platonic) polyhedra [34]. On the other hand, this classical result has provided a guide
to some useful discoveries such as the construction of the three synthetic hydrocarbons
called the cubane, the tetrahedrane, and recently the dodecahedrane [31]. The theory
of solutions (whether finite or not) has already made a contribution to mathematical
modeling in the direction of the social sciences, and the dominance relation used in
this theory will clearly be a very essential ingredient in many more models concerning
multiperson interactions and coalitional behavior. The theory of finite stable sets
which grew out of such an attempt to model social situations does provide an interesting
mathematical system which also seems to invite additional applications in the direction
of the physical sciences.
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DOUBLE SEMIORDERS AND DOUBLE INDIFFERENCE GRAPHS*

MARGARET B. COZZENSt AND FRED. S. ROBERTSt

Abstract. The notion of semiorder was introduced by Luce in 1956 as a model for preference in the
situation where indifference judgments are nontransitive. The notion of indifference graph was introduced
by Roberts in 1968 as a model for nontransitive indifference. Motivated by problems of measurement and
seriation in the social sciences and by frequency assignment problems in communications, we discuss
generalizations called double semiorders and double indifference graphs. Semiorders are exactly the binary
relations (A,P) such that there is a real-valued function f on A satisfying xPy iff f(x)>f(y)+8, where 8
is a fixed positive number. Indifference graphs are exactly the graphs (V, E) such that there is a real-valued
function f on V satisfying {x, y}E iff I(x)-f(y)l_-<8. Suppose 81 >82>0. We present conditions on a
pair of binary relations (A, P1) and (A, P2) necessary and sufficient for the existence of a real-valued
function/ on A satisfying xPiy iff/(x) >/(y) +8i, 1, 2. These lead to conditions on (V, El) and (V, E2)
necessary and sufficient for the existence of a real-valued function f on V satisfying {x, y Ei iff If(x) -f(y)l <=
8i, i= 1,2.

1. Introduction. The notion of semiorder was introduced by Luce [1956] as a
model for an individual’s preferences when, due to the existence of thresholds,
indifference is not transitive. The analogous notion for indifference, called an
indifference graph, was introduced by Roberts [1968], [1969]. In this paper, we study
generalizations of semiorders and indifference graphs which arise from problems in
measurement and seriation in the social sciences and from problems of frequency
assignment in communications, when more than one threshold exists.

Suppose P is a binary relation of preference on a set A. Luce [1956] asked for
conditions on (A, P) necessary and sufficient for the existence of a real-valued function
on A so that for all x, y A,

(1) xPy [(x) >/(y) + 6,

where 6 is a fixed positive number. If such a function f exists, x is preferred to y if
and only if its measure f(x) is "sufficiently larger" than/(y), where "sufficiently larger"
is measured by a threshold 6. In turn, if indifference ! is defined on A by xIy
"xPy &-yPx, Roberts [1968], [1969] asked for conditions on (A, I) necessary and
sufficient for the existence of a real-valued function f on A so that for all x, y A,

(2) xly =:> If(x) -f(y)l <- 8.

Modifying a notion of Luce, Scott and Suppes [1958] defined a semiorder (A, P)
as a binary relation satisfying the following conditions for all a, b, c, d in A"

S1: aPa,
$2: aPb ^ cPd ::), aPd v cPb,
$3: aPb ^ bPc aPd v dPc.

THEOREM 1 (Scott and Suppes [1958]). Suppose P is a binary relation on a finite
set A, and 8 is a positive number. Then there is a real-valued function f on A such that
(1) is satisfied if and only if (A, P) is a semiorder.

* Received by the editors June 15, 1981. This work was partially supported by the U.S. Air Force
Office of Scientific Research under grant AFOSR-80-0196 to Rutgers University.

" Department of Mathematics, Northeastern University, Boston, Massachusetts 02115.
t Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903.

We adopt the relation-theoretic terminology and notation of Roberts [1979b] and the graph-theoretic
terminology and notation of Harary [1969] and Roberts [1976], [1978].
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COROLLARY 1.1. I[ a binary relation P on a finite set A is representable in the
form (1) for some positive number 8, then it is representable in the form (1) for any
positive number 8.

For alternative proofs of the Scott-Suppes theorem, see Scott [1964], Rabinovitch
[1978], and Roberts [1979b].

If a binary relation (A, I) is representable in the form (2), then certainly I is
reflexive and symmetric. We may define a graph G (V, E) by taking V A and
{x, y } s E iff xIy. This is an undirected graph with a loop at each vertex. All our graphs
will have this property and will also have the property that V is finite. However, we
shall always omit the loops in our diagrams. We then ask whether there is a real-valued
function f on V so that for all x, y V,

(3) (x, y}E I(x)-y:(y)l .
We say G is an indifference graph if there is a function f satisfying (3).

COROLLARY 1.2 (Roberts [1969]). A graph G is an indifference graph i and
only if the edges o[ the complementary graph t can be oriented so that the resulting
binary relation defines a semiorder.

Roberts [1969] also presents several other characterizations of indifference
graphs, including a forbidden subgraph characterization.

In this paper, we shall consider pairs of preference relations and indifference
relations on the same set. We shall seek representing functions f satisfying analogues
of (1) and (3) where there is more than one threshold. Specifically, suppose P1
and P2 are binary relations on A, (V, E1) and (V, E2) are graphs and 81 >82 are
positive numbers. Then we seek necessary and sufficient conditions for the
existence of real-valued functions f on A (respectively, V) so that for all x, y in
A (respectively, V),

(4) xPly :> f(x)>f(y)+81 and xP2y :f(x)>f(y)+82

and

(5) {x,y}c=>l/(x)-f(y)l and {x,y}zll:(x)-l(y)la.

We shall explain applications of these representations below. However, we can think
of the two thresholds as distinguishing two levels of preference or indifference, strong
and weak, or two levels of interference, strong and weak, etc.

The paper is organized as follows. Sections 2, 3, 4 and 5 present applications of
and motivations for the representations (4) and (5), and 6 presents a precise formula-
tion of our questions. Section 7 presents a general method for solving such representa-
tion problems, 8 and 9 present our specific solutions, and 10 presents open
problems.

2. The channel assignment problem. One of a number of related frequency
assignment problems in communications theory is the channel assignment problem,
which has been studied by Zoellner and Beall [1977] and by Hale [1980]. It can be
defined in general terms as follows. Suppose we have a set V of transmitters, each
of which is to be assigned a discrete frequency or channel, a positive integer, on which
to transmit its signal. Suppose there are k different levels of interference between
transmitters. A typical criterion is that u and v interfere at level if and only if
d(u, v) -< 8, where 8 is a positive real number and d(u, v) is some appropriate measure
of the distance between the transmitters u and v. Suppose T(i) is a given set of
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disallowed distances between channels, with {0}c_ T(1)_ T(2)_ T(3)_
_

T(k).
We seek an assignment of a channel A (v) for each v in V so that for all u, v V,

(6) u and v interfere at level [A (u A(v )[ : T(i).

For UHF television transmission, the distances 8i and sets T(i) are given as follows"
81=155, 82=75, 83=60, 84=55, 85=20, T(1)={0}, T(2)={0,15}, T(3)=
{0, 7, 14, 15}, T(4) {0, 1, 7, 14, 15}, T(5) {0, 1, 2, 3, 4, 5, 7, 8, 14, 15} (Hale
[1980]).

Let Gi be a graph with vertex set V, and an edge between vertices u and v if
and only if u and v interfere at level i. If the transmitters are points on a line, and
interference is defined by d(u, v)<-8, then each G is an indifference graph. More
generally, if the transmitters are thought of as points in the plane or in 3-space, then
the graphs Gi are said to be graphs of (unit) sphericity at most 2 or at most 3,
respectively. See Cozzens [1981] and Havel [1982] for further discussion of this case.
The case k 2 gives a pair of graphs G1 and G2 so that

(7) {x, y}eE(G)c:d(x, y)<_-8

and

(8) {x, y}eE(G2)cd(x, y)_-< 82.

In studying the representation (5), we seek to characterize the pairs of graphs G and
G2 which arise as in (7) and (8), provided distance is between points on a line. The
general characterization problem is still open for different metrics d and different
values of k.

Hale [1980] points out two important special cases of the general channel
assignment problem we have posed. One is where k 1 and T(1) {0}. Then a channel
assignment satisfying (6) is an ordinary graph coloring, since IA(u)-A(v)l SO is
equivalent to A(u)A(v). One often seeks a channel assignment using as small a
number of channels as possible, and hence in this special case, a graph coloring using
as few colors as possible. Gr6tschel et al. [1980] have shown that the problem of
finding the graph coloring using the fewest colors is solvable by an efficient (polynomial)
algorithm for perfect graphs, and hence in particular for indifference graphs. Hsu
[1980] also shows this for claw-free perfect graphs, which include indifference graphs.
In general, the problem of finding the best coloring is NP-complete. Indeed, James
Orlin [personal communication] has shown that it is NP-complete even for graphs of
(unit) sphericity at most 2.

A second special case is where k 2 and T(1)= {0} and T(2)= {0, 1}. Then we
seek a function A (v) satisfying the following conditions:

(9) {u, v}eE(Gx) :=> A(u) A(v),

(10) {u, v}eE(G2)::=>A(u) # A(v) and IA(u)-A(v)l # 1.

i.e., A(u) and A(v) are not adjacent channels. One would like to find channel
assignments A satisfying (9) and (10) and using as small a number of channels as
possible. A first step in developing procedures for solving this problem is to characterize
pairs of graphs arising as in (7) and (8), in particular to characterize pairs of graphs
representable in the form (5). This problem we shall solve below.

For recent results on the channel assignment problem, see Cozzens and Roberts
[to appear].
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3. Seriation and Robinson form. In making decisions, it is often necessary to
order the alternatives from least desirable to most desirable, least risky to most risky,
etc. One way to order the alternatives begins with a judgement rij of the similarity of
alternatives, with rij higher than rkl if and ] are more similar than k and l. R (ri)
is a symmetric matrix, called the proximity matrix. This type of matrix has been used
extensively in both the clustering and the multidimensional scaling literature. R is
said to be in strong Robinson form if whenever i-<_/" _-< k _-< then rk ril. This means
that if j and k are between and then/" and k are at least as similar as and l. A
goal of seriation (Hubert [1974]) is to find a permutation of the objects being sequenced
so that if this permutation is applied simultaneously to both rows and columns of the
proximity matrix R, the resulting matrix is in strong Robinson form. The ordering is
thought of as the natural ordering determined by the similarity data. Kendall [1963],
[1969a, b], [1971a, b, c] posed the questions: When does such a permutation exist,
and how does one find it when it does exist?

Let 6 be an arbitrary positive number, a threshold selected by the researcher,
and define a graph G8 fromR as follows. The vertices of G are the numbers 1, 2, , n,
where n is the number of rows of R. There is an edge from to/" if and only if r _>-6.

Let R’ be obtained from R by replacing each diagonal element by m. Let G be
defined from R’ as G was defined from R. We thus have the following theorem,.
which first appeared in Roberts [1979a] but is based heavily on the work of
Hubert [1974]:

THEOREM 2. A square symmetric matrix R is permutable to Robinson form if and
only if the diagonal elements of R are each maximal in their row and {G: > 0} is a
homogeneous 2 family of indifference graphs.

There are only a finite number of different graphs G;, and therefore this condition
is indeed testable.

The use of a threshold corresponds to dichotomizing the entries of the proximity
matrixsome are over threshold, some are under threshold. In some instances
measurement error may obscure an otherwise perfect model and a certain amount of
insight is needed to determine what type of proximity matrix dichotomization may
prove most useful. Hubert [1974] suggests that it may be valuable, in some cases, to
trichotomize a proximity matrix as a way of lessening any inconsistencies due to
measurement error. More precisely we might use two threshold levels, and 2,
d; > 2, to be determined by the researcher. We shall study the pair of graphs G
and G. We shall consider a problem analogous to the indifference graph characteriz-
ation problem: If G and H are two graphs with the same vertex set V and ; and
82 are two positive numbers, when does there exist a function ]’: V--> N such that (5)
holds? The solution to this problem is clearly related to the trichotomization of
similarity matrices in the same way the solution to the problem of characterizing
indifference graphs was related to the dichotomization of such matrices.

4. Bisemiorders and Guttman scales. Another representation related to the
representation (4) arises as follows. Suppose S is a set of individuals whose reactions
or experiences are being studied and E is a set of reactions or experiences. Let aRb
mean that individual a had reaction or experience b. In another interpretation E is
a set of test questions and aRb means that individual a answers question b correctly.
Then R defines a binary relation on S x E so that R

___
S x E. Many experimenters

2 A family {G} of indifference graphs on the same vertex set V is called homogeneous if there is a
linear (simple) ordering -< of the vertices in V so that for all 8, x <= y <-z <-w and {x, w}eE(G’) implies
{y, z}E(G’).
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have sought a way to order reactions (test questions) in such a way that if individual
a experiences reaction b (answers question b correctly), he tended to experience all
reactions (answer correctly all questions) coming before it in the order. In particular,
they have sought a way to simultaneously order the individuals and reactions
(questions) in such a way that individual a had reaction b (answered question b
correctly) i and only if a ollowed b in the ordering. In terms of a representation, we
can think of finding two real-valued functions s on S and e on E such that for all
a S and b E,

(11) oRb : s(a) >e(b).

The two functions s and e satisfying (11) define what is called a Guttman scale, after
Louis Guttman [1944]. In general, given a triple (S,E,R) with R a subset of S x E,
we ask when (S, E, R) possesses a Guttman scale. For a representation theorem, see
Ducamp and Falmagne [1969].

Suppose we want to distinguish two types of reactions or replies, instead of just
one. For example, an individual may show intense fear or just fear as a reaction; an
individual may answer a question correctly with difficulty or correctly without difficulty.
Let R and T be binary relations on A representing these two levels of reactions, or
of correctness of replies, with R

_
$ xE and T

_
$ E. We now want conditions on

R and T that will produce a representation, namely, functions s’ S --> R and e" E --> R,
and positive numbers 8, r/with 8 > r/, such that for all a $, b E,

(12) aRb c:s(a)>e(b)+8 and aTb c:s(a)>e(b)+l.

The functions s and e provide a generalization of the Guttman scale to two relations,
and the representation (12) is obviously closely related to our representation (4).
Ducamp and Falmagne [1969] introduce the concept of bisemiorder (S, E, R, T) and
show that (S, E, R, T) is representable in the form (12) if and only if it is a bisemiorder.
The conditions for a bisemiorder do not solve the representation problem (4) because
of the special nature of the relations R and T and because we have two functions
rather than one.

5. Upper homogeneous representations. A question related to that aske.d in 1
is the following: Suppose we are given a structure (A, P1, P2) where each Pi is an
asymmetric binary relation on A which represents preference. We think of two levels
of preference, strong or weak. When does there exist a function f and nonnegative
threshold functions b and b2 defined on A such that for all a, b A"

(13) aPtb :f(a)>f(b)+(b) and aP2b :f(a)>f(b)+2(b)?

To answer this question we introduce the concept of interval order, a binary relation
(A, P) satisfying Axioms S and $2 of the semiorder axioms. We note the following
representation theorem due to Fishburn [1970].

THEOREM 3. Suppose (a, P) is a binary relation on a countable set A. Then (A, P)
is an interval order if and only if there exist real-valued functions f and qb defined on
A, with qb (a) > 0 for each a A, such that for all a, b A,

aPb :f(a) >f(b)+qb(b).

It is clear that for a representation (13) to exist, (A,P) and (A, P2) must be
interval orders. The following definitions are basically those of Krantz, Luce, Suppes
and Tversky [to appear], but phrased along the lines previously used. Suppose P1 and
P2 are asymmetric relations on A and f, b, b2 are real-valued functions on A. Then
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we call (f, bl, 2) an upper homogeneous representation of (A, P1, P2) if f, b, 2 satisfy
(13). We sayP and P2 are upper interval homogeneous if for all a, b, c, d A, whenever
aPb and cPEd then either aP2d or cPb. Notice that when P1 P2 the condition
reduces to $2 of the definition of an interval order. We now have the following theorem:

THEOREM 4 (Krantz et al. [to appear]). Suppose (A, P) and (A, PE) are interval
orders and A is countable. Then (A, P, PE) has an upper homogeneous representation
if and only ifP1 and P2 are upper interval homogeneous.

The preceding leaves a number of questions yet unanswered. First, given an upper
homogeneous representation (f, bl, 42), when does there exist a function g and
constant functions b =k and b =-k2 such that (gf, qb’,) is also an upper
homogeneous representation of (A, P, P2)? This question was posed by Krantz et al.
in a preliminary version of [to appear, Chap. 15] and asks when it is possible to
transform an upper homogeneous representation to one with constant thresholds. In
the question posed at the end of 1, we are asking the closely related question: Is
there an upper homogeneous representation with b and b2 constant functions?

6. Precise formulation of the questions. We will ask two questions for each of
the representations (4) and (5). Namely, we first ask if for a fixed >2 0 there is
a function f satisfying (4) or (5). We next ask if for some 1 82O there is such a
function. In the case of one threshold, as Corollary 1.1 pointed out, there is a
representation (say satisfying (1)) with fixed 0 if and only if there is a representation
with some > O. However, in the case of two thresholds, the questions are distinct.
Consider the following example. Let A {a, b, c, d}, P {(a, b)} and P2
{(a, b), (a, d)}, 3 and 2 1. Then no real-valued function f exists such that (4)
holds for 3 and 2 1 and all members of A. Since aPxb we must have f(a)
f(b)+3, but not aPEC and not cPEb implies f(a)<-_f(c)+l and f(c)<-f(b)+l. Thus
f(a) <-f(b)+ 2, a contradiction. For a function f to exist for (A, P1) and (A, P2) and
satisfying (4), we must limit 8x and 82. We want f(a)>f(b)+8, f(a)<-f(c)+S2, and
f(c) <-f(b) + 82. Therefore f(b) + 8 <f(a) <- f(b) + 282 and we must have 8 < 282. Since
aPEd and not aPed, 8 > 82. Therefore 2< 81 < 2t2. In other words the difference in
thresholds must be fairly small to represent (A, P) and (A, P2) simultaneously. One
possible representation for the above example can be found with 1.5 and 82 .8.
Take/(a)= 1.6,/(b) 0, f(c)= .8 and/(d)= .7.

7. Scott’s method. In studying the representation (4) in the next section we will
use a method developed by Scott [1964] to solve a large class of representation
problems. He used this method to give an alternative proof of the representation of
nontransitive indifference (semiorders), to find and prove conditions necessary and
sufficient for the representation of ordered differences (Adams and Fagot [1956]),
and to give an alternative solution to the problem of subjective probabilities (Kraft,
Pratt, and Seidenberg [1959]). Since that time, the method has had a number of uses.
In particular, Ducamp [1978] has used this same method to give an alternate proof
of the representation theorem for bisemiorders (Ducamp and Falmagne [1969]).

Scott’s method is based on the following ideas. Let L be a finite dimensional
vector space over the reals. A subset X

_
L is symmetric if X -X {-xlx X}. A

subset N c__X is realizable in X if there is a linear functional b on L such that for
all x X,
(14) x sN C,$(x)>-O.

Recall that a linear functional is a real-valued, homogeneous, additive function defined
on L. In case N # X, (14) says that there is a half space H of L separating the sets
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N andX N so that X f’)H H f’) N. If N X then the trivial linear functional b 0
shows that N is realizable. We let M denote X-N. In the case that S is a finite set
and L L(S) is the vector space of all real-valued functions defined on S (the usual
S-dimensional vector space), we call a vector (function) inL rational if all its coordinates
(values) are rational numbers. A rational subset ofL is a subset of L consisting entirely
of rational vectors. With the preceding definitions we can now state the main theorem
of Scott’s method.

THEOREM 5 (Scott [1964]). Let L be a finite dimensional vector space, and X a
finite, rational, symmetric subset of L. For a subset N o]’ X to be realizable in X it is
necessary and sufficient that the conditions

and

xN v-xN

n-1

xi-’O-xoN
i=o

hold for all x X and all sequences x0, x 1, ",xn-1 X where Xi Nfor all < n, > 0,
and n > O.

We will use a particular case of Theorem 5 which we will now state as a corollary.
COROLLARY 5.1. Let L be a finite dimensional vector space. Let M, N, X be such

thatX is a finite, rational, symmetric subset ofL, (M, N) a partition ofX and N -M.
Then the following are equivalent:

(i) There exists a linear functional h on L such that for all x s X, x sM if and
only if h (x > O.

(ii) There exist no sequences x l, x 2, xn in Msuch that Y.i--1 xi =0.

8. Double semiorders. If A is a set and P1 and P2 are binary relations in A, let
us say that (A, P1, P2) is two-threshold representable, or representable for short, if there
exists a real-valued function f on A and two positive real numbers 61 and 62, 61 > 62,
so that for all a, b s A, (4) holds. We call f a two-threshold representation for (A, P1, P2)
relative to 61 and 62. Note that if 61 62, then P1 P2 and the Scott-Suppes theorem
(Theorem 1) is a representation theorem for (A, P1, Pz). That is why we consider only
the case

By the Scott-Suppes theorem, if (A, P1, P2) is representable, P1 and P2 must both
be semiorders. It is also clear that
and P2 form a nested pair of semiorders.

We now need to look at the relationship of 61 to 62 if (A, P1, P2) is to be
representable with 61>62 >0. At this stage it becomes convenient to adopt some
notation which we will use throughout this section. If (A, R) is a binary relation, let
/* {(y, x)[(x, y) 6 A A and (x, y) R}. A cycle C in (A, P1, P2) is a sequence
R1, R2,"" ,Rn such that Ris{P1, P2, fi*x,fi’} for each i, and there exist al, a2, ’,

an A such that a1R la2R2 R,,_lanR,a 1. Consider two nested semiorders, P1 - P2,
each defined on set A. For any cycle C in (A, P1, P2), suppose m ml(C) is the
number of P1 in the cycle C, m2 m2(C) is the number of P2 in the cycle C, nl nl(C)
is the number of/5, in the cycle C, and n2 n2(C) is the number of/5, in the cycle
C. Let

mc(P1, P2) n 1- ml

0

if C is a cycle such that n :> m and m2 n2,

otherwise,
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rt2-- m2

sc(P,P)= m-n
if C is a cycle such that m > n 1,

otherwise.

Define m (P1, P2) to be supc mc (PI, P2) and s (P1, P2) to be infc Sc (P1, P2) if Sc (P1, P2) <
oo for some C and to be oo otherwise. Note that in principle s(P1, P2) could be -c.
However, we shall show that representability implies s(P1, P2)->-0.

LEMMA 1. /f (A, P1) and (A, P2) are nested semiorders with P1 P2, then
m (P1, P2) >= 1.

Proof. Since P P2, there exist a, b A such that aP2b and .--aPxb. Therefore
we always have the cycle C’ aP2bP*a, and mc,(P, P2) 1. Therefore m (P, P2) ->-
mc,(P1, P2) 1. Q.E.D.

Let us look at an example that shows that not all nested semiorder systems
are representable. Let A {a, b, c, d, e}, P {(b, a)}, and P2 {(b, a), (b, c),
(b, d), (c, d), (e, d)}. This example is illustrated with the multidigraph o Fig. 1, where
two arcs from x to y indicate xPly and xP2y and one arc indicates xP2y and not xPly.
Suppose a representation f exists for (A, P, P2) with some > $2 > 0. Now bP2cP2d
implies/(b) >f(c + 82 >f(d) + 2(2. But---bPld implies/(b) <_-f(d) + 1. Thereforef(d)+
262 <f(b)<-_f(d)+8l, so 282 <(1. Now ---ePEa and -’-bPEe implies f(b)<-f(e)+82 <-
f(a)+262. Also f(b)>f(a)+gl since bPla. Therefore f(a)+8l<f(b)<-f(a)+282 so
(1 < 2(2 and we have 1 < 2(2 < (1, a contradiction. Yet both P1 and P2 are semiorders,
and P1 -P2.

d

FIG. 1

In this example, the cycle C1 in (A, P1, P2) defined by C1 "-bP2cP2db is such
that mcl(P1, P2) { 2. Also the cycle C2 bPlaP*2ePb is such that Sc2(P1, P2) { 2.
Nonrepresentability now follows from the following lemma.

LEMMA 2. Suppose (A, P1, P2) is representable by a function f with 61 > 82 > 0 and
P1 and P2 are semiorders such that P1 - P2. Then for all cycles C and C’ in (A, P1, P2)
such that sc(P1, P2) < oo,

e 1 >
e
> mc,(P1, P2),sc(P1, P2)-->2>- --=

where e min {f(a)-f(b): aPlb} and e max {f(a)-f(b):
Proof. Since sc(P1, P2) < oo there are a, b A such that aPlb. Thus e is defined.

Also, clearly, e > 61 so e 1/62 > 1/62. Similarly, "--aPla implies e is defined and
e _-> 0. Clearly 61 -> e , so 61/6z >- e 1/t$2.

Let C be the cycle alRla2R2"" R-lakRkal such that Re{P,Pz, P’,P} for
each 1, 2, , k, ai A for each j 1, 2,.. , k and sc(P1, P2) < o. Let C’ be the
cycle blR’xb.R. R_ btR’b where R {P1, P2,/sx*,/52* }, for each 1, 2, l,
and biA for each /’=1,2,...,l. For all x,yA, xPly=),f(x)>-f(y)+el,
xP’y :::> "yPlx = f(y)<--f(x)+61 ==)’ f(x)>--f(y)-l ==> f(x)>--f(y)-el, xP2y ==> f(x) >
f(y)+8:, and xPy =>-yP:x ==>f(y)<-f(x)+,%==>f(x)>-_f(y)-,%. Thus if Ri=P1
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then f(x) >- f(y) + e and if Ri =/st* then f(x) >-f(y) e . Also if Ri P2 then f(x) >
f(y)+62 and if Ri=/5* then f(x)>=f(y)-d;2. Thus from the cycle C=
alRla2R2"" ak-lRk-lakRkal we have f(al)>=f(al)+mlel+m2$2-nlel-n262,
where mi is the number of Pi in the cycle C and n is the number of/5, in the cycle
C, 1, 2. Therefore mle + m2t$2 n le n282 -< 0. Since sc(P1, P2) < 00, m > n --> 0.
Thus e 1/52 <- (n2- m2)/(m n 1). Hence e 1/52 -< sc(P1, P2), proving the first inequality.

To prove the fourth (last) inequality, note that by a similar argument from the
cycle C’=blR’b2R." "R-lbtRbl we have [(bl)>-f(bl)+m’le’l +m2 2 n’le’-
n2 2, where m =number of P in the cycle C’, 1, 2, and n =number of
in the cycle C’, 1, 2. Now suppose mc,(P1, P2)= 0. Then certainly mc,(P1, P2)-<
e/82. If mc,(P1, P2)O then n >m_->0 and m>-n>=O. Thus f(bx)>-_f(bl)+

’8 ’8 ’8 <0. Hence,m e + m ’2$2 n e n 2 2 implies that m e +m 2 2 n e n 2 2=

(m . n )/(n m -< e /62, since n m > 0. Therefore mc,(P1, P2) =< e /82 and the
last inequality is proved. Q.E.D.

Note that it follows from Lemma 2 that if (A, P1, P2) is representable arrd
sc(P1, P2) < oo, then sc(P1, P2) >-O. Thus, if sc(P1, P2) < for some C, s(P1, P2) >-O.

LEMMA 3. If (A, P1, P2) is representable, we have m (P1, P2) < s (P1, P2).
Proof. The result follows from Lemma 2 if sc(P1, P2)< oo for some cycle C. If

the latter is false, then s (P1, P2) oo and m (P1, P2) < s (P1, P2) is immediate because
by Lemma 2, m(P1,P2)<-$1/82. Q.E.D.

Although the condition that s(P1, P2) be greater than re(P1, P2) seems to be a
difficult condition to verify, there are situations where the condition is useful, as in
Fig. 1 above. To generalize this example, define a P2-path in the multidigraph depicting
a system (A, P1,P2) as a cycle C=aoP2alP2" "P2akP*ao. P2-paths are readily
identified and mc(P1, P2) k/1 k for a P2-path with k + 1 elements of A. Therefore
rn (P1, P2) -> length of longest P2-path in (A, P1, P2).

Define an (I2-P)-cycle as a cycle C aoPatP at-lP’atPlao. For such a
cycle sc(P1, P2) l/1 l, and so s(P1, P2) <- I. Therefore s(P1, P2) -<length of shortest
(I2 P2)-cycle.

Looking back at Fig. 1, we found mcl(P1, P2)=2 from the P2-path C1
bP2cP2d’b, but sc2(P1, P2)=2 from the (I2-P1)-cycle C2=aPeP’bPla. Thus
mc(P1, P2) Sc2(P1, P2), som (P1, P2) s (P1, P2), hencenorepresentation exists.for this
(A, P1, P2) by Lemma 3. In general we can use Lemma 3 to prove nonrepresentability
by taking long P2-paths and short (I2-P1)-cycles.

The next lemma gives conditions for (A, P1, P2) to be representable in the trivial
case that P1 P2.

LEMMA 4. If P1 P2, A is a finite set and (A, P2) is a semiorder, then (A, P1, P2)
is representable.

Proof. If P2 is a semiorder then by the Scott-Suppes theorem (Theorem 1), given
52 > 0, there exists a function f"A --> R such that for all a, b A,

aP2b =f(a >[(b +.
Let e =min {[(a)-[(b): aP2b} and 1 =$+(e-82)/2 (82+e)/2. Then it is easy to
show that [ is a two-threshold representation relative to 1 and 62. Q.E.D.

Now we will use the techniques of Scott’s method to deduce the remaining
conditions both necessary and sufficient for a system (A, P1, P2) to be representable
where P1 P2. We already know that P1 and P2 must be nested semiorders, and
m(P1, P2)<s(P1, P2).

Let (A, P1, P2) be a system of two semiorders P1, Pz such that P1P, A is finite,
and m (P1, Pz)< s(P1, P). Let e be an element not in the set A and let S A [_J {e}.
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Each element x c S determines a vector in L L(S), namely the characteristic function
of {x }. We identify each x c $ with its corresponding vector, so $

__
L. Now $ becomes

a linear basis in L(S). Choose a rational number 6 such that m (P1, P2) < 8 < s(P1, P2).
Since m (P1, P2) -> 1 by Lemma 1, note that 6 > 1. Let:

M1--{a -(b + 6e)la, b cA, aPlb},

M2-{a -(b +e)[a, b cA, aP2b},

f-ll ={(b +Se)-a la, b cA, -aPlb},

/0r2 {(b +e)-a ]a, b cA, -aP2b}.

Define M M1 M2 M1 M2 and N -M. Define X M t.J N. Now X M LIN
and X is a finite, rational, symmetric subset of L(S) and (M, N) is a partition of X.
We can now use Scott’s method, Corollary 5.1, to find conditions for the existence
of a linear functional h on L such that for all x c X, x cM if and only if h (x)> 0.
Such a function h exists if and only if there is no sequence xl, x2,’’’, x, cM such
that i= xi 0. We shall derive conditions to ensure this. Since h is a linear functional,

and

h (a) > h (b + 8(h (e)) : h (a b -Be) >0
, a -b -Se cM

= aP b

h(a) > h(b)+ h(e) h(a -b -e) >0
, a b e cM
, aP2b.

Since PloP2, there exist ao, bocA such that aoP2bo and "-’aoPlbo. Therefore we have
h (ao) > h (bo) + h (e) and h (ao) _<- h (bo) + 8 (h (e)). Thus h (e) < 8 (h (e)) and 0 <
h(e)(8 1). Since 8 > 1, h(e) >0. For any a cA, let f(a) h(a)/h(e). Now

h(b)h (a)
> + 8 :f(a) >f(b) + 8aPlb C h(e)

and

h(b)h (a)
> + 1 :f(a) >f(b) + 1aPEb h (e h (e

Thus the existence of h implies that there exists a function f:A --> R and 81 8, 82-- 1
such that (4) is satisfied. Therefore (A, P1, P.) is representable. Conversely, if there
is f, we can define h by working backwards. Thus we have proved the following lemma.

LEMMA 5. Suppose P1 and P2 are a nested pair of semiorders on a finite set A,
PloP2, and m (P1, P2) < 8 < s(P1, P2), 8 rational. Then (A, P1, P2) is representable with
81=8 and 82 1 if and only if there is no sequence x l, x2,’",xn cM such that

1Xi--O
To discover conditions necessary and sufficient for representability, we suppose

that there is a sequence xl, x,"’,x,, in M such that i=1 xi =0. Now any element
ofM is of the form x y + e, where x, y c A, e +e or +Be. Let xi ao a + e 1, with
ao, a c A, e +/-e or +/-Be. Since the algebraic sum of the component a in x must
be 0 (i.e., x has 0 as the coefficient of a in the expansion), there must be
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x,2 al- a2 -" e2 where a2 A and e2 +e or +Be. If a2 a0, we can find xi3
aE-a3d-e3 where a3A and e3 e or Se. Continuing, we get a subsequence
(possibly the whole sequence) {x}x such that for 1 m, x a_x a +e and
e=e or Se, where a means a0. The subsequence corresponds to a "cycle"
a0, ax,..., a_, a =ao. We may suppose =xx 0, For if not, then x x,>0
and m n. We can repeat the process choosing a distinct x (x x for all
j 1, 2,..., m), generating a new "cycle". Specifically, choose xi x, j m. Let
x+=a-a+x+e+x, where e+x =e or Se. Since the algebraic sum of the
component a in x must be 0 there must be x x for all j m of the form

xi+2 am+-am+2 + era+2, where em+2 e or Se. Since the sum, x, is 0, for each
x,+ there also must exist an x+= am+E-am+3 + era+a, and so on. We thus find a
new subsequence x ,x, ,x with properties analogous to the subsequence+, +, >x, x, .., x. t Lk=+ x <0, we ffse the new subsequence. If Lk=+x xi o, we
find a third subsequence x,, x+,,..., xi+,+,,. Since all subsequences have
disjoint elements, and since M is finite and x =0, we must eventually find a
subsequence whose sum is 0. We denote this subsequence by {x} and let

xi aj_ aj + ej.

Note that for ] 1, e =-e implies a-P2a; e =-6e implies a_lPa; e =e
implies aP2a-l, equivalently a_a, and e 6e implies aPa_, equivalently
a_lPa. In other words, the subsequence corresponds to a cycle C=
aoRaR2" R_a_Rao where Ri s {P, P2, P, P} for each i. The cycle C does
not contain only P and P2 since PLOP2 and P2 is transitive and irreflexive. Let mi
denote the number of Pi in the cycle and ni denote the number of P in the cycle.
Now% xi =-m6e +nle-m2e +n2e 0, so (n-m)6e (m2-n2)e. If n >m,
then (m2 n2)/(n m) mc(P, P2), contradicting m (P, P2) < . If m > n , then
sc(P,P2)< for cycle C corresponding to the subsequence. Now
(m2-n2)/(n-m)=(n2-m2)/(m-n)s(P1, P2), contradicting 8 <s(P,P2).
Therefore m n. It follows that m2 n2. Consider the cycle RR2" R (the a’s
will be suppressed when not needed). Assume first that this cycle contains only P
and P or only P2 and , abbreviated P and P*. Since aPa is a contradiction and
since aPb*a is a contradiction (it says aPb and aPb), there must be at least two
P’s in the cycle. But if there are two P’s adjacent in the cycle, then there are two P’s
followed or preceded by a P*. Thus we have xPyPz*w or xP*yPzPw, both of which
imply xPw by the semiorder axioms. By replacing xPyPzP*w or x*yPzPw by xPw
we reduce the cycle RR2. R to a shorter one that satisfies m n and m2 n2.
Thus we can continuously reduce the cycle to one with only one P and one *, already
impossible, or to one with no two adjacent P’s. If the latter, a part of the cycle looks
like P*P. But the semiorder axioms also yield xPyP*zPw xPw, thereby reducing
the cycle to a shorter one in which m n and m2 n2 still holds. Thus the cycle can
be systematically reduced to xPx, which we already know is impossible. Therefore we
conclude that the cycle cannot contain only P and or only P2 and P. It follows
that m n 0 and m2 0.

Since aa for all a s A, if m2 > n2 we can add to the cycle at any point and
continue to have a cycle satisfying m n O, mn2, m2 O. Therefore we may as
well assume that m n and m2 n2, and each is nonzero.

To sum up, if there is no representation, then by Lemma 5 there is a sequence
x, x2,’’’, x sM such that xi O. We have shown that xi 0 implies that there
is a cycle RIR2" .R such that nl=mO, n=m2O. Let us call such a cycle
balanced. Thus we have shown for the case P P2 that if (A, P, P2) is a system of
two semiorders P and P2 with P P2 and m (P, P2)< s(P, P2), and if there is no
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representation, then there is a balanced cycle. The same result follows for the case
P1 =P2 by Lemma 4. Conversely, if there is a representation f with 8 and 1, we
already know that P1 and P2 are semiorders, P1 - P2 and m (P1, P2)< s(P1, P2). Also,
there can be no balanced cycle. For suppose a1R laER2 akgkal is a balanced cycle.
Then m n 0 and mE n2 0 and, reasoning as in the proof of Lemma 2, f(a 1) >-
f(al)+m18+mE-n18-n2. Moreover, since ml 0, there is at least one P1 in the
cycle, and so in fact the reasoning as in the proof of Lemma 2 gives us f(al)>
f(al)+mlS+mE-nlS-n2. Thus f(al)>f(al)+(ml-nl)8+(mE-nE)=f(al), or
f(a 1) >f(a 1), a contradiction.

To state a representation theorem, let us say that (A, P1, P2) is a balanced double
semiorder system if (A, P1) and (A, P2) are semiorders, P1- P2, and (A, P1, P2) has
no balanced cycle. We now have the following theorem.

THEOREM 6. IfA is a finite nonempty set, the system (A, P1, P2) is representable
if and only if (A, P1, P2) is a balanced double semiorder system and re(P1, P2)<
s(P1, P2).

To summarize the results so far, recall that initially two questions were asked.
The first asked, given 81 and 82 and a system (A, P1, P2), when does there exist a
function [ :A --> such that (4) holds? The second question modified the first to allow
81 and 82 to be chosen and asked: When is a system (A, P1, P2) representable? We
have explicitly answered the second question in Theorem 6. The answer to the first
question comes out of the proof of Theorem 6.

THEOREM 7. Suppose A is a finite nonempty set and let 81 and 82 be given positive
constants with 81 >82. A system (A, P1, P2) is representable with 81, 82 if and only if
(A, P1, P2) is a balanced double semiorder system and

s (P1, P2) >2>m (P1, P2).

Proof. Representability with 81, 82 implies balanced double semiorder system by
Theorem 6. That s(P1, P2)>81/82>-m(P1, P2) follows from Lemma 2. To see that
the second inequality must be strict, note that we may modify f so that f(a)-f(b)
never equals 81. For suppose f(x) -f(y) 81. Then we may let g(z) be f(z) if f(z) <f(x)
and g(z) be f(z)-e otherwise. If e is picked small enough, then g is a representation
and, moreover, g(x) g(y) ( 8, and g(a) g(b) 8 f(a) -f(b) 8. We then make
such modifications successively until we obtain a representation h with h(a)-h(b)
never equal to 81. Now it follows that 81 e and so

> --_>- m (P1, P2).

To prove the converse, note that if P1 P2 then representability follows from
Lemma 4. If PloP2, the proof of Theorem 6 shows that if s(P1, P2)> 8 > m (P1, P2),
8 is rational, and (A, P1, P2) is not representable with 81 8 and 82 1, then (A, P1, P2)
is not a balanced double semiorder system. Thus if (A, P1, P2) is a balanced double
semiorder system and s (P1, P2) > 8 > m (P1, P2), and 8 is rational, (A, P1, P2) is rep-
resentable with 81 8 and 82 1. Since this is true for rational 8, it clearly is true for
all real 8. Now suppose (A, P1, P2) is a balanced double semiorder system and
s(P1, P2) > 81/82 > re(P1, P2). Then (A, P1, P2) is representable with 81/82 and 1, which
by multiplying the representing function f by 82 gives us a representation with 81 and
82. Q.E.D.

COROLLARY 7.1. A balanced double semiorder system (A, P1, P2) with P1 P2
is representable for all 81 >82>0 if and only if m(P1, P2) 1 and s(P1, P2) oo.
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Proof. Theorem 7, Lemma 1 and the observation that 61 > 62 > 0 implies
1. Q.E.D.

COROLLARY 7.2. A balanced double semiorder system (A, Pa, P2) is representable
for all >6 > 0 if and only if m (Px P2) --< 1 and s (Px, P2) o0.

Proof. If P1 P2, the result follows from Corollary 7.1. If Px Pz, the result
follows from Theorem 7 and the observation that 61>62>0 implies
1. Q.E.D.

Now that the main results have been stated, and their proofs precede their
statements in the discovery mode Scott suggests, let us examine the conditions further.
In particular, suppose (A, P1, P2) is a balanced double semiorder system and consider
a cycle RxR2.." R,,. This is a cycle such that there exist at, a2,’’ ", a,, such that
alRxaER2"" a,Rmal. Now if among R1, R2,""", R,_t we have m Px’s, m PE’S,
n fix* ’s and n /5, ’s with m n > 0 and m n + 1, then since RtR2" R,, cannot
be a balanced cycle, R, cannot be/5.. That is, -a,,/5*a or, equivalently, aiPxam.
Thus by changing the order of the terms in a cycle, it is easy to see that the non-
existence of a balanced cycle is equivalent to the following strong double semiorder
condition" If axRlaER2"" R,,_la,, and m =n >0 and m =n + 1, then aPa,,.
Note that if P1 P2, then the strong double semiorder condition is equivalent to the
semiorder axioms.

In one of its simplest forms, the strong double semiorder condition states that
for all x, y, z, w A, xP2yfizPw :: xPxw. This is equivalent to the upper interval
homogeneous condition ( 5). Therefore if (A, Px, P2) contains no balanced cycle, then
(A, Pt, P2) is upper interval homogeneous.

Suppose (A, P) is an asymmetric relation and I is the symmetric complement of
P (xIy :-.-xPy ^-.-yPx) and (A, W) is a weak order. Then W is compatible with P
if for all x, y, z A"

(i) xPy ::> xWy
and

(ii) xWyWz ^ xIz xIy ^ yIz.

Roberts [1971b] has shown that if (A, P) is a semiorder, then there is an essentially
unique weak order W on A compatible with P, and if an asymmetric relation (A, P)
has a compatible weak order W, then (A, P) is a semiorder. A family of semiorders
{(A, Pi)}i is homogeneous if there is a single weak order (A, W) compatible with (A, P)
for each i. This concept was introduced by Roberts [1971a] in studying
probabilistic consistency. If (A, P1, Pz) is representable by a function f, then {(A, P)}
is a homogeneous family of semiorders. For define W on A by aWb iff f(a)>=f(b).
Then W is a weak order on A compatible with each Pi.

This second notion of homogeneity implies the first.
THEOREM 8. If {(A, Pi)}i= 1,2 is a pair of homogeneous semiorders, then (A, P)

and (A, P2) are upper interval homogeneous.
Proof. Suppose {(A, Pi)}i=l.2 is a pair of homogeneous semiorders. Let Ii be the

symmetric complement of P, 1, 2. Suppose aPb and cPzd and "-’aPEd and .-.cPb.
Let W be the weak order compatible with both Px and P2. Then either cWb or bWc.

Case 1. bWc. Then (i) of compatibility implies aWbWcWd, and by condition (ii)
of compatibility aIEd would imply CIEd, a contradiction. Therefore dPEa. But dP2a
implies dWaWbWcWd. Since semiorders are irreflexive, dIad implies allb, a contra-
diction. Therefore --bWc.
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Case 2. cWb. But --.cPlb, so cllb, for bPc implies bWc, which we know is
impossible. Since W is a weak order defined on A, either aWc or cWa. If cWa, then
cWaWb and cIb, so allb, a contradiction. Therefore aWc. But aWcWd and .cI2d
implies .aI2d. Now .--aI2d and aP2d implies dP:a. Thus aWcWdWa. Now aI2a
implies dI2a, a contradiction. Q.E.D.

We know that if (A, P1, P2) satisfies the strong double semiorder condition and
(A, Pt) and (A, P2) are both semiorders, then (A, P) and (A, P2) are upper interval
homogeneous. We next show that even in the presence of the assumption that
s(P, Pz) > m (P, P2), the converse is false. We show the following (which by Theorem
8 is stronger than what we have just claimed)" there is a nested pair of homogeneous
semiorders (A, P1, P2) with s (P1, P2) > m (P1, P2) which violates the no-balanced-cycle
condition, or equivalently, is not representable. As an example consider the system
(A, P, P2) depicted in Fig. 2. (A, P, P2) is a nested family of homogeneous semiorders.
Homogeneity follows because a, d, b, c is a common compatible weak order. Now
rn (Pa, P2) 1 and s (Pa, P2) 2 so m (Pa, P2) < s (P1, P2). Yet (A, P, P2) is not
representable. For we would have f(a)>[(b)+6 >/(c)++62 and (d)<-[(c)+61
and [(a <-_[(d) +,52. Therefore [(a <-[(c +6 + 62 also, a contradiction.

FIG. 2

9. Double indifference graphs. The results of 8 can be translated into charac-
terizations of double indifference graphs analogous to Corollary 1.2 of Theorem 1.

A multigraph (G1, G2) is a pair of graphs with the same vertex set. We say
(G1, G2) is a double indifference graph if there exist real numbers 61 > 62 >0 so that
(5) holds for some f, and a strong double indifference graph if for every 61 >62 >0,
(5) holds for some f. By definition of indifference graph, if (G1, G2) is a double
indifference graph, then G1 and G2 are indifference graphs. As in Corollary 1.2, we
have:

THEOREM 9. A multigraph (G1, G2) is a double indifference graph if and only if
there exists a balanced double semiorder system (V, P1, P2) with V V(G1)= V(G2),
such thatP1 andP2 are orientations of and 2, respectively, and such thatm
s(P1,P2).

COROLLARY 9.1. A multigraph (G1, G2) is a strong double indifference graph if
and only ifthere exists a balanced double semiorder system V, P1, P2) with V V(GI)
V(G2), such that P1 and P2 are orientations of1 and 2, respectively, and such that
m (P1, P2) <= 1 and s (P1, P2) o0.

We illustrate these results by considering the multigraphs of Figs. 3, 4 and 5. In
drawing these multigraphs, we note that since 61 > 62, representability implies that
E(G2)_E(G1). Hence, we must have a nested pair of indifference graphs, and we
can represent them unambiguously as a multigraph by including two edges between
x and y if {x, y}E(G1) and E(G2), and one edge if {x, y}E(G1) but not

Example 1. (G1, G2) as shown in Fig. 3 is a strong double indifference graph.
Choose any 61>62>0. Then the function f such that f(a)=O, f(b)=6, and f(c)=
61 + 62 satisfies (5).
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c c c

b a b a b a

G1 G2 (G1,

FIG. 3

Example 2. (H1, H2) as shown in Fig. 4 is a double indifference graph, but not
a strong double indifference graph. Let 6 1.5. Then the functionf such thatf(a) 2.4,
f(b)= 1, f(c)=0, and f(d)=-I satisfies (5) with and 1, so (H1,H2) is a double
indifference graph. But no such function exists with 6 and 1 if 6 > 2, since we must
have If(b)-f(c)l <-- and If(c) -f(d)l <-- 1, thus If.(b) -f(d)l--< 2. Yet since no edge {b, d}
exists, If(b)-f(d)l >. Therefore 1 < < 2 for a function f to exist satisfying (5).

c c

b d a b d

H2 (H1, H2)

FIG. 4

Example 3. (Kt, K2) as shown in Fig. 5 is not a double indifference graph. Suppose
a function f and constant 8 > 1 exist satisfying (5) with 8 and 1. By (5) the function

f induces a weak order on A compatible with both K and K2. That is, we have
f(x)<-f(y)<-f(z) and {x,z}E(Ki) implies {x, y}E(Ki) and {y,z}E(K). But the
only orders compatible with K2 have a coming first or last. In any such order, either
b is between a and c or c is between a and b. But the order is also compatible with
K1. Then aItc or aIb implies bIlc, a contradiction. Therefore no constant 8 > 1 and
no function f exist satisfying (5) for (Kx, K2).

a b a b a b

d c d c d c

K1 K2 (K1, K2)

FIG. 5

To explain these results from our theorems, note that each of the graphs G, G2,
H1, H2, K, K2 in Figs. 3, 4 and 5 is an indifference graph, as is easy to check.
However, if we look at the complements of each of (G1, G2), (H1, H2) and (K1, K2),
as illustrated in Fig. 6, we see some obvious differences. (Note that complement is in
the multigraph sense--we consider a maximum of 2 edges possible between any two
vertices.) The set {b, d, c} in (H,’----2) forms an (I2-P1)-cycle (as defined in 8)
regardless of the orientation P1 of {b, d}, since we have the cycle bP*2cPdPb or the
cycle dPcP*2bPld. Thus there exists a cycle C such that sc(P, P2)= 2. Therefore by
Theorem 7, for any orientations P and P2 of/-r and/-2 respectively, if there exists
a function [: V R satisfying (4), 61/62 must be less than sc(P, P2) 2. Thus, we see
why (H1, H2) is not a strong double indifference graph.
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c c a b

b a a b d d c

(G1, G2) (HI, H2) (KI, K2)

FIG. 6

Next, any orientation R2 of K2 must orient all edges out of a or all edges into
a for RE to be a semiorder. Without loss of generality consider RE orienting all edges
out of a. The two possible orientations are illustrated in Fig. 7. If R is an orientation
of/ so that R

_
RE, then R= {(b, c)} in Fig. 7(a) and R {(c, b)} in Fig. 7(b). The

pair (R, RE) is shown in these two cases in Figs. 8(a) and 8(b), respectively. In Fig.
8(a), aREbRc and aRd and "dR2c, so aR2bRlcl*2d’a is a balanced cycle
and so (V, R,R2) is not a balanced double semiorder system. In Fig. 8(b), aREcRb
and .-.aRid and dREb. Hence aREcRb’d’a is a balanced cycle, so (V, R,R2)
is not a balanced double semiorder system. In sum, (K, K2) has no balanced double
semiorder system orientation.

Finally, the following orientations of ( and 2 are both semiorders and the
system (V,S,S2) is a balanced double semiorder system: S={(c,a)}, $2
{(c, a), (c, b)}. See Fig. 9 for an illustration of (S, $2). Any cycle can be obtained by
combining the following cycles or adding x.*,x for i= 1, 2 and x {a, b, c}: cSEbc,
cSa*2bc, cSabc, cS2ab*c and cS2a*b*c. Thus no cycle is balanced.
Also, from this analysis m(Si, $2) 1 and s(S, $2) 00. Thus (V, $1, $2) is a balanced
double semiorder system with m(S, S2)= 1 and s(S, S2)= 00. Corollary 7.1 implies
that (G, G2) is a strong double indifference graph.

a b a b

d c d c

(a) (b)

FIG. 7

a b a b

d c d c

(a) (b)

FIG. 8

c

FIG. 9
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10. Open questions. The following questions remain open: Generalize these
results to n thresholds. Find a characterization of double indifference graphs which
is stated purely in terms of requirements on the graphs, e.g., in terms of forbidden
subgraphs of the multigraph, rather than in terms of orienting the complements.
Characterize graphs of (unit) sphericity at most 2 or at most 3 (see 2 for definitions).
Consider the generalization of double indifference graphs to pairs of graphs of (unit)
sphericity at most 2 or at most 3.
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ON THE GREEDY HEURISTIC FOR CONTINUOUS COVERING
AND PACKING PROBLEMS*

MARSHALL L. FISHERf AND LAURENCE A. WOLSEY

Abstract. Worst-case bounds are given on the performance of the greedy heuristic for a continuous
version of the set covering problem. This generalizes results of Chvatal, Johnson and Lovasz for the 0-1
covering problem. The results for the greedy heuristic and for other heuristics are obtained by treating the
covering problem as a limiting case of a generalized location problem for which worst-case results are
known. An alternative approach involving dual greedy heuristics leads also to worst-case bounds for
continuous packing problems.

Introduction. This paper deals with a worst-case study of the greedy heuristic
for the continuous covering problem

Z(b) min cy,

(C(b)) Ay >- b,

y>=O,

where A is an m x n matrix, and A, b and c are nonnegative rationals. Although
(C(b)) contains no integrality restriction on y, the greedy heuristic always produces
an integer/0-1 solution whenA is a 0-1 matrix and b is integer/(1, ., 1)r. Therefore
our results can be seen as a generalization of those of Johnson [5], Lovasz [6] and
Chvatal [1] who considered the performance of the greedy heuristic when A is 0-1,
b (1,..., 1) 7 and y is required to be 0 or 1.

A novel feature of our analysis is the use of a worst-case bound for a generalized
location problem to derive the bound for the covering problem. Even though direct
proofs exist, we feel that this is of interest because of the definite lack of a unified
theory of heuristics; see [4i, [8].

This is also one of the few analyses of a linear programming (LP) heuristic of
which we are aware. LP heuristics might be useful in LP crashing procedures, and for
fathoming in branch and bound. The results below also give an indication of appropriate
row scaling factors for problem C(b).

Section 1 states our results on greedy covering, and 2 contains the proofs of
these results. In 3 alternative statements of our earlier results lead also to an analysis
of heuristic solutions to the dual of C(b), or in other words to a heuristic analysis for
continuous packing problems. Finally the application of other location heuristics to
covering problems is discussed.

1. Results on greedy. In the description of the greedy heuristic below we use the
notation

si(y)=max (O, bi- aijyj)
j=l

and

A greedy heuristic for C(b)
(1) Initialization: Set yO= 0,M0 {1,. , m}, si(y ) bi, 1,. , m, and calcu-

late AT,/’= 1,..., n. Set t= 1.

* Received by the editors June 4, 1981, and in revised form June 3, 1982.
f Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
Center for Operations Research and Econometrics, Universit6 Catholique de Louvain, 1348 Louvain-

la-Neuve, Belgium.
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(2) Step t"
a) Find 0t=minj(1/A ), and choose a variable /’t for which 0 t-

b) Find =min/r- (si(yt-)/ai), and choose a row itM- for which
t-l)n s,(y /a.

c) Set M M’- -{it}, and yt y, + e,, where e, is the jtth unit vector.
(3) If <m, set + 1. Update s(y’), M and A, ] 1,. ., n, and go to 2.

If m, set y y, Z (b) cy and stop.

If there are ties in the selection of it, one could reduce execution time of greedy
by removing more than one element from M-x. However, forcing greedy to execute
step 2 exactly m times as we have done above will simplify the proofs. In addition it
allows us to assume without loss of generality that it t, 1,..., m, and hence
Mt-X={t, m}. Note that the running time of the heuristic is O(m max (m, n))
as it requires at most 2(m + n) multiplications and divisions at each of the m steps.

For later use we also introduce the following m vectors {ut}=l defined by uOt
for t, , m and u 0 otherwise, and u* (0 , , 0).

Note that the choices made by greedy can be affected by scaling the rows of
C(b), but are unaffected by column scaling. Row scaling is of major importance in
the results given below.

To specify the first result, let

a min max < and fl mx aq

THEOREM 1. IfZ (b) is the value of a greedy heuristic solution for C(b), then

Minimizing the value of/ leads naturally to a scaling rule"
Canonicalorm 1. max (aq/c)= for all 1,..., m.
Note that if d is the maximum number of nonzero elements in any column of A,

and canonical form 1 is adopted, then / N d, so we obtain the tollowing corollary.
CooA. ff C(b is in canonicalorm 1, then

Z(b) N (1 +logd)Z(b).

The appearance of term / in the result of Theorem 1 is not surprising if we
note that it is an upper bound on the ratio of 0/0, i.e., the ratio of the most expensive
to the cheapest unit cost of covering units of b during the application of the greedy
heuristic.

An alternative and natural scaling is obtained by simply normalizing the require-
ments vector b"

Canonicalorm 2. b 1 for all 1,..., m.
ToM 2. I C(b is in canonical orm 2, then

Za(b) N (1 +logm)Z(b).

Now consider the integer covering problem with A 0-1 and b integer. In this
case it is clear that the greedy heuristic for C(b) will produce an integer solution, and
we obtain an integer programming heuristic with a bound forZ (b)/Z (b) of (1 + log d)
with canonical form 1, and of (1 + log m) with canonical form 2. When b (1,. , 1),

d
Chvatal has a tight bound of= (1/) with canonical form 2, and recently Dobson
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[3] has obtained an important generalization of this result, so it is still an open question
whether Theorem 2 can be strengthened to (1 + loge d) for general C(b). The worst-
case examples of Lovasz [6] show that Theorems 1 and 2 are tight asymptotically.

2. Proof. This section contains the proofs of Theorems 1 and 2. Both make use
of two observations: i) a close connection exists between C(b) and a generalized
location problem L(A, b) described below, and ii) the behavior of the greedy heuristic
for L(A, b) can be described in invoking a result from [9].

Without loss of generality we shall assume that C(b) has been column-scaled so
that ci 1 for all/" 1,. ., n.

Consider the problem"

W(A, b) max aiixii,
j=li=l

Y. aqxii <= hi, 1, , m,

(L(A, b))
i=a

O<-xii <- yi <-hi, l, m, j l, n,

Z
j=l

with ai, b and h nonnegative rationals for all and j.
The greedy heuristic for L(A, b), given below, with h +oo for all j, is exactly

the same as the greedy heuristic for C(b) with ci 1 for all j except that it may
terminate earlier. In other words, the y vectors generated at each step are identical.

A greedy heuristic for L(A, b)
(1) Initialization" Set yO= 0,M0 (1, .., m}, s(y) b, 1,. , m, and calcu-

late A,j= 1,..., m. Set 1.
(2) Step t"

t--1a) Find Ot=mini(1/hi ), and choose a variable jt for which 0t=

Cjt/,iMt- aijt.
b) Find ,/ mini,- s(y-)/aii,, and choose a row i sM- for which /

t--1 t--1 -,n t--1s,(yt-)/aii,. If Y.i= Yi +n >A, set y y +(A-Li=yi %, and go
to step (2d).

c) Set M M- -{it}, and y yt- + n ei,.
t-1 t-1d) Setxii=min{yi,,[bi-Zii, aiixii ]/aii,} andxii=xii forjjt, for all i=

(3) If Zi-- Y; <A, set + 1, update si(y), sM and Ai, j 1,. ., n and go
to (2). Otherwise set (x, y)= (x , yt), W(A, b) =Zi= ’.i= aiixii, and stop.

It is easily verified that

w (y) max aiixq" aqxii <= bi, 1, , m,
i=1 j=l

<- xi <- yi, 1, , m, j 1, , n}0

is submodular on . This enables us to apply, [9, Thm. 1] and establish the following
result"

THEOREM 3. Let W(A, b) denote the objective value of a greedy solution for
L(A, b ). Then

W(A,b)>-_(1-e-X/")W(lx, b) VA,/x _->0.
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If all ai are 0 or 1, all b 1, and h ix is integer, then L(A, b) is the h-median
problem with 0-1 costs. A greedy solution will satisfy y 0 or I for all and Theorem
3 is equivalent to a result given by Cornu6jols, Fisher and and Nemhauser [2].

Proof of Theorem 1. We shall need three conditions that follow from the close
connection between problems C(b) and L(A, b).

Condition A. W(A, b) b if and only if h Z(b).
Suppose W(A, b)== b, and let (x, y) be optimal for L(A, b). en it follows

that i aixi b, 1,..., m and i yi h. As 0xi yi, we conclude that

i=1 affi=b, i= 1,...,m, and hence y is feasible in C(b), and i=yiZ(b).
Conversely, if y is optimal in C(b), and h Z(b)= i=x yi, it is easy to construct x
such that (x, y) is optimal for L(A, b) with W(A, b)=b.

The next two conditions depend on the fact that if the greedy heuristic is applied
to L(A, b) or to C(b) the greedy solution produced is identical.

Condition B. WG(A, b)=x b if and only if h ZG(b), provided an identical
tie-breaking rule is used for each heuristic.

Condition C. Let ba be the part of b still not covered after applying the greedy
heuristic to L(A, b). Then Z(b) h +Z(bR).

Now let h * Z(b) 1Oge (fl/a), and consider problem L(A *, b). If W (h *, b)
i=x b, we are done, as l+Z(b)log (/a)>h*Z(b), where the last inequality
follows from Condition B.

If not, let b be the remainder as defined above when h h*. By Condition C,
Z(b)=Z(b) log (fl/a)+Z(ba), and it only remains to show that Z(b)Z(b).

As a min min ai was defined so that 1/a is the worst price that the greedy
heuristic pays per unit of b, 0’ 1/a for all iterations of the greedy heuristic, and
hence Z(bR)(1/a) i= b. Now

E bi-E b= W(h*,b)(1-e-lg’(/))W(Z(b),b) 1 -a E b,
i=1 i=1 i=1

where the first equality follows from the definition of b n, the inequality from Theorem
3, and the last equality from Condition A. Hence

11

inally, since c 1 or all ], and fl =max= a, (1/fl, , 1/) is asibl in
the dual o C(b), and hence (1/fl)

Proof of eorem 2. Usin an identical aument with b (1,..., 1) we let
h*=Z(b)lo m, and let b be the remainder atcr applyin recdy to L(h*, b), so
that Z (b) Z(b) lo m +Z (b).

Now by Theorem , W(h*,b)(1-e-)W(Z(b),b)=(1-1/m)Z=i b=
m 1, and hence i:1 b <1= Then usingb 1,Z(b)<O==b =<Ob<Z(b)=
as Ob is the optimal value for problem C(b) with its first (m-l) constraints
removed.

3. Covering and packing heuristics. Consider again the covering problem C(b),
and its dual, the packing problem:

(e(b)) Z(b) max {ub" uA <-c, u >_-0},

and the vectors {ut}=l and u* defined during the greedy heuristic. Let W
u’b +log, (/3/a)} be the value of dual greedy heuristic 1 and Wg "maxt=l,...,,
be the value of dual greedy heuristic 2.
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THEOREM 4. If the greedy algorithm is applied to C(b ), then
a) the vector (01, 0")/{1 +lOge (fl/a)} is feasible in P(b), and

-1

b) each of the vectors u’=(0, , 0, O’,..., O’) is [eaSib& in P(b).
If C(b) is in canonical form 2,

e z (bil
Pro& a) Let k =(1 +log (fl/a)). We claim first that (,..., 8)/k is dual

feasible for C(b). For each ], we have from the greedy algorithm that

O(ai + a2i +" + ai) 1,

2( a2i+’’. +ai) 1,

( a) 1

with 0< . ,and//a. The claim is proven if we can show that

C =aai +. + ai < k for all i.
Note that for all values of aq and Ot satisfying these constraints,

C (a +. + a)O + (a +. +a)(- ) +... + a(O -)

-+ 2 + +" "+

=m

Letting pt O,/Ot+, we obtain an upper bound on (i by calculating

,ot>O,t=l, ,m
t=l t=

whose value is well known to be (m 1)m- /. Hence

Nl+(m-1){1-(/)-/(-}Nl+(m-1) 1-1+, log (/)
m-1

l+loge (fl/a) ase =>l-x

Now

Vx ->_0.

kWI u*b E Oibi E oi aihYh E E Otaii,Yh
i=1 i=1 t=l i=1

Z Yh Z O’aih Z ci,Yj, Z (b),
t=l i=t t=l

and a) is proved.
b) From the greedy algorithm and the definition of 0’, 0 (i=, aj)-_< 1 for all/’. In

other words, u’ is feasible in P(b) for 1,..., m, with dual value u’b (m -t + 1)0’,
when b 1 for all i.
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Above it is shown that zc(b)<=.,,= 10’bt. Now as bi-- 1 for all and

WH 1
W2H max (m + 1)0 t, ZG (b) <- Y’. 2 < W E -. [

,=1 m-t+l- t=l

Note that if we start from a continuous packing problem in standard form,

(PP) W max {cx Ax <= b, x >= 0},

the dual greedy heuristic can be obtained directly by applying the "equality heuristic"
described below.

An equality heuristic for (PP)
Sett= 1.
Iteration t"
a) Let a max {a" a (.=, aij) <= bi for all 1, , m } andsuppose the maximum

is determined by some row i,, i.e.,

o ai, bi,.

b) Find which variable ], e {t,..., m} is least profitable when considering only
constraint i,, i.e.,

],=arg.min c..
t,...,n ai,

Reorder the columns so that j, t.

c) If n, stop. Otherwise set - + 1.
X* (0 ,’’’, a )/(1 -i-lOge (B/a)) is heuristic solution 1 with value W =cx*

TDefine x’ R by x. 0 for j" < and x. a for j’ -> t. Supppose max, cx cx.
i x is heuristic solution 2 with value W ci.

It should now be evident how Theorem 4 can be restated for the equality heuristic
applied to the packing problem (PP).

4. Extensions. If we now consider the covering problem with upper bounds"

Z (b, h) min cy,

C(b,h) ay>=b,

0_<_y__<h,

and adapt the greedy heuristic to incorporate the upper bounds on y, an identical
analysis to that of Theorem 1 using Theorem 3 gives:

THEOREM 5. Assume problem C(b, h) is feasible, and let mini,i {aij/ci" aii# 0}.
ffZ (b, h) is the value o[ a greedy heuristic solution, then

Z6 (b, h <- ( l + loge )Z(b, h ).

Another natural extension is to consider other heuristics for the location problem,
and apply them to the covering problem. Here we suppose A is 0-1, b -(1,.. , 1)T
and c (1, .., 1). Let H be any heuristic for L(A, b) that satisfies the following:

WH(A,b)>-(1-e-V)W(A,b) forsome y >0 andA integer.

For example, the k-enumeration plus greedy heuristic given in [7] enjoys these
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properties with e -v= ((m-k)/m) e -1, and the interchange heuristic with y loge 2.
Below we give a heuristic for this special case of C(b) that uses H as a subroutine.

Heuristic for C(b) with A (0, 1)- matrix, c (1,. ., 1), b (1,. ., 1)
Initialization" Set k 1 and so= b.
Step k" Using bisection, find an integer Ak for which

s/k-11-e-)2i--ls/k-l, and wH(hk 1, s-l)<(1--e-)y.i= Let
(X k k

i, y) denote the resulting solution and set sk=sk---Y.i=
s=O for all i, set y=y for all ], Zr(b)=Y.i= eye. Otherwise set
k k + 1 and repeat step k.

THEOREM 6.

t 1 )Zn(b) <- l+-logem Z(b).

Proof. The result clearly holds for m 1. Assume it holds for all problems with
less than m rows.

Claim 1. AI<-Z(b).
As Z(b) is optimal for C(b), W(A, b)= m (for all A >-_Z(b)) and hence from the

assumptions Wn(Z (b), b _-> (1 e -V)m for all applications of heuristic H. As W (A
1, b)< (1-e-)m, A1-1 < Z(b), and hence A <-Z(b).

Claim 2. Y.i= s <- e-Vm by definition of As.
Claim 3. Z(s <-Z(b) as the optimal solution for C(b) is clearly feasible in C(s).

Now from the heuristic

ZH(b)=AI+ZH(s)

(<-Z(b)+ 1 +-log s Z(s) (by Claim I and induction)

/ 1 )<-Z(b)+ l+-log (e-’m)Z(b) (by Claims 2 and 3)

1 m]Z(b).=.1 +-lOge
L

Note also that this heuristic must terminate in at most [(l/y) loge m] steps.
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RECURSIVE ALGORITHMS FOR UNITARY AND
SYMPLECTIC GROUP REPRESENTATIONS*
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Abstract. The finite-dimensional irreducible representations of the unitary groups U(n), SU(n) and
the symplectic groups Sp(2n, C) are explicitly constructed using recursive algorithms. A simple labelling
system is described that provides a unique label for each vector in a specific basis of every irreducible
representation, and the algorithms act in a "combinatorial" manner on those labels. The algorithms are
examples of lexicographic straightening algorithms.

Introduction. This paper is concerned with the problem of explicitly constructing
the finite-dimensional irreducible representations (irreps) of Lie groupswin the strong
sense of actually writing out practical algorithms for computing the action of an
element of the Lie group on a vector in one of the representation spaces. The algorithms
we use are called lexicographic straightening algorithms, and the particular examples
we analyze here were chosen to illustrate some useful features of such algorithms.
We presented both U(n) and SU(n), even though they have almost the same rep-
resentation theory, to show how one can deal with reductive (but nonsemisimple) Lie
groups. The symplectic groups illustrate a more subtle process. The class of representa-
tions obtained by restricting the action of a Lie group to that of a subgroup is called
a "branching rule." Since all the irreps of Sp(2n, C) may be obtained by "branching"
from irreps of $1(2n, C), it is convenient to construct the algorithms for symplectic
group representations by modifying the algorithms for Sl(2n, C). The resulting
algorithm is part of the full algorithm that expresses the branching of representations
during restriction from Sl(2n, C) to Sp(2n, C).

It is useful to give some background in order to place this paper within the context
of the vast literature dealing with Lie groups and their representations. There are
three main ingredients in each algorithm’ a "combinatorial" labelling system for
enumerating a basis of weight vectors of the irreps; an algebraic structure, certain
elements of which are associated with the labels, thereby giving a concrete meaning
to the abstract labels; and (common to all the algorithms) the concept of a lexicographic
straightening algorithm. In the following discussion all attributions are to the earliest
reference known to this author.

Labels for the irreps of classical groups have been known for some time. A natural
way to derive them is via the branching rules for groups in each infinite sequence.
For the unitary groups these are called the Weyl branching rules (Weyl (1934)). For
the orthogonal groups, they are due to Gelfand-Zetlin (1950). Finally, the branching
rules for the symplectic groups are due to Hegerfeldt (1967). The use of tableaux as
a labelling method was developed by Young (1927), and independently by Garnir
(1950), for the symmetric group and by Weyl (1934), Hodge (1942), (1943) and
Hamermesh (1962) for the unitary groups. That tableaux and branching patterns are
combinatorially equivalent was apparently first noticed by Baird-Biedenharn (1963).
Symplectic tableaux were first developed by King (1975) although in retrospect the
Baird-Biedenharn result yields these from Hegerfeldt’s branching rules. More recent
work has yielded tableaux unrelated to branching rules. Symplectic tableaux have

* Received by the editors November 25, 1981 and in revised form March 16, 1982. This research was
supported by the National Science Foundation under grant MCS 79-03029.

t Department of Mathematics, Haverford College, Haverford, Pennsylvania 19041.
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been found by DeConcini (1979). Tableaux for the orthogonal and special orthogonal
groups were found by Lancaster-Towber (1979). Finally, tableaux were constructed
for all classical groups by Lakshmibai-Musili-Seshadri (1979). Apparently the only
exceptional group for which tableaux are known is G2, as discussed in Baclawski-
Towber (1982).

The history of algebraic structures for which tableaux serve as labels for standard
forms is much longer and more complex than the history of the labels themselves.
The work that eventually culminated in the shape algebra, the algebraic structure we
use to "concretize" the abstract labels, goes back at least to Schweins (1825) and
includes Sylvester (1851), Young (1902, 1927), Turnbull (1929), Hodge (1942, 1943),
Garnir (1950) and Doubilet-Rota-Stein (1974). Each of these found a different
algebraic context within which the "shuffle relations" appear in a natural way. The
first functorial, characteristic-free context, the shape algebra, was developed by Towber
(1977) based on work of Higman, Beetham and Carter-Lusztig, as well as all those
mentioned above. All of this so far deals with the shape algebra for $1(n, C) (or
equivalently for SU(n)). For the symplectic group the shape algebra was developed
by DeConcini (1979). For arbitrary semisimple Lie groups, the shape algebra was
defined by Towber and developed in a series of papers: Towber (1977), (1979) and
Lancaster-Towber (1979, 1982). The relations for the shape algebra were first com-
puted in general by Kostant, whose result is cited in Lancaster-Towber (1979). For
additional references see Lancaster-Towber (1979).

The concept of a lexicographic straightening algorithm emerged slowly from a
huge variety of special cases, especially algebraic structures discussed above, although
in retrospect the essential idea already appears in Macaulay (1927). For more recent
discussions see Baclawski (1981) and DeConcini-Eisenbud-Procesi (1981). For the
unitary groups, the straightening algorithm we discuss is due to the list of authors
enumerated in the last paragraph above. A different algorithm, which yields closed-
form formulas for both unitary and orthogonal groups, is due to Gelfand-Zetlin
(1950). These formulas give the action of certain generators of these groups on a
basis that differs from the one we use but which uses equivalent labels. In addition
the representation matrices they obtain are unitary. Our algorithms yield the action
of an arbitrary element of the group, but this action is described by a recursive
algorithm rather than a closed-form formula, and the representation matrices so
obtained are not in general unitary.

For the orthogonal and special orthogonal groups, straightening algorithms were
developed by Lancaster-Towber (1979), and they also gave an explicit description of
generators and relations for the symplectic case. A full algorithm for the symplectic
groups was given by DeConcini (1979). This algorithm utilizes a completely different
labelling system from ours. The only algorithm currently known for representations
of an exceptional Lie group is the one for G2 developed by Baclawski-Towber (1982).

The author wishes to express his appreciation to Jacob Towber for furnishing
many of the references above and for helping to check the final version of this
introduction.

1. Partially ordered sets. For a more detailed discussion of the partially ordered
sets (posets) considered below, see Baclawski (1982). For our needs it suffices just to
define them. To each unitary or symplectic group G we define a poset called a

fundamental poser. In addition, every element of a fundamental poset has a label
attached to it. This label has two parts, each being an element of the weight lattice
A of G (or equivalently an r-tuple of integers, where r is the rank of G). The first
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part is the irrep label which designates the irrep to which that element of the poset
belongs. The second part is the weight of the element.

Let A1,.. ", A, be the standard basis vectors of the weight lattice. These are the
irrep labels of the fundamental irreps of G.

1.1 The special unitary groups. The fundamental poset is A(n-1)=
{(bl<b.<...<bt)[l<-l<-n-1 and l<-b< .<bt<-n}. The elements are usually
written as columns"

The partial order is defined by" (bx < b2 <" < bt) -<_ (c <. < c,) if and only if >- m
and for every _-<m, we have b <_-c. The irrep label of (bx <b2<" "<bt) is At and the
weight is ’,j=l (Abj-Abi-1), where we use the convention that A0 A, =0.

1.2. The unitary groups. The fundamental poset is P(n)= A(n- 1)LI {d, d}. The
partial order is defined so that A(n 1) is a subposet, every element of which is larger
than both d and d, which are not comparable to each other. The irrep label of
(bt <. < bt) is t=x At, and the weight is Y’,i=x Ab,. The irrep labels of d, are Y’-t=l A
and -Y-=I At, respectively. The weights of d, a coincide with their irrep labels. Note
that the rank of U(n) is n.

1.3. The symplectic groups. The fundamental poset is C(n) {B A(2n 1)IB >--
(1 <3 <... <(2n- 1))}, with the inherited partial order. The irrep label of (ba <b2 <

< bt) is At, while the weight is y,,t
i=1 f(bi), where

if k 2i- 1,
if k 2j,

where we use the convention Ao 0.
We will use the following notation from the theory of partially ordered sets. A

multichain (or standard sequence) in a poset P is a sequence of elements x 1, x2, , xk
such that x <-x2 <-_’" <----Xk. Note that repetitions are allowed. If P is labelled, then
the label of a multichain is the sum of the labels of its elements (counting multiplicities).
When P is one of the fundamental posets described above, the multichains are usually
written as products, in which case they are called standard products, standard
monomials or Young tableaux. For example, if a_-<b<_-... <-c is a multichain in P,
then the usual way to write the corresponding standard product is

bl Cl

C2
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The importance of the fundamental poset is that the number of multichains having a
given irrep label is equal to the dimension of the corresponding irrep. Furthermore,
if the weights are also considered, the same is true for the weight spaces of an irrep.
These facts about the fundamental posets will be called the "labelling theorem." It
was developed by a series of individuals, as described in the introduction.

2. The shape algebra. As a vector space, the shape algebra of the Lie group G,
denoted Ab, is simply the direct sum of all irreps of G. It is more subtle to explain
how this ring is related to the fundamental poset of G and how it acquires a ring
structure. We will define each shape algebra using the familiar "generators and
relations" method. Roughly speaking, the generators correspond to the elements of
the fundamental poset, and there is one relation for each incomparable pair of
elements. As a result, the set of multichains of the fundamental poset corresponds to
a basis of A+, thus associating each multichain with a specific vector in some irrep of
G.

For example, A/

su(3) has six generators and one relation; see Fig. 1.

Generators: ,, [,
,, 23

Fundamental poset A(2) Shape algebra Ast3

FIG.

In the case of U(3), we have eight generators and two relations; see Fig. 2.

d d

Fundamental poset P(3)

Generators:

Relations:

dd 1

Shape algebra

FIG. 2

The ring As+(2n,c) will be constructed by starting with A/

su(2n and then adjoining
(or "modding out by") a linear relation for each element of A(2n-1)\C(n). For
example,.Sp(4, C) has 14 generators and 10 relations; see Fig. 3.
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A(3)

Relations:

FIG. 3

Shape algebra

Asu(n) and At(. ofWe now give the rigorous definitions of the shape algebras + /

the unitary groups. Although this is a well-known classical case, we include a discussion
for the sake of completeness.

2.1. The special unitary groups. The fundamental poset of this group is A(n 1).
We regard the elements of A(n- 1) as indeterminates or generators of a ring whose
relations are called the shuffle relations. To define these it is useful to define a total
order on the elements of A(n-1) called the lexicographic order. Given b-
(bl <" <bk), c= (cl <’ <ct) A(n 1), we say that b (strictly) precedes c if

(1) k _>- l,

(2) if k =l, then for some i, bl =cl," ’, bi-l=ci-1 and b<c.

Now let b and c be any pair of incomparable elements of A(n- 1). We may assume
that b precedes c. Now since b and c are not comparable, there is a first index j, called
the violation index of bc, such that b. cj. We then have that c < ca <" < cj < bj <
b+l <" "< bk. Let 6e (bc) be the set of all permutations r of {c 1, , c, b, ., bk}
such that r(Cl)<’’’ < r(c) and r(bj)<... < r(bk). For r e (be), we define

z(bc)=incr (bl,’’", bj-1, "r(bi),"’, "r(bk))" incr (’/’(Cl), 7"(C), Cj+I,’’’, Cl),

where if d,. , dt is a sequence of integers, then we write

incr (d 1, ’, dr) -) 0 if di for some /,

sgn (tr)(tr(dl) <"’ < tr(dt)) otherwise;

where r is the permutation required to put dl," ’, dt in increasing order and sgn (tr)
is the sign of r.

The shuffle relation of be is then given by:

sgn (z)’r (bc) O.
(be)
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If we write e for the identity permutation, then e(be)=be; hence, we may also write
the shuffle relation in this form"

be= sgn (z)z(be).
6e (be)

Now the products z(bc) for z e need not be standard; however, the violation
index of z(bc) is strictly larger than/" for every z e. So if we recursively substitute
the shuffle relation for those products ’(bc) that are nonstandard, we eventually obtain
a relation of the form

bc=Y ribici

where each product bici is standard and each r is an integer.
From this one can show that the standard products span the ring

/Asu(,). That
the standard products are linearly independent is harder to show and is essentially
due to Hodge (19,,1) (in characteristic zero) and Doubilet et al. (197,*) (in general).
See also DeConcini et al. (1980).

We now examine how SU(n) acts on A+
su(,). It suffices to describe how Gl(n, C)

acts on the generators of A/

su(,) and to show that Gt(n, C) maps the ideal generated
by the shuffle relations into itself. The generators of Au(,) or equivalently the elements
of A(n- 1) should be thought of as the basis vectors of the fundamental irreps:
V(hx), V(A2),"" ’, V(hn-X). In more concrete terms, V(hx) is the vector space C"
upon which Gl(n, C) acts in the natural way. The basis vectors are the one-element
sequences [-1],..., in A(n-1). The other fundamental irreps are the exterior
powers of C", the basis of V(A-) AiC" being all sequences (al <’ < a.) A(n 1)
having exactly/" elements. A sequence (al <... <a.) should be thought of as the
wedge product gi ^"" ^ [ff] of these/" vectors from C".

It is an exercise in linear algebra to show that for any o- Gl(n, C), the action of
r on a shuffle relation is a linear combination of shuffle relations. In fact, the coefficients
will be determinants of certain submatrices of r. This is shown in Doubilet et al.
(1974) and DeConcini et al. (1980).

Thus Au(,) is a well-defined ring with an action of SU(n). We now consider
how this representation decomposes as a direct sum of irreps. For this we need the
labels we attached to the elements and the multichains of A(n 1). Now the multichains
form a basis of A/

su(,) which behaves extremely well with respect to the action of
SU(n). For a given irrep label, h, the space A of all linear combinations of standard
monomials having this irrep label, is an SU(n)-submodule of Au(,), since the action
of SU(n), as well as the shuffle relations, preserve irrep labels. In ring theory one
calls A the homogeneous component of A+

su(,) having multidegree h. To determine
+how the representation A breaks up as a sum of irreps, it suffices to compute its

formal character: the formal power series

where A+,. is the weight space of A corresponding to weight/z. Now A+
x,. is precisely

the subspace spanned by standard monomials whose irrep label is A and whose weight
label is/x. By the labelling theorem, Fx (a) coincides with the formal character of the
irrep V(A). Thus A V(A), and it follows that Au(,) contains every irrep of SU(n)
exactly once.
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2.2. The unitary groups. As a ring we construct A/ su(n)u(n) from by adjoining
two new generators and one new relation:

/ __A/A(. s(,,[d, d]/(dd ).
/ A/

The action of Gl(n, C) on Au(n) is obtained from that on su() as follows for
e Gl(n, C), define

g(d) det (g)d and g() det (g)-x.

One should think of d as the sequence (1 < 2 <... < n) or, equivalently, the wedge
product [] ^ [] ^... ^ [-h].

3. The symplecti groups. The construction of the shape algebra for the symplec-
tic groups is more involved than the construction for the unitary groups. The idea is

/
to begin with Asu(2) and to adjoin linear relations to get A/

s,(2n). This is not the only
approach one can use, but it is convenient and less cumbersome than the other methods
mentioned in the introduction.

We now outline the procedure we will follow in our construction. Let
V1, V2n-1 be the fundamental irreps of Sl(2n, C), i.e., V/=AiC2n’, and let
V,..., V’ be the fundamental irreps of Sp(2n, C). It is well known that when
Sl(2n, C) is restricted to Sp(2n, C), then for /’= 1,2,...,n, V. contains V as a
submodule, i.e., V. V V’ for a suitable module V’ over Sp(2n, C). Thus we have

V Vff V", and so if we can compute V’; then we have a model for V. Since V’ is
an Sp(2n, C)-submodule of V., it follows that the ideal generated by V’ in A/

SU(2n) is
an Sp(2n, C)-submodule also. Let I be the ideal generated by V’; 1-<]-<_n, and by
V., n + 1 </<2n- 1 ThenA+su(2,)/I contains every irrep of Sp(2n, C) at least once.

+ IBy computing the dimension of each homogeneous part of Asu(2,)/ and comparing
it to the known dimensions of the irreps of Sp (2n, C), we finally conclude that Asu(2,/ )/I

+ + /has each irrep exactly once and hence that As,(.,) Asu(2n)/
The first step, then, is to compute V’; and we do this by using the Casimir

operator. Let C be the symplectic Casimir operator. Let p be the sum Yi--1 hi of the
fundamental irrep labels in the weight lattice A of Sp(2n, C). We give A the usual
inner product (induced by the Killing form). Then the Casimir operator C simply
multiplies each vector in V by (h + p, hi + p). Thus the image of the operator C-
(hi + p, hi + p) on V. is a subspace v,,, of Vi (which we will eventually show is the same
as V’}).

To compute C-(Aj/p, Ai/p) we need some auxiliary notation. Let V=
2n) Y-i=0 V., where V0 V2, C. Then Vk is a vector space whose basis is {(al <. <

ak)lai--<_2n}. The basis vectors of V will be thought of both as sequences and as
subsets of [2n ] {1, 2,. , 2n }. For a subset S

_
In ] and a function e" S - {0, 1}, define

V(S, e) to be the subspace of V consisting of linear combinations of

{A (al<.. "<ak)c__[2n] if/’’S, then ]{2]-l, 2]}f’)Al 1

and if/" S, then {2/" 1, 2/’} fq A {2/" e }}.

For a given A[2n], we see that AV(S,e) for some e if and only if S=
{/’][{2/’-1, 2/’}AI 1}. It is easy to see that V=@Ys, V(S,e)=Y.s.,i Vi(S,e),
where Vi (S, e V(S, e) f’J Vi.

For a given choice of S and e, the basis vectors of V(S, e) are distinguished from
one another uniquely by

D(h) {j [n]l 1{2/’- 1, 2/’} AI 2}.
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If A Vi (S, e), then IS[ + 2ID (A)I i. Now by definition, we have that D (A)
_

In ]\S,
and conversely it is obvious that every subset of [n ]\S has a corresponding basis vector
A of V(S, e). Henceforth write m n -IS[. Let $ :In ]\S [m be the order-preserving
bijection. Then $oD maps the basis vectors of V(S, e) bijectively onto the Boolean
algebra (m). Let W(m) be the vector space on (m) as a basis. Extending SoD
linearly, we have a linear isomorphism : V(S,e) W(m). Write W(m) for the
subspace of W(m) spanned by/-element subsets of [m]. Then we have

Vlsl+2 (S, e Wl(m ).

We now define operators X, Y: W(m) W(m) as follows:

X(L)= E L t3{p}, Y(M)= E M\{p).
pL pM

These operators and their brackets define an action of the Lie algebra s/(2, C) on
W(m); see Stanley (1982) and Proctor (1979). We will use the fact that for <= m/2,
X: Wt_l(m) Wl(m) is injective and Y" W(m) W_(m) is surjective (although
strictly speaking this fact follows from Theorem 4). Let Z: W(m)- W(m) be the
composition X y. By a "brute force" computation one can verify that:

LEMMA 1. For every <= m/2, this diagram commutes:

C-(A+O,A+O)

V(S, e --Wl(m

v,.(s, . 4, W(m ),

where ] Isl + 21.
Note that the condition <= m/2 is equivalent to/" <= n, which is exactly the range

we are interested in. As noted earlier, in this range Y is surjective, so the image of
Z coincides with the image of X. Moreover, in this range X is injective. Thus we
have a relatively concrete description of v,,.,, it is the direct sum--I

--1X s,X(W,(n-lsl)).
S,e,l

Isl+21=i

We next seek a basis for the quotient V/_jv’" and an algorithm for expressing an
arbitrary vector v + --1,v’’ for v V., in terms of this basis. By Lemma 1, it suffices to
find a basis and algorithm for the quotients W(m)/X(WI_x(m)), where <=m/2. A
subset P___[m] will be called a Yamanouchi subset if P (p <pz <"’ <Pk) satisfies
pi => 2i for every i. Let ,z be the Yamanouchi subsets of cardinality I. A beautiful
construction of Vo (1981) gives an injective map Yd_a(m)(m), if <=m/2, whose
image consists of all non-Yamanouchi subsets of cardinality I. Thus

The Yamanouchi condition arose because of the following:
THEOREM 2. Let A (aa <... <ak)A(2n- 1) and define S, e so that A

Vk ($, e). Then A C(n) tf and only i]’ $s, (A is a Yamanouchi subset.
Proof. Let m n -[$1 and (k Isl)/2 so that $s,(A) W(m). ClearlyA C(n)

if and only if A f’)[2s] C(s) for every s, and similarly for the Yamanouchi condition.
By induction we assume that the result is true for n replaced by n 1.

Suppose that A C(n). Then $(A f’) [2n -2])= (pl <. <pe) satisfies p =>2i for
every i. Now e must be either or l- 1. If e l, we are done. So we may assume that



600 KENNETH BACLAWSKI

e 1. In this case pt m. Suppose that pt < 21. Then since pt-1 -> 21 2 and pt-1 < pt,
we have that pt 21-1 and hence that m 21-1. This, in turn, implies that k IAI
n + 1. Now pt 21-1 means that the last two elements of A, an and an/l, are not in
[2n-2] Thus an 2n- 1 and an/l 2n, but this contradicts the assumption that
A C(n). Hence O(A) is Yamanouchi as desired.

Conversely, suppose that O(A) is Yamanouchi. By induction we may assume that
A f’l[2n -2] C(n -1), so we need only show that ak >=2k- 1 and that ak- =>2k-3.
There are three possible cases"

Case 1. ak -< 2n --2. Nothing to show, by induction.
Case 2. ak > 2n 2, ak- =< 2n 2. Suppose that ak < 2k 1. By induction, ak- >-

2k- 3, so it follows that ak- 2k- 3 and that ak 2k- 2. Since ak >- 2n- 1 and ak
is even, it follows that ak 2n. Thus k n + 1, which immediately contradicts the fact
that ak- <= 2n 2.

Case 3. ak- > 2n--2. This immediately implies that ak 2n and that ak-1
2n- 1. We must show that ak- =>2k-3 and that ak->_2k-1. If either of these
inequalities fails, then the second must fail. Suppose it does, i.e., suppose ak < 2k 1.
In this case pt m, so by the hypothesis that O(A) is Yamanouchi, we have that rn => 21.
Thus k n m + 21 <- n. However, this in turn implies that 2n ak < 2k 1 <= 2n 1,
a contradiction. The result then follows. Q.E.D.

Let Yamt be the subspace of Wt(m) spanned by ,z,nt. Then dimX(Wl_l(m))+
dim Yamt =dim Wl(m). Accordingly, if we can show that X(WI_(m))+ Yaml spans
Wt(m), then it will follow that Yamt Wt(m)/X(Wt_x(m)). In fact, we will describe
a recursive algorithm for expressing any basis vector O t(m) as a linear combination
of Yamanouchi subsets, modulo X(Wt_I(m)).

We first need
LEMMA 3. The matrix (x(L --M))ILI--t-X.IMI---I, where L,M_[21-1], is a square

matrix whose inverse is given by (/’t(IL fIMI))tl=t,l,.l=-, where

f(/)
(-1)t-i-a {1 i[L_M,
t(t_ and x(L_M)=

0 if L_M.

We leave the proof as an exercise.
Now for Q=(ql<" .<qt)(m), define h(Q)=max{f[f=O or qj<2/}, and

write Qx (ql <"" <qh(O)) and Q2 Q\QI. Note that Q is Yamanouchi if and only
if h (Q)= 0, so h (Q) is a measure of the non-Yamanouchiness of Q. Our key formula
is

THEOREM 4. Let Q t(m) for some <-m/2, and let h h(Q). Then

x E fa(IQnMI)MUQ =O+ Z A(IQnMI) Z MU{t}UQ2.
M__.[2h-1] M_[2h-1] t=2h
IMl=h-1 [Ml=h-1 tO2

(,)

Proof. We begin with
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We break the final summation into Et<__2h_l,t,M’t Et_2h.tgQ2" Now Et2h-l.t.MM U {t}
Q2-" M=Nc[2h-1].lNl=hN Q2, so the first term in (.) may be written as follows (by
Lemma 3)’

N_[2h-1] M_[2h-1]
INl=h IMl=h-1

E
N_[2h-1]

x(Q1 N)N U 02 O U 02 O.

Since the second term in (*) is the second term of the desired formula, we are
done. Q.E.D.

It follows that

M__.[2h-1]
IMl=h-1

f.(IO, nM}) E MU{t}UQz (moduloX(Wt_l(rn)).
=2h

t,gO2

Since h (M U {t} Q2) < h whenever >- 2h, this formula gives a recursive algorithm
for expressing any Q e(m) in terms of Yaml, modulo X(WI_I(m)). We have thus
shown:

COROLLARY 5. For any <-m/2, Yarnt- Wl(m)/X(Wt-l(m)).
Combining Lemma 1, Theorem 2 and Corollary 5, we have that C(n) is a basis

q3E = v,./v"’--i. However, by the labelling theorem, IC(n)l=dim()Y’.i__ Vi)
dim () v’"Yq__ V//V’). Since --v’’ c_ V’, we conclude that Vi, for every ], and that
C(n) is a basis of (i= V/Vi-(i= V.

It is perhaps useful to give an intuitive picture of the formula in Theorem 4. To
do so we borrow some terminology from the game of bridge. We regard an element
b of A(2n- 1) as a "hand" A from the "deck" [2n], whose elements form n "suits,"
the first suit being {1, 2}, the second {3, 4}, etc. Those suits for which A possesses
exactly one element, the "singletons," are the set S; the set of "doubletons" is D(A),
while all other elements of In are the "voids" of A. The number of doubletons and
voids is denoted m. If b fails to be in C(n), it does so because of the first h doubletons,
where h max {/’i/" 0 or qi < 2/’} and where qi is the number of doubleton or void
suits up to the/’th doubleton suit in A. Theorem 4 then dictates how to "shuffle"
doubletons into voids to yield elements of A(2n 1) closer to being in C(n).

For example, if n 3 and b= (1 <2 <3), then $ ={2}, D ={1} and there is just
one void. Theorem 4 yields that (1 < 2 < 3) -(3 < 5 < 6). Similarly if b (1 < 2), then
$ =d,, D ={1} and there are now two voids. Theorem 4 then yields that (1 <2)=
-(3<4)-(5<6).

We conjecture, based on some computational evidence, that the expansion of an
element of A(2n- 1)\C(n) as a linear combination of elemettts of C(n) involves only
integral coefficients, and moreover, that these coefficients have a combinatorial inter-
pretation. This would speed up our algorithm by making this part nonrecursive.

We now consider the whole ring Au(2)/L Using the Casimir operator method
once again, it is easy to see that A+

Sp(2,) is a quotient of A+su(2,)/L Fix an irrep label
h and let A, A, be the homogeneous components of the former and latter rings
respectively. By definition, A is the irrep V(A) of Sp(2n, C). By the labelling theorem
once again, dim (V(A)) is the number of multichains of C(n) having irrep label h. But
we have just shown (and we discuss more thoroughly in the next section) that these
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multichains span A’x. Hence dim A, -<_ dim A, while A is a quotient of A,. Therefore
4-A+ Asu(2n)/I and our description of +

Sp(2n)-- Sp(2n) is complete.

4. Algorithms. We now collect some of the material in the previous sections and
present it in more algorithmic form. The problem is to compute the action of an
element cr of the given Lie group G on a multichain (x _-<.. ----<Xk) Of the fundamental
poset P of G.

We first discuss the case of a unitary group representation. To compute
tr(xa... Xk), we apply tr to each factor and expand the product tr(Xl)tr(x2)’’’ tr(Xk)
as a linear combination of monomials. The monomials that occur will not, in general,
be standard. Suppose that yly2’ "Yk is such a monomial. Then at least one pair of
factors, say y and Yi, will not be comparable. To find this pair efficiently, one arranges
the factors according to the lexicographic criterion discussed in 2.1. When this is
done, there will be at least one adjacent pair of incomparable factors.

Having found an incomparable pair of factors Yi, Yj, we utilize the corresponding
shuffle relation to replace the product yiyj by a linear combination Y. rbtel. Substitute
this into the monomial yly2" yk and expand to yield a linear combination whose
terms are all "closer" to being standard. If we apply this technique recursively, the
procedure eventually terminates with a linear combination of standard monomials.
The whole algorithm is called a lexicographic straightening algorithm because each
substitution of a shuffle relation yields a linear combination of monomials each of
which strictly precedes the original monomial with respect to a lexicographic order
on monomials, thereby ensuring that the algorithm eventually terminates.

In the case of a symplectic representation, the algorithm has an additional step.
As before, we expand the product r(xl)tr(x2).’. tr(xk) as a linear combination of
monomials. Let yly2" yk be one such monomial. It is possible that some y is not
in C(n). If this happens, replace one such yg by the expression given by Theorem 4,
and expand. Do this recursively until only elements of C(n) occur as factors. One
then proceeds as in the unitary case, except that if a factor from A(2n- 1)\C(n) is
ever introduced, the procedure above must again be applied. Ultimately, the result
will be a linear combination of standard monomials whose factors are in C(n). Once
again we get a lexicographic straightening law, but the lexicographic order on
monomials used here is not the one for A(2n- 1) mentioned above and used for the
unitary groups. In fact, in this case larger elements of A(2n 1) are regarded as being
"earlier" than smaller ones, while elements of C(n) precede all other elements of
A(2n- 1) having the same irrep label.

Although the algorithm described above seems quite complicated, it has some
desirable features:

1. The order in which the quadratic and linear substitutions are made does not
affect the final answer.

2. Each substitution produces a linear combination of terms, each of which strictly
precedes the original term with respect to a suitable lexicographic order on monomials.

3. Each substitution preserves the weight of the monomial. Thus the speed of
the algorithm depends on"

(a) the complexity of tr, or more precisely, the number of different weights
occurring in the product tr(xl)tr(xz)... r(x); and

(b) the multiplicities of the weights occurring in tr(x)tr(x2) tr(x).

Since multiplicities of weights do not grow as rapidly as the dimensions of irreps, if
tr is not too complicated (e.g., a "raising" or "lowering" operator), then this algorithm
would be quite efficient and fast.
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We end with an example. Let r Sp(6, C) be

0 0 0 0 1 0
0 0 0 0 0

00 0 1 0 0

0 0 0 1 0 0
1 0 0 0 0
0 1 0 0 0

Consider the standard monomial (written in tableau notation)

3 5

5 6 V(-1,1,o) (0,1,1),

where this means that this vector has weight (-1, 1, 0) and belongs to the irrep whose
highest weight is (0, 1, 1)= A2 + A3. Now l-i],..., [] are the standard basis vectors of
C6, so 0,[ =1-], r’]= [] and r[=’l. Similarly,

and

However,

1

C(3),

so we must apply the formula in Theorem 4. This yields

and

Thus
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The first of these is not standard, so we apply the shuffle relation, the violation index
in this case being 2. Hence

"35 33

56=45 46"’+
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